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Chiral condensate in a constant electromagnetic field at O( p6)
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We examine the shift in the chiral condensate due to a constant electromagnetic field at O(p6) using SU(2)
chiral perturbation theory and a realistic Mπ = 140 MeV. We find that this value differs significantly from the
value calculated using Mπ = 0, while the magnitude of the two-loop correction is unclear due to the uncertainty
in the experimentally determined value of the relevant L6 LEC.
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I. INTRODUCTION

In QCD, the chiral condensate is important as it is the order
parameter of chiral symmetry breaking. As such, its behavior
is key in understanding QCD in extreme conditions. Finite
temperature and pressure effects have been studied extensively.
On the other hand, comparatively few efforts have focused
on the effects of finite electromagnetic fields. Prior studies
have been done either using chiral perturbation theory (χPT)
[1–3], the effective theory for low-energy QCD, or models
compatible with the large-NC expansion [4,5] (the NJL model,
in particular [6–9]). The method used in this paper is χPT. This
approach has the advantage of being model independent and
systematic, but has the disadvantage of containing a number
of undetermined parameters (low-energy constants or LECs).
We extend prior work done at the Mπ = 0 limit [2,3] and at
one loop [10] to two loops for Mπ = 140 MeV.

Other calculations using χPT have focused on Mπ = 0,
and while this may be of interest theoretically, it has at best a
narrow window of validity [10]. In addition, it is unlikely to
find in nature a real electric or magnetic field with eE � M2

π

or eH � M2
π , which is required for the approximation to be

reasonable. Incidentally, the opposite limit, M2
π � eH , might

be of more interest in the sense that it can be produced in the
laboratory, but in such a regime the shift in the condensate is
miniscule.

Continuing a calculation to higher orders in an expansion is
always of interest at least in the trivial sense of finding a more
precise result. In this case, large-NC QCD [11,12] provides
another possible motivation for why the O(p6) result might be
of interest. Low-energy constants (LECs) of the same chiral
order will have different orders of NC , depending upon the
number of flavor traces in the term they multiply. This can be
understood as follows: a flavor trace corresponds to a quark
loop in the analogous QCD calculation, and large-NC counting
rules indicate quark loops are down by a power of NC , and the
LEC is the only parameter available to absorb this difference.

This large-NC dependence of the LECs can provide hints
to the convergence of the chiral expansion. There are several
processes which have been calculated at two-loop order, most
of which show a close match between the O(p6) results and
the experimental results [13]. The O(p6) correction required
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to achieve this agreement varies, but in particular, the O(p6)
calculation of the process γ γ → π0π0 is strikingly more
accurate than the O(p4) result [14]. This is also the process
which provides a (very rough) estimate of the LEC we use
here, so it is conceivable that the O(p6) correction will be
important in our case, as well.

We will first proceed with a brief overview of SU(2)χPT.
We then follow with an analytical calculation of the shift in the
chiral condensate due to a magnetic field at O(p6), and finally,
a numerical analysis of the shift for general electromagnetic
fields.

II. CHIRAL PERTURBATION THEORY

A. Basics

This section is a brief summary of the chiral perturbation
theory notation that will be used in this paper. For a detailed
description of the theory, see the original papers by Gasser
and Leutwyler [1] or a number of reviews (Refs. [15,16], for
example). Treatment of the chiral Lagrangian to O(p6) can be
found in [13,17,18].

The building blocks that are used to construct the chiral
lagrangian include U = u(φ)2, containing the dynamical pion
fields, and external fields s, p, aµ, and vµ. We will consider
here SU(2) flavor symmetry with mu ≈ md , with external
fields corresponding to only a constant electromagnetic field
and quark masses. We then have

χ = 2B(s + ip) = 2BM,
(1)

rