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We discuss how electromagnetic properties provide useful tests of the nature of resonances, and we study
these properties for the N∗(1535) that appears dynamically generated from the strong interaction of mesons and
baryons. Within this coupled-channels chiral unitary approach, we evaluate the A1/2 and S1/2 helicity amplitudes
as a function of Q2 for the electromagnetic N∗(1535) → γ ∗N transition. Within the same formalism we evaluate
the cross section for the reactions γN → ηN . We find a fair agreement for the absolute values of the transition
amplitudes, as well as for the Q2 dependence of the amplitudes, within theoretical and experimental uncertainties
discussed in the article. The ratios obtained between the S1/2 and A1/2 for the neutron or proton states of the
N∗(1535) are in qualitative agreement with experiment and there is agreement on the signs. The same occurs for
the ratio of cross sections for the η photoproduction on neutron and proton targets in the vicinity of the N∗(1535)
energy. The global results support the idea of this resonance as being dynamically generated, hence, largely built
up from meson baryon components. However, the details of the model indicate that an admixture with a genuine
quark state is also demanded that could help obtain a better agreement with experimental data.

DOI: 10.1103/PhysRevC.77.065207 PACS number(s): 14.20.Gk, 13.40.Gp, 12.39.Fe, 24.85.+p

I. INTRODUCTION

The traditional picture of baryons as being made from
three constituent quarks [1] is giving rise, in some cases,
to more complicated structures. One of the ideas that has
gained strength in recent times is that low-lying resonances
of JP = 1/2−, 3/2− seem to be well represented in terms of
states that are generated by the meson-baryon interaction in
L = 0; in the 1/2− case from the interaction of the octet of
mesons of the π with the octet of baryons of the p [2–9] and
in the 3/2− from the interaction of the same mesons with the
decouplet of baryons of the �(1232) [10,11]. The �(1405),
which actually comes as two poles in chiral theories [6], with
this two-pole structure supported by experiment [12], has been
long thought of as a kind of meson baryon molecule of the K̄N

and π� states [13,14], a structure similar to that provided by
the chiral approaches mentioned above. The N∗(1535) is one
more resonance that appears in the two octets and one singlet of
dynamically generated resonances coming from the interaction
of the octet of mesons of the π with the octet of baryons of the
p [6]. In fact, it was noted in Ref. [15], before the systematics
of Ref. [6] were established, that the interaction provided by
chiral Lagrangians put as kernel of the Lippmann Schwinger
equation generated this resonance, which also appears in other
work along similar lines [16,17].

The N∗(1535) plays an important role in all processes of η

production because it couples very strongly to ηN . This feature
is actually provided automatically by the chiral theories, one
of the points of support for the nature of this resonance as
being dynamically generated. A recent study of the model
dependence of the properties of this resonance is seen in
Ref. [18].

From the point of view of a dynamically generated
resonance the N∗(1535) leads to fair descriptions of the

πN → ηN and γN → ηN reactions [15,17,19] and produces
reasonable numbers for the ηN scattering lengths [2,17]. Yet,
it has been argued that one of the important tests of the nature
of a resonance is its electromagnetic form factors. Indeed,
a meson-baryon resonance should get the Q2 dependence
basically from the meson cloud (we take as usual Q2 = −k2

with k being the photon momentum). If this is a pion, this
light particle has a fairly large extent in the wave function, as a
consequence of which the form factor of the resonance should
fall relatively fast compared to ordinary quark models that
confine the quarks at smaller distances. This is also the case for
the proton at small Q2, due to its meson cloud, which stabilizes
later on at larger values of Q2 where the quark components
take over, as shown in chiral quark models [20–22]. We shall
see that something special happens for the N∗(1535), but in
any case this is a very stringent test, because the chiral theory
provides the normalization and the Q2 dependence for the
different transition form factors without any free parameter,
once the parameters used in πN scattering with its coupled
channels are fixed to scattering data.

Radiative decays of resonances from the point of view of
their dynamically generated nature have been addressed in
Ref. [23] for the �(1520), in Ref. [24] for the �(1700), and
in Ref. [25] for the two �(1405) states. It concerns the decay
of the resonances into a baryon and a real photon. Some work
with virtual photons from this point of view is done in
[2,26] for the electroproduction of η in the vicinity of the
N∗(1535) resonance. Meanwhile, experimental analyses have
succeeded in extracting the helicity transition form factors
for N∗(1535) → Nγ A1/2 and S1/2, for both N = p, n, in a
relatively wide range of Q2 values [27].

We evaluate these form factors from the point of view of
the N∗(1535) as a dynamically generated resonance. For that
purpose we shall extend the formalism of Refs. [24,25] to
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virtual photons. The new formalism requires changes from the
real photon case, but it is rewarding because it provides much
more information, replacing the helicity transition amplitudes
by functions of Q2 and adding the new S1/2 transition form
factor that plays a role only for virtual photons. Hence, there
is far more information to test the predictions of the model.

From the quark model point of view there has also been
much work done on these helicity form factors [28–36].
A comparison of their prediction with experiment plus a
compilation of results from different experiments can be seen
in Refs. [27,37,38]. There are appreciable differences from
one quark model to another and relativistic effects seem to
be important, particularly in the S1/2 helicity transition form
factor. It should be noted that some of the models, particularly
those incorporating relativistic effects [31,33,35], produce a
fair agreement with data, in particular a good description of
the Q2 dependence of the form factor.

In our approach, the quarks enter through the meson and
baryon components of the resonance and the Q2 dependence
is tied to the meson and baryon form factors, which we take
from experiment, plus the particular Q2 dependence of the
loop functions from the meson-baryon coupled channels that
build up the resonance. Thus, the final Q2 dependence is a
nontrivial consequence of chiral dynamics, which provides the
coupling of the resonance to open and closed channels, the Q2

dependence of the different loops, and the form factors of the
mesons and baryons, particularly the mesons, as we shall see.

The results that we obtain are in fair agreement with
experiment for both charged states and for the two transition
form factors, hence providing extra support for the nature of
the N∗(1535) as being largely made from the interaction of
meson-baryon coupled channels.

Some deficiency in the Q2 dependence at large Q2 could be
an indication of a mixture of the meson-baryon components
with a genuine quark component, which is also indicated by
particular details of the chiral approach that we shall mention
below.

II. HELICITY AMPLITUDE

We consider the production reaction of the N (1535) res-
onance (Jp = 1/2−) by inelastic electron-nucleon scattering
as shown in Fig. 1. The N (1535) is created by exchange of
a virtual photon carrying momentum k. The initial N and
final N∗ momenta and masses are denoted by (pi,MN ) and
(P,MN∗ ), respectively. The energy-momentum conservation

FIG. 1. Kinematics of the electroproduction of N (1535).

reads

P = pi + k. (1)

There are two independent amplitudes for the electrotransi-
tion from JP = 1/2+ to 1/2−, A1/2 and S1/2, which are defined
in terms of the transition electric current Jµ by

A1/2 =
√

2πα

qR

1

e

〈
N∗, Jz = 1

2

∣∣∣∣ ε(+)
µ Jµ

∣∣∣∣N, Sz = −1

2

〉
(2)

S1/2 =
√

2πα

qR

1

e

|�k|√
Q2

〈
N∗, Jz = 1

2

∣∣∣∣ ε(0)
µ Jµ

∣∣∣∣N, Sz = 1

2

〉
(3)

with the fine structure constant α = e2/4π , the energy equiv-
alent to that of a real photon qR = (W 2 − M2

N )/(2W ) and the
photon-nucleon center-of-mass (c.m.) energy W ≡

√
P 2. The

polarization vectors of the photon, εµ, are given by

ε±
µ = 1√

2
(0,∓1,−i, 0) (4)

ε0
µ = 1√

Q2
(k, 0, 0,−k0), (5)

with Q2 = −k2, where we take the c.m. momenta �k and �pi

along the z axis.
Let us discuss the general expression of the transition

current Jµ in the relativistic formulation. First of all, we recall
the equation of motion for the initial nucleon

(pi/ − MN )ui(pi) = 0, (6)

where ui(pi) is the Dirac spinor for the initial nucleon
normalized by

uN =
√

Ei + MN

2MN

(
1

�σ · �pi

Ei+MN

)
χ. (7)

For the final N∗, we assume the pole dominance, so that we
again have

(P/ − MN∗ )uf (P ) = 0, (8)

where uf (P ) is the N∗ Dirac spinor and MN∗ denotes the
real part of the N∗ mass. In the calculations of the helicity
amplitude, the MN∗ is chosen as the N∗ energy in the final
state, W � 1535 MeV.

It follows that the terms involving the γ matrix in Jµ

are only of the form γ · ε, because we can move pi/ and P/

through γµγν − γνγµ = gµν to either the left or right end in
the amplitudes, and they can be replaced by the masses by
means of Eqs. (6) and (8). The term involving k/ can also be
replaced by the momentum conservation k/ = P/ − pi/ . Thus,
Lorentz invariance and momentum conservation (1) require the
transition current Jµ to be written, in general, by the following
three Lorentz scalar amplitudes:

Jµ = (M1γ
µ + M2P

µ + M3k
µ)γ5. (9)

The gauge invariance k · J = 0, tells us that there are only
two independent amplitudes among these three amplitudes,
Mi , giving the following relation:

(MN∗ + MN )M1 + k · PM2 + k2M3 = 0. (10)
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Using the transition current (9), we evaluate the helicity
amplitudes, A1/2 and S1/2, in the rest frame of the N (1535)
resonance. After some algebra, the helicity amplitudes are
written in terms of the amplitude M2 and M3 by

A1/2 =
√

2πα

qR

√
Ei + MN

2MN

1

e

√
2

MN∗ + MN

(k · PM2 + k2M3)

(11)

S1/2 =
√

2πα

qR

√
Ei + MN

2MN

1

e

−|�k|
MN∗ + MN

× [MN∗M2 + (MN∗ − MN )M3]. (12)

The transition current (9) can be written equivalently in the
c.m. frame as

Jµ =
√

Ei + MN

2MN

{
M1σ

µ

+
[ M1

(Ei + MN )W
+ M2

Ei + MN

]
P µσ · k

+ M3

Ei + MN

kµσ · k

}
(13)

≡ MNR
1 σµ + MNR

2 P µσ · k + MNR
3 kµσ · k, (14)

where σµ = (0, �σ ) and we take the c.m. frame P µ = (W, �0).
Then the helicity amplitudes are written in terms of the
amplitudes defined above, MNR

i , as

A1/2 =
√

2πα

qR

1

e

√
2
(
k · PMNR

2 + k2MNR
3

)
(15)

S1/2 =
√

2πα

qR

−|�k|
e

(
WMNR

2 + k0MNR
3

)
(16)

with the gauge invariance condition for the nonrelativistic
amplitudes

MNR
1 + MNR

2 k · P + MNR
3 k2 = 0. (17)

III. EVALUATION OF THE TRANSITION FORM FACTORS

A. Model of N(1535) and photon coupling

In our approach, the N (1535) resonance is dynami-
cally generated in the s-wave meson-baryon scattering in
the coupled channels of π−p, π0n, ηn,K+�−,K0�0,K0�

for the neutron resonance (with neutral charge) and
π0p, π+n, ηp,K+�0,K0�+,K+� for the proton resonance
(with +1 charge). The scattering amplitude for the N (1535)
resonance is described in Ref. [17] by means of the Bethe-
Salpeter equation for meson-baryon scattering given by

T = V + V GT. (18)

Based on the N/D method and the dispersion relation [5],
this integral scattering equation can be reduced to a simple
algebraic equation

T = (1 − V G)−1 V, (19)

where the matrix V is the s-wave meson-baryon interaction
given by the lowest order of the chiral perturbation theory,
which is the Weinberg-Tomozawa interaction, given by

Vij = −Cij

1

4f 2
(2

√
s − Mi − Mj )

√
Mi + E

2Mi

√
Mj + E′

2Mj

,

(20)

with the channel indices i, j , the baryon mass M , the meson
mass m, the meson decay constant f , and the c.m. energy

√
s.

The coefficient Cij is the coupling strength of the meson and
baryon, which is determined by the SU(3) group structure of
the channel. The diagonal matrix G is the meson baryon loop
function given in terms of the meson and baryon propagators
by

G(
√

s) = i

∫
d4q

(2π )4

M

E(�q)

1

q0 − E(�q) + iε

× 1

(P − q)2 − m2 + iε
(21)

with the total energy P = (
√

s, 0, 0, 0) in the c.m. frame. For
the baryon propagator we use the nonrelativistic form and
neglect the negative energy propagation. The loop function
should be regularized with proper schemes. In the practical
calculation, we take dimensional regularization by using a
covariant form of the positive energy part of the baryon
propagator,

M

E(�q)

�rur (�q)ur (�q)

q0 − E(�q ) + iε
� 2M �rur (�q)ur (�q)

q2 − M2 + iε
. (22)

In dimensional regularization, the loop function in each
channel i is given by the following analytic expression:

Gi = i

∫
d4q

(2π )4

2Mi

q2 − M2
i + iε

1

(P − q)2 − m2
i + iε

= 2Mi

16π2

{
ai(µ) + ln

M2
i

µ2
+ m2

i − M2
i + s

2s
ln

m2
i

M2
i

+ q̄i√
s

[
ln

(
s − (

M2
i − m2

i

) + 2q̄i

√
s
)

+ ln
(
s + (

M2
i − m2

i

) + 2q̄i

√
s
)

− ln
( − s + (

M2
i − m2

i

) + 2q̄i

√
s
)

− ln
( − s − (

M2
i − m2

i

) + 2q̄i

√
s
)]}

, (23)

where q̄i is the three-momentum of the meson or baryon in the
c.m. frame, µ is the scale of dimensional regularization, and
ai(µ) are subtraction constants, which are determined by a fit to
the S11 and S31 partial waves of πN scattering [17]. Once these
constants are fixed to the πN -scattering data, the amplitudes
involving photons can be predicted without introducing any
new free parameters.

It should be emphasized that the subtraction constants ai(µ)
are different for different channels i in the model of Ref. [17].
This is unlike the case of KN scattering and the �(1405)
resonance, where all the subtraction constants in the different
channels are approximately equal and of natural size according
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to Ref. [5]. The need for different subtraction constants in the
case of πN scattering and the N∗(1535) resonance has been
interpreted recently [39] as a clear indication that the N∗(1535)
contains a mixture of a genuine quark state apart from the
meson-baryon components. This conclusion has been reached
by following an alternative method in which the subtraction
constants have been chosen of natural order, and approximately
equal, and a Castillejo-Dalitz-Dyson (CDD) pole is included
that would give us an indication that extra components to the
meson-baryon ones are needed in the N∗(1535) wave function.
The study of Ref. [39] clearly indicates that the effect of the
CDD pole is negligible for the �(1405) resonance but relevant
for the the case of the N∗(1535). We shall see that our approach,
based on the meson baryon components exclusively, provides
a fair description of data, but some remaining discrepancies
indirectly hint to the need of extra components in the wave
function.

The resulting amplitudes T ij from Eq. (19) can be analyti-
cally continued to the complex plane of the scattering energy
s1/2. The amplitude has a pole in the complex plane that is
identified with the resonance, and the coupling strengths gi of
the resonance to the meson-baryon channels is determined by
the residues of the pole:

T
ij

N∗ (
√

s) = gigj√
s − MR + i�R/2

+ T
ij

BG, (24)

where
√

s is the c.m. energy of the meson-baryon system and
T

ij

BG is an amplitude for the nonresonant contributions. The
pole positions of the resonance are obtained as

√
s = 1537 − 37i (MeV) (25)

for the n∗ (neutral charge) and
√

s = 1532 − 37i (MeV) (26)

for the p∗ (+1 charge). The values of the coupling constants are
listed in Tables I and II. The coupling constants gi characterize
the structure of the N∗. The empirical evidence of larger
coupling of the N (1535) to ηN than that to πN is reproduced
in this model. In addition, the couplings to the �K and �K

channels are also large. This implies that the N (1535) has large
components of strangeness.

In the meson-baryon picture of the N (1535) resonance,
the photoproduction of the resonance from the nucleon is
formulated through the photon couplings to the meson and
baryon components of the N∗(1535). Photon couplings and
gauge invariance in the case of chiral unitary amplitudes are
discussed in Refs. [40–42]. Here, we follow an approach
similar to the one developed in Refs. [23–25] for real photons,
extending it to virtual ones. Feynman diagrams to the transition
form factors at one-loop level are shown in Fig. 2. In the loops,

TABLE I. Complex coupling constants gi of n∗ to the meson-
baryon channels.

π−p π 0n ηn

0.557 + 0.325i −0.387 − 0.238i −1.45 + 0.435i

K+�− K0�0 K0�

2.20 − 0.171i −1.56 + 0.115i 1.39 − 0.0825i

TABLE II. Coupling constants gi of p∗ to the meson-baryon
channels.

π 0p π+n ηp

0.397 + 0.222i 0.555 + 0.322i −1.47 + 0.432i

K+�0 K0�+ K+�

1.56 − 0.133i 2.21 − 0.183i 1.37 − 0.100i

all possible octet mesons and baryons contribute, namely π−p,
π0n, ηn, K+�−, K0�0, K0� for the neutron resonance
(neutral charge) and π0p, π+n, ηp, K+�0, K0�+, K+�

for the proton resonance (+1 charge). We sum all the contri-
butions to the transition amplitudes. In Figs. 2(a) and 2(b),
the photon attaches to the meson and baryon in the loop,
respectively. Figure 2(c) shows the Kroll-Ruderman coupling
that is the contact interaction of the photon, meson, and baryon.
Figures 2(d) and 2(e) have to be taken into account to keep
gauge invariance. It seems that these diagrams contain a
forbidden transition from the 1/2+ state of the proton to the
1/2− state of the N (1535), but negative energy propagation of
the intermediate baryons in these diagrams is possible, having
the opposite parity to the positive energy propagation. The
positive energy part in motion also mixes different parity states
through the different partial waves.

We calculate the transition amplitudes both in a nonrela-
tivistic and relativistic formulations. The momentum of the
baryon is small enough to describe the transition amplitudes
in a nonrelativistic formulation. In addition, as already men-
tioned, in the construction of the N (1535) in the meson-baryon
scattering [17], we have used the nonrelativistic formulation
in the elementary vertex and the baryon propagators as seen
in Eqs. (20) and (23). Therefore, to keep consistency of the
calculation of the photon couplings with the construction of
the N∗ resonance, the nonrelativistic calculation is preferable.
One should mention that the fact that one fits subtraction
constants to data largely washes out relativistic effects from
the use of Eqs. (21) or (23) in the G function in a fair range of
energies around the fitted point. Nevertheless, it is somewhat
complicated to prove gauge invariance in the nonrelativistic
formalism, because we need to take into account all the
possible diagrams, including negative energy contributions,
which are referred to as Z diagrams. To avoid this complication,
we will also perform the calculation of the amplitudes in
relativistic formulation, in which the negative energy contri-
butions are automatically counted without introducing the Z
diagrams, and we shall show that the relativistic calculation
is exactly gauge invariant. This guarantees that each term in

k

P

q

(a) (b) (c)

(d) (e)

FIG. 2. Feynman diagrams for the transition form factor of
N (1535) at one loop level. The solid, dashed, wavy, and double lines
denote octet baryons, mesons, photon, and N (1535), respectively.
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the 1/M expansion is gauge invariant. Exploiting this fact,
in the nonrelativistic framework we calculate diagrams for
leading amplitudes relying on gauge invariance and show that
the next-to-leading terms are relatively small.

The basic interactions of the mesons and baryons are given
by the following chiral Lagrangian:

LMBB = − D√
2f

Tr [B̄γµγ5{∂µ�,B}]

− F√
2f

Tr [B̄γµγ5[∂µ�,B]] (27)

with the meson and baryon fields, � and B, defined by

� =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 (28)

B =




1√
2
�0 + 1√

6
� �+ p

�− − 1√
2
�0 + 1√

6
� n

�− �0 − 2√
6
�


 . (29)

The MBB couplings from these Lagrangian are given by
gi

A/(2f ) with the corresponding axial vector coupling gi
A and

the meson decay constant f . The axial vector couplings are
given in terms of the D and F parameters in the Lagrangian
(27) as listed in Table III. For the meson decay constant,
we use f = 93 MeV for all channels in our calculation. The
values of D and F for the axial vector couplings are taken
from Ref. [43] as

D = 0.85 ± 0.06, F = 0.52 ± 0.04. (30)

These values are determined by the experimental data of
the hyperon axial vector couplings, neglecting higher-order
corrections. The photon couplings to mesons and baryons are
given by the gauge couplings:

LγB = −e Tr [B̄γµ[Qch, B]]Aµ (31)

LγM = ie Tr [∂µ�[Qch,�]]Aµ, (32)

with the charge matrix Qch = diag( 2
3 ,− 1

3 ,− 1
3 ). The

Kroll-Ruderman terms, the γMBB couplings, are obtained
by replacing the derivative acting on the meson fields, ∂µ�,
with the covariant derivative Dµ� = ∂µ� + ieAµ[Qch,�]

TABLE III. The axial vector coupling gi
A for each channel. The

values of D and F are given in Eq. (30).

Channel npπ− nnπ 0 nnη

gi
A

√
2(D + F ) −D − F 1√

3
(−D + 3F )

n�−K+ n�0K0 n�K0√
2(D − F ) −D + F − 1√

3
(D + 3F )

Channel ppπ 0 pnπ− ppη

gi
A D + F

√
2(D + F ) 1√

3
(−D + 3F )

p�0K+ p�+K0 p�K+

D − F
√

2(D − F ) − 1√
3
(D + 3F )

in the interaction Lagrangian (27) to realize the gauge
invariance. The Kroll-Ruderman terms are proportional to the
meson charge QM . For the couplings of the meson-baryon to
the N∗ resonance, we take a Lorentz scalar form representing
the s-wave nature and the coupling strengths are taken
from the chiral unitary approach as given in Tables I and II.

B. Nonrelativistic formulation

In the nonrelativistic formulation, the leading terms of the
1/M expansions are shown in Figs. 2(a) and 2(c). The diagram
in 2(b) is found to be of next-to-leading order due to the 1/M

factor in the γBB coupling. In the c.m. frame of the N∗,
which we take for the nonrelativistic calculation, the diagram
in 2(d) vanishes, because there is a direct transition of 1/2+
to 1/2−. Figure 2(e) shows some contribution in this frame,
but it is also found to be of next-to-leading order, because the
contribution to the diagram in 2(e) is confirmed to vanish in
the large M limit. Indeed, if one neglects the kinetic energy
term of the baryon propagators in the loop ( �p2/2M), the loop
function vanishes. It also vanishes in the rest frame of the
nucleon because it again involves a 1/2+-to-1/2− transition.

We will obtain each component of Figs. 2(a) and 2(c) in
the decomposition in terms of the Lorentz structure given in
Eq. (14). Because the helicity amplitudes can be expressed by
theMNR

2 andMNR
3 in Eqs. (15) and (16), we will calculate only

these two amplitudes. The amplitudes MNR
2 and MNR

3 remain
finite even with one loop integration. In fact, MNR

1 does have
divergence in the loop calculation, which should cancel with
divergences coming from the other diagrams thanks to gauge
invariance. Here we do not confirm the cancellation of the
divergences, because we later show the complete cancellation
in the relativistic formulation.

The Feynman rules for the nonrelativistic couplings are
summarized in Fig. 3. In the figure, εµ denotes the photon
polarization, and σ is a Lorentz covariant form of the spin
matrix, σµ = (0, �σ ). gi

A stands for the axial vector coupling
constants of the baryons to the corresponding meson. The
values of gi

A for each channel are given in Table III. gi
N∗ is the

coupling strength of the N∗ to the meson-baryon channel i.

p

i2Mū(p)u(p)

p2 −M2 + iε p

i

p2 −m2 + iε

p

p′

ε

− i
QB

2M
(p + p′) · ε p

p′

ε

− iQM (p + p′) · ε

k
giA
2f

k · σ
ε

−QM
giA
2f

ε · σ

N∗
− igiN∗

FIG. 3. Nonrelativistic Feynman rules for the propagator and the
elementary vertices. The solid, dashed, wavy, and double lines denote
octet baryons, mesons, photons, and N (1535), respectively. M and m

denote the baryon and meson masses, respectively. QB and QM are
the charges of the baryon and meson.
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The values of gi
N∗ are listed in Table I and II. For the baryon

propagator we use the covariant form from Eq. (22). The
γBB coupling is used for the calculation of Fig. 2(b), which
is not taken into account in our final result of the nonrel-
ativistic calculation. But to confirm that subleading terms
from the 1/M expansion are negligibly small, we have
calculated the diagram in Fig. 2(b) using the nonrelativistic
calculation. The γBB vertex is obtained by a nonrelativistic
reduction of the interaction Lagrangian (31) as

− iQBūγ · εu → −iQBχ †
[
ε0 − �ε · ( �p + �p′)

2M

]
χ (33)

� −iQBχ †
[
ε · (p + p′)

2M

]
χ, (34)

where we have used the fact that the baryon kinetic energies
are small in the nonrelativistic kinematics, p0 � p0′ � M , in
the last expression. In Eqs. (33) and (34) we have neglected
the magnetic term that behaves like (�σ × �k)/2M that has
one power less in the loop variable. In Sec. V B, we shall
estimate the contributions from the convection current and
the magnetic terms. In Eqs. (33) and (34), QB is the baryon
charge such that it is e for the proton with e2/(4π ) = α �
1/137.

Let us start with Fig. 2(a). Applying the Feynman rules
shown in Fig. 3, the amplitude (−it = J · ε) for channel i is
calculated as

− it ia =
∫

d4q

(2π )4
(−igi

N∗ )
i2Mi

(P − q)2 − M2
i + iε

(
gi

A

2f

)
(q − k) · σ

i

q2 − m2
i + iε

(−iQM )(2q − k) · ε
i

(q − k)2 − m2
i + iε

= iQMAi

∫
d4q

(2π )4

(q − k) · σ (2q − k) · ε

[(P − q)2 − M2
i + iε](q2 − m2

i + iε)[(q − k)2 − m2
i + iε]

, (35)

where the coefficient Ai is defined by

Ai = gi
Agi

N∗Mi

f
. (36)

We use the Feynman parametrization of the integral

1

abc
= 2

∫ 1

0
dx

∫ x

0
dy

1

[(a + (b − a)x + (c − b)y]3 . (37)

Then, using the integral variable q ′, such that q = q ′ + P (1 −
x) + ky and renaming q ′ as q, we eliminate the linear terms
of q in the denominator and obtain

− it ia = iQMAi2
∫ 1

0
dx

∫ x

0
dy

∫
d4q

(2π )4

[q + (y − 1)k] · σ [2q + (2y − 1)k + 2(1 − x)P ] · ε(
q2 − Si

a + iε
)3 , (38)

where we use P · σ = 0 in the c.m. frame and Si
a is defined by

Si
a = 2P · k(1 − x)y − P 2x(1 − x) − k2y(1 − y)

+M2
i (1 − x) + m2

i x. (39)

In Eq. (38), even powers of q give contributions after
performing the integration. The qµqν term in the numerator
that contributes to the MNR

1 is divergent, whereas the terms
with 0th power of q remain finite and contribute to the MNR

2
and MNR

3 amplitudes. Finally, after the integration, we obtain
the MNR

2 and MNR
3 components for the channel i as

Mi(NR)
2a = QMAi

(4π )2

∫ 1

0
dx

∫ x

0
dy

2(y − 1)(1 − x)

Si
a − iε

(40)

Mi(NR)
3a = QMAi

(4π )2

∫ 1

0
dx

∫ x

0
dy

(y − 1)(2y − 1)

Si
a − iε

, (41)

where we have used

∫
d4q

(2π )4

1

(q2 − S)3
= − i

(4π )2

1

2

(
1

S

)
. (42)

In a similar way we evaluate the contribution from Fig. 2(b)
that, as we mentioned, is of order 1/M of the previous ones
and we obtain

Mi(NR)
2b = −QBAi

(4π )2

∫ 1

0
dx

∫ x

0
dy

2y(1 − x)

Si
b − iε

(43)

Mi(NR)
3b = −QBAi

(4π )2

∫ 1

0
dx

∫ x

0
dy

y(2y − 1)

Si
b − iε

with
Si

b = 2P · k(1 − x)y − P 2x(1 − x) − k2y(1 − y)

+m2
i (1 − x) + M2

i x. (44)
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For the Fig. 2(c), the amplitude has only the MNR
1

component as seen in

− it ic = ( − igi
N∗

) ∫
d4q

(2π )4

i2M

(P − q)2 − M2 + iε

×
(

−QM

gi
A

2f

)
ε · σ

i

q2 − m2 + iε

= iQMAi

∫
d4q

(2π )4

× ε · σ

[(P − q)2 − M2 + iε](q2 − m2 + iε)
. (45)

Hence we do not need to perform further calculation for this
amplitude.

Finally, the helicity amplitudes in the nonrelativistic for-
mulation are obtained by summing all the channels and
substituting the amplitudes (40) and (41) in Eqs. (15) and
(16).

C. Relativistic formulation

In this subsection, we calculate the transition amplitudes
in relativistic formulation at the one-loop level. One of our
purposes for the relativistic calculation is to confirm gauge
invariance of our formulation. Without the 1/M expansion,
which has been performed in the nonrelativistic calculation,
all the diagrams shown in Fig. 2 should be calculated to
make the amplitudes gauge invariant at the one-loop level.
Each diagram has divergence from the loop integral. It will be
found that the divergence appears only in the M1 term. After
testing gauge invariance by summing up all the diagrams, the
amplitudes should be finite without any regularization, because
gauge invariance assures cancellation of the divergences
coming from each diagram. To check this cancellation of
the divergences, we calculate the M1 terms from all the
diagrams. To isolate the divergent parts of the amplitudes,
we exploit dimensional regularization, which respects gauge
invariance. The calculations are done in d dimension, and then
we expand d around d = 4 in terms of ε given by d = 4 − 2ε.
We also calculate the finite M2 and M3 to obtain the helicity
amplitudes in the relativistic formulation. We will find again
that only Figs. 2(a) and 2(b) contribute to the M1 and M2

amplitudes.
Let us start with Fig. 2(a). Using the Feynman rules shown

in Fig. 4, the amplitude of the diagram (a) for the channel i is
given by

− iT i
a =

∫
ddq

(2π )d
(−igi)i

P/ − q/ + Mi

(P − q)2 − M2
i + iε

(
gi

A

2f

)

× (q/ − k/)γ5i
1

(q − k)2 − m2
i + iε

i
1

q2 − m2
i + iε

× (−iQM )(2q − k) · ε

= iQMBi

∫
ddq

(2π )d

× (P/ − q/ + Mi)(q/ − k/)γ5(2q − k) · ε[
(P − q)2 − M2

i

][
(q − k)2 − m2

i

](
q2 − m2

i

) ,

(46)

p

i(p/ + M)

p2 −M2 + iε p

i

p2 −m2 + iε

p

p′

ε

− iQBγ · ε p

p′

ε

− iQM (p + p′) · ε

k
giA
2f

k/γ5

ε

−QM
giA
2f

γ · εγ5

N∗
− igiN∗ p

p′

ε

− iQEγ · ε

FIG. 4. Same as Fig. 3 for the relativistic formulation. QE stands
for the external N∗ charge.

where we define Bi = (gi
Agi

N∗/2f ). We can write expressions
for all the other diagrams and then an explicit calculation
shows that by substituting εµ by kµ one obtains an exact
cancellation of the terms, hence passing the ordinary test of
gauge invariance. The coupling of the photon to all lines and
vertices in the meson-baryon loop diagrams guarantees gauge
invariance, as is commonly known [41,44].

We now come back to the amplitude Ta of Eq. (46) and,
using the Feynman parameter integral (37), shifting the integral
variable q to q = q ′ + P (1 − x) + ky and renaming q ′ by q,
we find the integrand written as a function of q2 as

− iT i
a = iQMBi2

∫ 1

0
dx

∫ x

0
dy

∫
ddq

(2π )d

1
2q2Ca + Da(

q2 − Si
a + iε

)3 ,

(47)

where Si
a is defined in Eq. (39) and the coefficients Ca and Da

are defined in terms of the Lorentz components by

Ca = Ca1ε/γ5 + Ca2P · εγ5 + Ca3k · εγ5 (48)

Da = Da1ε/γ5 + Da2P · εγ5 + Da3k · εγ5. (49)

After some algebra, noting that gµ
µ = d = 4 − 2ε in the d-

dimensional calculation, the coefficients Cai and Dai are found
as

Ci
a1 = (MN + Mi)

(
1 + ε

2

)
(50)

Ci
a2 = 2(3x − 2) + xε (51)

Ci
a3 = 2(1 − 3y) − yε (52)

and

Di
a1 = 0 (53)

Di
a2 = 2(1 − x)

[
(x − y)yk2 − x(x − y)M2

N∗

+ y(1 − x)M2
N + (y − 1)MiMN

− (x − y)MN∗ (MN + Mi)
]

(54)

Di
a3 = (2y − 1)

[
(x − y)yk2 − x(x − y)M2

N∗

+ y(1 − x)M2
N + (y − 1)MiMN

− (x − y)MN∗ (MN + Mi)
]
. (55)
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D. JIDO, M. DÖRING, AND E. OSET PHYSICAL REVIEW C 77, 065207 (2008)

After the q integration, the divergent term is found only in the
M1 amplitude as

ξ i
a = −QMBi

(4π )2

1

ε

MN + Mi

2
ε/γ5. (56)

The divergent terms in the M2 and M3 vanish due to∫ 1
0 dx

∫ x

0 dy(3x − 2) = 0 and
∫ 1

0 dx
∫ x

0 dy(1 − 3y) = 0. To
calculate the divergent term we have used the following
formula:∫

ddq

(2π )d
q2

(q2 − S)3
= i

(4π )2−ε

4 − 2ε

2

�(ε)

�(3)

(
1

S

)ε

= i

(4π )2

[
1

ε
− log S − 1

2
− γ + log 4π + O(ε)

]
. (57)

The finite parts in the M2 and M3 terms are obtained as

Mi
2a = QMBi

(4π )2

∫ 1

0
dx

∫ x

0
dy

[
2(3x − 2) log Si

a − x + Da2

Si
a

]
(58)

Mi
3a = QMBi

(4π )2

∫ 1

0
dx

∫ x

0
dy

[
2(1 − 3y) log Si

a + y + Da3

Si
a

]
,

(59)

where the first two terms in the integrands are from the finite
parts of the divergent integrals and the last terms come from
the finite integrals.

Next, let us move to the calculation of the Fig. 2(b). In a
similar way, we obtain the finite M2 and M3 amplitudes as

Mi
2b = QBBi

(4π )2

∫ 1

0
dx

∫ x

0
dy

×
[

2(3y − 1) log Si
b − y + 1 + Db3

Si
b

]
(60)

Mi
3b = QBBi

(4π )2

∫ 1

0
dx

∫ x

0
dy

×
[
−2(3y − 1) log Si

b + y − 1 + Db3

Si
b

]
(61)

with Sb defined in Eq. (44) and

Di
b2 = 2[y(1 − y)(x − y)k2

− y(1 − x)(x − y)M2
N∗ − y2(1 − x)M2

N + xyMNMi

+ (x − y)(1 − x)MN∗ + Mi)(MN + Mi)] (62)

Di
b3 = 2[−y(1 − y)(x − y)k2

+ y(1 − x)(x − y)M2
N∗ + y2(1 − x)M2

N − xyMNMi

+ y(x + y)(MN + Mi)(MN∗ + MN )]. (63)

We have the divergent term in the M1 term as

ξ i
b = −QBBi

(4π )2

1

ε

MN − MN∗ − Mi

2
ε/γ5. (64)

The amplitudes for Figs. 2(c), 2(d), and 2(e) have only
the M1 components, which we do not use for the transition
amplitudes; only the divergent terms are necessary for the

present arguments. The divergent terms are found

ξ i
c = QMBi

(4π )2

1

ε

MN∗ + 2Mi

2
ε/γ5 (65)

ξ i
d = −QEBi

(4π )2

1

ε

(
M2

N∗ − 2M2
i − 2m2

i + MN∗Mi

)
2(MN + MN∗ )

ε/γ5 (66)

ξ i
e = QEBi

(4π )2

1

ε

(
M2

N − 2M2
i − 2m2

i − MNMi

)
2(MN∗ + MN )

ε/γ5. (67)

At the end, collecting all the divergent terms of Figs. 2(a)
to 2(e), we find that the divergent terms cancel according to

e∑
A=a

ξ i
A = −

[
Biε/γ5

(4π )2

]
(QE − QB − QM )

MN∗ − MN + Mi

2

1

ε

= 0, (68)

due to the charge conservation QE = QB + QM . The cancel-
lation takes place in each channel of the loop.

IV. RESULTS

In this section we show our results for the helicity ampli-
tudes, A1/2 and S1/2, of the N (1535) dynamically generated
in meson-baryon scattering. In Fig. 5, we show our result
for the A1/2 amplitude of the proton resonance calculated in
the nonrelativistic formulation [cf. Eqs. (15), (40), (41)] with
the c.m. energy W = 1535 MeV. In the present calculation,
we multiply the amplitudes obtained in the former section by
the electromagnetic form factors of the mesons or baryons
to which the photon couples. The form factors of the meson

 0

 20

 40

 60

 80

 100

 120

 0  0.5  1  1.5  2

|A
1/

2|
 1

0-3
 [

G
eV

-1
/2

]

Q2 [GeV2]

|Ap
1/2|

Present calc.
w/o Form Factor

FIG. 5. Modulus of the A1/2 helicity amplitude for the proton
resonance as a function of Q2 with W = 1535 MeV calculated in the
nonrelativistic formulation. The solid (dotted) line shows the A

p

1/2

amplitude with (without) the form factor of the meson inside the
loops given in Eq. (69). Marks with error bars are experimental data
normalized by the N∗ full width �N∗ = 150 MeV and the N∗ → ηN

branching ratio bη = 0.55. Filled triangles and circles are results of
the CLAS collaboration taken from Refs. [37] and [45], respectively.
Open circles show results of Refs. [46–49]. The values are taken from
Ref. [46].
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and baryons components of the resonance, together with the
intrinsic Q2 structure of the loops are responsible here for
the Q2 dependence of the helicity transition form factors. For
the mesons and baryons form factors we take monolope form
factors consistent with the values for the radii of the mesons.
We take

F (Q2) = �2

�2 + Q2
(69)

with

�π = 0.727 (GeV) (70)

�K = 0.828 (GeV), (71)

which correspond to 〈r2〉 = 0.44 fm2 and 〈r2〉 = 0.34 fm2 for
the pion and the kaon, respectively [50–52]. For the baryon
form factor, we take the same form as for the corresponding
meson to keep gauge invariance.

In Fig. 5, we show our result for the A
p

1/2 amplitude of the
proton resonance calculated in the nonrelativistic formulation
together with various experimental data. The c.m. energy
is taken as W = 1535 MeV. Let us first discuss the Q2

dependence of the helicity amplitude. The solid line denotes
the modulus of the calculated amplitude multiplied by the
meson form factor given in Eq. (69), whereas the dotted line
shows the results without the meson form factor, which means
that the Q2 dependence comes only from the loop calculation
performed in the previous section. In this case, the helicity
amplitude increases as Q2 increases. The inclusion of the form
factors introduces a decreasing function of Q2 that leads to a
Q2 dependence of the helicity amplitude in fair agreement
with the experimental observation, although it falls faster than
experiment because at Q2 = 0 we need a renormalization
factor of 1.45 to reach the data, whereas at Q2 = 1 GeV2

we need a factor of 2.15.
The absolute magnitude of our helicity amplitude looks

underestimated if one compares our result directly with the
experimental data shown in the figure. But it should be noted
that extraction of the helicity amplitude from the experimental
observables of the γp → ηp reaction is performed by using
the following formula [45,46,53,54]:

A1/2(Q2) =
√

W�N∗

2mpbη

σ (W,Q2), (72)

with a N∗ full width �N∗ , a N∗ → ηN branching ratio bη, a
resonance part of the total cross section σ (W,Q2), the c.m.
energy W , and the proton mass mp. To obtain this relation,
one assumes that the cross section is dominated by the single
N (1535) resonance and that the S1/2 amplitude is small. For
the experimental data shown in Fig. 5, the amplitudes are
normalized by �N∗ = 150 MeV and bη = 0.55 [45], which
are obtained in a global fit of the cross section with the
Breit-Wigner amplitude. However, the N∗ width obtained in
the present approach is �N∗ � 74 MeV for the p∗ as obtained
from the pole position shown in Eq. (26), in which the half
width is given by the imaginary part. The branching ratio bη

in this approach has been reported as bη � 70% [17]. This
normalization difference would give us a factor 1.6 reduction
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Present calc.
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FIG. 6. Modulus of the S1/2 helicity amplitude for the proton
resonance as a function of Q2 with W = 1535 MeV. The solid
(dotted) line shows the S

p

1/2 amplitude with (without) the form factor
of the meson inside the loops given in Eq. (69). The sign of this
amplitude relative to A

p

1/2 is negative, both in experiment and theory.
Solid triangles up (down) show the results from a combined analysis
of π (η) electroproduction data [27,38]. The solid squares are from
single-Q2 fits from Ref. [55]. The empty triangles up are taken from
Ref. [56]. The other data (empty circle and empty triangle down) are
from Ref. [27].

in the normalization with respect to the data shown in Fig. 5.
Similarly, should one use in the experimental analysis a
N (1535) width of the order of 90 MeV as found at BES [57] or
the 100 MeV quoted in the last MAID2007 analysis [58], the
results obtained would be in much better agreement with the
theoretical results. We will come back to the discussion on
the normalization later when discussing the photoproduction
cross section in the present approach. Let us note that the value
obtained here at Q2 = 0 of A

p

1/2 = 64.88 × 10−3 GeV−1/2 is in
excellent agreement with the most recent MAID2007 analysis
reported in Ref. [58] of 66 × 10−3 GeV−1/2.

The S
p

1/2 amplitude calculated in the nonrelativistic formu-
lation is plotted in Fig. 6 together with experimental data.
Although the modulus of S1/2 is plotted in the figure, the ratio
of S1/2 to A1/2 is nearly real and negative in agreement with
experiment, where an implicit phase convention is taken that
renders A

p

1/2 real and positive. Here we also show the effect of
the meson form factor.

As mentioned before, Fig. 2(b), in which the photon couples
to the baryon in the loop, gives subleading contributions in the
1/M expansion. This can be seen in Figs. 7, 8, 9, and 10.
In these figures, the amplitudes with Fig. 2(a) only (solid
line) are almost equivalent to those with both Figs. 2(a)
and 2(b) (dashed line), and the contributions from Fig. 2(b)
(dotted line) are smaller, in the present case, than typical
corrections of 20–30% for the 1/M terms. Therefore, the
helicity amplitudes in the nonrelativistic formulation around
these energies are basically given by Fig. 2(a). We also plot
the pion and kaon contributions separately. The figure shows
that the pion contribution (dot-dashed line) is comparable
with the kaon contribution (two-dotted line). This implies that
the strange component is important in the structure of the
N (1535).
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FIG. 7. (Color online) A
p

1/2 helicity amplitudes for the proton
calculated in the nonrelativistic formulation as a function of Q2.
The upper, middle, and lower panels are, respectively, the modulus,
real parts, and imaginary parts of the amplitudes. The phases of
the amplitudes are set so that the A

p

1/2 amplitude has a real and
positive value at Q2 = 0. The solid lines show the calculation with
Fig. 2(a) (meson pole term). The dashed and dotted lines stand for
the calculations of sum of Figs. 2(a) and 2(b) and Fig. 2(b) only,
respectively. The dot-dashed and two-dotted lines denote the pion
and kaon contributions, respectively.

Next, we report on results for the helicity amplitudes of the
neutron. The n/p ratios of the helicity amplitudes, An

1/2/A
p

1/2

and Sn
1/2/S

p

1/2, are plotted in Fig. 11 as a function of Q2. For
a real photon at Q2 = 0 we obtain the ratio −0.79 + 0.11i,
which is almost a real value, and its modulus, 0.80. A
multipole analysis [59] using the inclusive experimental data
of Ref. [46] gives the negative sign value −0.84 ± 0.15 for
An

1/2/A
p

1/2. Values of |An
1/2|/|Ap

1/2| that are extracted from
the ratio of the η photoproduction cross sections, σn/σp,
are reported as 0.82 ± 0.04 in Ref. [60] and 0.819 ± 0.018
in Ref. [61]. The result obtained in our approach agrees
with the experimental data in both sign and magnitude. This
comparison is free from the normalization uncertainty of
Eq. (72).

The values of the A1/2 helicity amplitude at Q2 = 0 are
summarized in Table IV. The phases of the amplitudes are set
so that the A1/2 helicity amplitude for p∗ has a real and positive
value at Q2 = 0. The ratios of the helicity amplitudes to that
of p∗ are also shown in the table. We also show the helicity

 0

 5

 10

 15

 20

 25

 30

 35

 40

Absolute Value

Sp
1/2

(a)
(a)+(b)

(b)
π
K

-35
-30
-25
-20
-15
-10

-5
 0
 5

10
-3

[G
eV

-1
/2

]

Real Part

-10

-5

 0

 5

 10

 15

 20

0.0 0.5 1.0 1.5 2.0 2.5

Q2 [GeV2]

Imaginary Part

FIG. 8. (Color online) S
p

1/2 helicity amplitudes for the proton
calculated in the nonrelativistic formulation as a function of Q2.
Same as described in the caption to Fig. 7.

amplitudes in the isospin decomposition:

AIS
1/2 = 1

2

(
A

p

1/2 + An
1/2

)
(73)

AIV
1/2 = 1

2

(
A

p

1/2 − An
1/2

)
. (74)

In the nonrelativistic calculation we find that the value of the
isoscalar component is much smaller than that of the isovector,
which is consistent with experimental observation. The ratio of

TABLE IV. Values of the A1/2 helicity amplitudes at Q2 = 0
in units of 10−3GeV−1/2 in the nonrelativistic (upper panel) and
relativistic (lower panel) calculations. The ratios to the A

p

1/2 are also
shown. The phases of the amplitudes are set so that the A

p

1/2 amplitude
has a real and positive value at Q2 = 0. IV and IS stand for isovector
and isoscalar.

A1/2 |A1/2| A1/2/A
p

1/2 |A1/2/A
p

1/2|
Nonrelativistic calculation

p∗ 64.88 64.88 – –
n∗ −51.54 + 7.21i 52.04 −0.79 + 0.11i 0.80
IV 58.21 − 3.61i 58.32 0.90 − 0.056i 0.90
IS 6.67 + 3.61i 7.59 0.10 + 0.056i 0.12

Relativistic calculation
p∗ 46.31 46.31 – –
n∗ −55.24 + 28.95i 62.36 −1.19 + 0.63i 1.35
IV 50.78 − 14.47i 52.80 1.10 − 0.31i 1.14
IS −4.46 + 14.47i 15.15 −0.10 − 0.31i 0.33
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FIG. 9. (Color online) An
1/2 helicity amplitudes for the neutron

calculated in the nonrelativistic formulation as a function of Q2.
The upper, middle, and lower panels are, respectively, the modules,
real parts, and imaginary parts of the amplitudes. The phases of
the amplitudes are set so that the A

p

1/2 amplitude has a real and
positive value at Q2 = 0. The solid shows the calculation with the
Fig. 2(a) (meson pole term). The dashed and dotted lines stands for
the calculations of sum of Figs. 2(a) and 2(b) and Fig. 2(b) only,
respectively. The dot-dashed and two-dotted lines denote the pion
and kaon contributions, respectively.

the isoscalar component to the p∗ amplitude is |AIS
1/2/A

p

1/2| =
0.12 in our calculation, whereas in experiments it is found to
be AIS

1/2/A
p

1/2 = 0.09 ± 0.02 in Ref. [60] and 0.09 ± 0.01 in
Ref. [61].

It is also interesting to compare the values of our p∗ and n∗
helicity amplitudes A1/2 at Q2 = 0 with those of the PDG [62].
We obtain 0.065 GeV−1/2 and −0.052 GeV−1/2 for the p∗ and
n∗, respectively, versus the values quoted in the PDG, which
include uncertainties from the compilation of data of several
analyses, 0.090 ± 0.030 GeV−1/2 for the p∗ and −0.046 ±
0.027 GeV−1/2 for the n∗. As one can see, the agreement,
within uncertainties, is good.

V. DISCUSSION

A. Photoproduction of the η meson

In this section, we investigate the photoproduction of the η

meson close to threshold energies to discuss the normalization
of the helicity amplitude in the present approach. In the
calculation of the helicity amplitude in Sec. III B, we have
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calculated in the nonrelativistic formulation as a function of Q2. Same
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separated out the N (1535) resonance contributions from the
scattering amplitudes in which the N (1535) is dynamically
generated, by setting the c.m. energy as the resonance

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

A
n 1/

2/
A

p 1/
2

A1/2
π+K Re

Im
only π Re

Im

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

0.0 0.5 1.0 1.5 2.0

S
n 1/

2/
S

p 1/
2

Q2 [GeV2]

S1/2

FIG. 11. (Color online) The n/p ratios of the helicity amplitudes
with W = 1535 MeV. The upper and lower panels show the np ratios
of the A1/2 and S1/2 amplitudes, respectively. The open square shows
the value given in Ref. [59].
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energy and multiplying the coupling strengths of the N (1535)
resonance to each channel, gi

N∗ , by the loop functions. For our
purpose of calculating the η photoproduction cross section,
we replace the coupling strengths, gi

N∗ , by the MB → ηp

scattering amplitudes, t (i)
ηp , obtained by the chiral unitary

approach [17], where i denotes the initial meson baryon
channel. The evaluation of these amplitudes is sketched here
in Sec. III and done in detail in Ref. [17].

Following the above prescription for the η photoproduction
amplitudes, we obtain the cross section of the photoproduction
as

σ = M2

4π s

kη

kγ

|tγp→ηp|2, (75)

where kγ (kη) is the photon (η) three-momentum in the c.m.
frame and the T matrix is given by

|tγp→ηp|2 = 8m2
p + 8EE′

16m2
p

∣∣∣∣∣
6∑

i=1

Mi(NR)
1

t (i)
ηp

gi
N∗

∣∣∣∣∣
2

, (76)

where E (E′) are the energies of the incoming (outgoing)
proton in the c.m. frame. To obtain the Mi(NR)

1 amplitude from
the Mi(NR)

2 and Mi(NR)
3 amplitudes calculated in the previous

section, we use the gauge invariance condition given in
Eq. (17). Actually, the η photoproduction with a real photon
has no contribution from the Mi(NR)

3 amplitude, hence only
one amplitude needs to be evaluated which we choose to be
M2 that shows its finiteness immediately.

In Fig. 12, the total cross section of the present calculation
(solid line) is plotted together with the data from Arndt [63]
(dots). Our result of the η photoproduction cross section
provides the right strength around the peak of the N∗(1535)
resonance but the width of the peak is narrower than the
experiment as a result of the narrower widths of the N (1535)
resonance obtained by the present model.

In Fig. 13 we show the ratio of the cross sections of
η photoproduction on the neutron over that on the proton,
σn/σp, obtained in the nonrelativistic formulation, comparing
our calculation with experimental data. The value of the ratio
at Elab

γ = 785 MeV that corresponds to Ec.m. = 1535 MeV
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FIG. 12. Cross section for photoproduction of the η using the
nonrelativistic formalism for the photon loop. Dots: Analysis from
Arndt [63] (SAID database).
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FIG. 13. Ratio of cross sections of photoproduction on the
neutron over that on the proton, σn/σp , as a function of the photon
energy Eγ in the laboratory frame. The data are taken from Ref. [61]
for the deuteron target and Ref. [64] for the helium target. The dashed
line is a theoretical calculation by Kaiser et al. in Ref. [2].

is found to be 0.53, which is quite consistent with the
experimental data.

Although we are only concerned with the vicinity of
the N∗(1535) resonance, one cannot overlook the apparent
discrepancy of the theory and experiment at photon energies
above 800 MeV as shown in Fig. 13, which is also shared by
the model of Ref. [2]. Only very recently have we obtained
experimental information that brings a new perspective to these
discrepancies. Indeed, in Ref. [65] the theoretical results of
Fig. 13 are taken and folded with the Fermi motion of the
nucleons in the deuteron to allow a realistic comparison with
the experimental data. In Ref. [65] it is shown that the steep
rise of the theoretical curve is softened to a curve in between
the one of Fig. 13 and a horizontal line starting from 800 MeV.
However, recent results from Ref. [66] for γ n → ηn show
a steady rise starting from Eγ = 900 MeV. These two facts
together would render the apparent discrepancies into a rough
qualitative agreement. Let us mention in this respect that the
inclusion of the ππN channel, although only qualitatively
considered as shown in the next section, also works in the
direction of softening the steep rise of Fig. 13. In any case, we
must admit larger theoretical uncertainties at higher energies
than around the resonance region, also including extra terms
considered in Ref. [42] that would become relevant as one
moves away from the resonance pole.

B. Higher-order couplings

In the nonrelativistic treatment of the photon loops from
Fig. 2 in Sec. III B, the magnetic couplings of the photon to the
baryons have been neglected as they are of higher order in the
external photon momentum according to k/M . The convection
part of the γBB coupling shows a similar p/M suppression,
where p is a typical loop momentum. These higher-order
terms have been neglected for the sake of consistency with
the hadronic part of the model: as discussed after Eq. (21),
only the positive energy part of the baryon propagator is taken
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in the evaluation of the MB → MB scattering amplitude. In
this section, the effects of the higher-order γBB coupling are
studied, which can give an idea of theoretical uncertainties
from these terms.

The photon-baryon coupling is given by

LγBB = −�

(
QBA/ + κe

2MN

σµν∂µAν

)
�, (77)

with σµν = i
2 [γ µ, γ ν], the baryon charge QB and the anoma-

lous magnetic moment κ given in units of the nuclear
magneton µN = e/(2MN ). In the nonrelativistic reduction of
this interaction, only terms up to order p/(2M) are considered
that leads to the vertex

− it = iQB F (Q2)

2M
�ε ( �p + �p′) + e GM (Q2)

2MN

�ε (�k × �σ )µB,

(78)

where we have supplied the form factor F (Q2) given
in Eq. (69) and the Sachs form factor GM (Q2) = 1/(1 +
Q2/�2

M )2,�2
M = 0.71 GeV2 and µB is the baryon magnetic

moments in units of µN from the PDG [62]. We use common
form factors GM for the � and �.

With the vertex from Eq. (78), the diagram in Fig. 2(b)
can be calculated. For the convection part, the result has been
already obtained in Eq. (43). The magnetic part of 2(b) is given
by

t (i)
mag = −i e µ

(i)
B

gi
A gi

N∗

2f
�ε (�σ × �k)

∫
d4q

(2π )4

�σ ( �P − �q)

q2 − M2
i

× 2Mi

(q − k)2 − M2
i

1

(P − q)2 − m2
i

. (79)

This expression is finite and not logarithmically divergent
as the convection part of the γBB coupling or Figs. 2(a)
and 2(c). The magnetic part is gauge invariant by itself as
the structure of Eq. (79) shows. In Eq. (79), m(M) are the
masses of the meson (baryon) of channel (i), P 2 ≡ s, and
gi

N∗ are the coupling strengths to the N (1535) from Tables I
and II. For photoproduction, one obtains the amplitude
T (γN → ηN ) by replacing gi

N∗ with the MB → Nη T matrix
as discussed in Sec. V A, summing over all channels i. The
axial charges gi

A are given in Table III. We also take into
account the magnetic �0� transition. We choose a negative
µ�0� = −1.61 that is the prediction of the quark model [67],
whereas only the modulus can be measured [62]. For the
photon loops with a �0� transition, we use average masses
for the baryons. For the unknown magnetic moment of the �0,
we take µ�0 = 1

2 (µ�+ + µ�− ) = 0.65 that is obtained by the
SU(3) argument [68] and also consistent with the quark model.

Evaluating the loop integral using Feynman parameters we
obtain

t (i)
mag = −ih(i)(�k 2 �σ · �ε − �k · �σ �k · �ε) (80)

with

h(i) = −eµ
(i)
B

gi
N∗ gi

A Mi

16π2 f

∫ 1

0
dx

∫ x

0
dy

y

Si
b − iε

. (81)

where Si
b is defined in Eq. (44) and we used P · σ = 0 in the

c.m. frame. After summing all channels for the photon loop,

TABLE V. The 1/M contributions from the baryon
pole term for A1/2(Q2 = 0)(10−3 GeV−1/2). See text
for the different cases.

A
p

1/2 An
1/2

I 64.7 + 4i −51.9 + 4i

II 67.7 − 2i −42.7 − 5.5i

III 70.0 − 2.7i −39.9 + 4.6i

IV 74.7 −44.5 + 1.9i

we obtain the contribution to the helicity amplitudes from the
magnetic couplings according to

A1/2
mag = −

√
2πα

qR

√
2 �k2

e

∑
i=1

h(i). (82)

S1/2
mag = 0. (83)

The γBB coupling of Fig. 2(b) has a convection part and
a magnetic part [cf. Eq. (78)], and both are of order 1/M .
Thus, we will treat both parts together and compare them to
the previous results when only the leading-order couplings are
considered. The latter appear in Figs. 2(a) and 2(c), whereas in
the nonrelativistic calculations the diagrams in Figs. 2(d) and
2(e) do not contribute.

To see the effects of the various 1/M terms, we compared
them in Table V. The phase is chosen in the way that
A

p

1/2(Q2 = 0), including all 1/M terms, is real and positive.
Case (I) is from Figs. 2(a) and 2(c) only, without any γBB

couplings. Case (II) also includes the convection part of the
γBB coupling from Fig. 2(b). Case (III) additionally includes
the magnetic part. Case (IV) includes, on top of the other
contributions, the �0� transition magnetic part.

From the different contributions, we can see that the γBB

coupling has moderate influence on the results: For A
p

1/2, the
result increases due to the convection part and the magnetic
part. For An

1/2, the various 1/M contributions lead to a decrease
as Table V shows. As a result, the ratio An

1/2/A
p

1/2 = −0.60 +
i 0.03 is smaller than the value of −0.79 + i 0.11 found in the
last section, where only the leading couplings were included.

In Fig. 14 the ratio of η photoproduction on the neutron over
that on the proton is shown. The decrease, when including the
higher-order couplings of Fig. 2(b), reflects the results from
Table V that Ap

1/2 increases and An
1/2 decreases when including

the 1/M corrections. In the same figure, we show the result
when including additional ingredients for the rescattering
model from Ref. [17] (dotted line). These are the ππN channel
in rescattering as well as a form factor for the MB → MB

transitions. Coupling the photon to these ingredients is beyond
the scope of this work; therefore, they are not included in the
final results. Including these ingredients in the rescattering
part, the ratio drops for higher photon energies, and this gives
an idea of theoretical uncertainties coming from omitting
the ππN channel in the present study. For other observ-
ables discussed in this study, the additional ingredients from
Ref. [17] lead only to very minor changes.

For consistency with the approach followed for meson-
baryon scattering, the terms of order 1/M should be omitted,
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FIG. 14. (Color online) The ratio σn/σp including the baryon pole
diagram (b) (dashed line), compared to the result without diagram (b)
(solid line). Also, the result is shown when the ππN channel from [17]
is included. The data is from Refs. [61,64] [see also Ref. [69]].

and the results of the former section should be used to compare
with data. The discussion in this section gives us an idea of
the uncertainties that one may have when considering the 1/M

terms.

C. Result of the relativistic formulation

Here we briefly discuss our result for the A
p

1/2 amplitude
of the p∗ resonance calculated in the relativistic formulation
given in Sec. III C. As already mentioned, the relativistic
formulation is less consistent with the model of the N (1535)
resonance generated dynamically in the present approach
than the nonrelativistic formulation. Therefore we rely on the
nonrelativistic calculation. However, the Q2 dependence could
be given better by the relativistic calculation, particularly if we
go to values of Q2 of the order of 1 GeV2 or above. On the other
hand in the relativistic formulation we have found the cancel-
lation of divergences coming from each diagram. In Fig. 15
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FIG. 15. Modulus of the A1/2 helicity amplitude for the proton
resonance as a function of Q2 with W = 1535 MeV in relativistic
formulation. The solid (dotted) line shows the A
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1/2 amplitude
calculated in the relativistic (nonrelativistic) formulation. The marks
are the same as described in the caption to Fig. 5.
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we show the results for the A
p

1/2 amplitude in the relativistic
calculation shown by the thick solid line in comparison with
the nonrelativistic calculation shown by the dashed line. The
relativistic result is a bit below the nonrelativistic calculation.
We also plot the results for the S

p

1/2 amplitude obtained in the
relativistic formulation in Fig. 16. The relativistic calculation
gives a smaller result than the nonrelativistic one, as in the
case of the A

p

1/2 amplitude, but the differences are now larger.
This reflects the fact that the S

p

1/2 amplitude is more sensitive
to small changes of the input and, consequently, one must
accept larger theoretical uncertainties in this amplitude. The
dispersion of the data seems to reflect a similar problem on the
experimental side, the results proving also rather sensitive to
the assumptions made in the different analyses.

Although we prefer the nonrelativistic results of A
p

1/2 at
Q2 = 0, as already mentioned, one can take this difference
as a measure of the theoretical uncertainties. At Q2 = 0
the relativistic result is some 25% below the nonrelativistic
one. Taking into account 10% of uncertainty in the recent
MAID2007 analyis [70] of A

p

1/2 = 66 ± 7 × 10−3GeV−1/2,
one finds good agreement of the theory with the MAID2007
results within uncertainties.

Let us note that in the relativistic calculation the factor
needed to agree with data at Q2 = 0 is 1.9 and at Q2 =
1 GeV2 the factor needed is 2.4. It indicates a faster fall
down than experiment, 25% lower than experiment at Q2 =
1 GeV2 with a curve normalized at Q2 = 0. This compares
with 48% smaller strength than experiment at Q2 = 1 GeV2

of the nonrelativistic curve, normalized to the data at Q2 = 0.
This indicates that relativistic effects play some role at large
Q2, as one might think, along the line of similar findings in
relativistic quark models [31,35].

We have also calculated the transition amplitudes using
N∗BM couplings with a derivative of the type γµ∂µ in
the relativistic calculation. In this case, we have an extra
momentum in the N∗BM coupling and this momentum is
included in the loop integral. We also have an extra Kroll-
Ruderman contact term. As a consequence, the cancellation
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of the divergences is not complete in the case of Q2 > 0,
whereas, for the real photon, that is Q2 = 0, the sum of the
amplitudes is finite. From the viewpoint of consistency with
the model of the N∗, one should not use the derivative coupling
in the N∗BM vertex. In the unitarization based on the N/D

method, we exploit the so-called elastic unitarity, in which the
interactions V are evaluated on the mass shell. In the present
case, the momenta in the Weinberg-Tomozawa couplings are
set on the mass shell. Therefore, to maintain consistency with
this procedure, the momentum in the N∗BM should have the
value on the mass shell and should not be included in the
loop integral. This means that a constant N∗BM coupling is
more consistent with the present N∗ model. In any case, just
for illustrative purposes, the value that we obtain for A

p

1/2
with the off-shell derivative coupling is of the order of 90 ×
10−3 GeV−1/2. Our (preferred) nonrelativistic result lies
between these two illustrative relativistic results.

VI. SUMMARY AND CRITICAL OBSERVATIONS

In this work we have addressed the evaluation of the
electromagnetic helicity form factors for the electroproduction
of the N∗(1535) resonance considered as a dynamically
generated resonance. For this purpose the coupling of the
photon to the meson-baryon components of the N (1535),
previously studied within the chiral unitary approach to pion
nucleon scattering, was considered. The calculations have
been done relativistically and nonrelativistically, and both
of them are found to lead to finite results for the transition
amplitudes, as well as for η photoproduction that is evaluated
simultaneously with the same formalism.

Our study finds interesting results that we summarize here.
The amplitudes were obtained without any free parameters,
because the couplings of the resonance to the channels have
been obtained from a previous study of πN scattering. The
agreement with the A

p

1/2 amplitude of the proton N∗(1535)
resonance is fair up to the normalization problem that we have
discussed. Indeed, we showed that the absolute values of the
experimental amplitudes were tied to assumptions on the total
width of the resonance, which is still far from being a settled
issue. We also showed that our results for A1/2 at Q2 = 0 are
in perfect agreement with the most recent MAID2007 analysis
of scattering and photoproduction data. The Q2 dependence
of the transition form factor obtained was in fair agreement
with the experimental determination, although it provided a
moderately faster fall down than experiment. This result is
by no means obvious within the picture of a dynamically
generated resonance, because the Q2 dependence should be
provided by the meson form factors and they fall much faster
than these experimental form factors. Yet, we found that the
theory, in the absence of the meson form factors, provided a
rising function of Q2, due to the structure of the loops involved,
which led to a moderate decrease of the N∗(1535) transition
form factors when the meson form factors were considered.

The results obtained for the S1/2 amplitude are also in
fair agreement with those of experiment, both in size and
the relative sign to the A1/2 amplitude. It should be stressed
that the nature of the loops, where some intermediate states

can be put on shell, naturally leads to an imaginary part of
the amplitude and hence one obtains complex transition form
factors. Comparison with the data implies a choice of phase to
make the A1/2 amplitude real and with the sign chosen in the
experimental analysis. However, once this is done, the rest of
the amplitudes have very well-determined signs and phases.
In this sense we found that the ratio of the S1/2 to the A1/2

amplitude was practically real and negative, and we also found
that the ratio of the A1/2 amplitude of the neutron resonance
to that of the proton resonance was also practically real and of
the order of −0.80, in good agreement with experiment.

It should be noted that the signs and strengths of the
different amplitudes are a nontrivial consequence of the
contribution of the different channels in the photon transition
loops and of subtle interference of terms.

Thus we can say, that the agreement with the data is
fair when it comes to the shape of the Q2 dependence and
good in the ratios of amplitudes that are free of the global
normalization. All these features together provide a boost
to the hypothesis of the N∗(1535) as being a dynamically
generated resonance. This of course does not exclude some
other components beyond those of meson baryon exploited
here, but the claim would be that these are the dominant
components of the wave function and they show up clearly
in the electromagnetic properties studied here. The slower
experimental fall down with Q2 could be an indication of
the contribution of genuine quark components, along the lines
of the work of Ref. [39] as we discussed in Sec. III A.

The discrepancies found in the normalization of A
p

1/2 for the
proton deserve more attention. We have already commented
that should one use the width of the N∗(1535) of 90 MeV of
BES, or 100 MeV of MAID2007, the experimental values
would be lowered and the agreement between theoretical
results and the experiment would be better. In fact, the agree-
ment of the theoretical results for A

p

1/2 with the MAID2007
analysis is very good, as we have already noticed. But then
we could look at the ratio R = S

p

1/2/A
p

1/2 and we find R = 0.6

at Q2 = 0.5 GeV2. Experimentally, this ratio is R ∼ 0.2 if
we take an average value of S1/2 over the different data, so
the discrepancies in this ratio seem to be large. Certainly,
the experimental ratio becomes much larger if we take the
points with open triangles in Fig. 6 and then R ∼ 0.44. This
large dispersion of experimental values is understandable if
one recalls that the contributions of the S1/2 term in the
ep → e′pη cross section (from where the data is extracted)
is of the order of a few percent [27]. This, together with the
experimental uncertainties in the normalization noted above,
clearly indicate that large uncertainties in the experimental
S1/2 are indeed present. Further improvements in S1/2 in
the future will reveal if the discrepancies in the ratio R

pointed out here are deficiencies of the model or stem from
present experimental uncertainties or both. But it is clear that
stronger claims in favor of the theoretical model are tied to
a better precision in this experimental ratio, thus providing a
justification for improved measurements of this magnitude.

At the same time we addressed the problem of η photopro-
duction on the proton and neutron with the same formalism.
We found a cross section compatible with experiment in the
γp → ηp reaction. This cross section also served to show
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evidence that our approach misses strength of the reaction at
energies beyond the N∗(1535). This could be due to the fact
that the width that we obtain for the resonance, of the order
of 75 − 90 MeV, is smaller than the experimental one or that
the γp → ηp reaction collects strength from higher-energy
resonances that are not dynamically generated and hence do
not appear in our scheme. This issue is not settled in view of
the large dispersion of results that one can find in the literature
for the width of the N∗(1535), from about 90 to 350 MeV.
Furthermore, the ratio of the cross sections of γ n → ηn to
γp → ηp was obtained in fair agreement with experiment,
particularly at energies close to the N∗(1535).

Altogether, the information extracted in this article provides
support for the idea of the N∗(1535) resonance as being largely
dynamically generated from the interaction of mesons and
baryons, the dynamics of which seems to be well accounted for
by chiral Lagrangians together with a proper coupled-channels
unitary treatment of the interaction, as provided by the chiral
unitary approach.

However, we also discussed that the recent study of
Ref. [39] indicates the need for a genuine quark component of

the N∗(1535), which could provide strength at large Q2 where
our model, both in the nonrelativistic and relativistic versions,
still provides a faster fall down with Q2 than experiment.
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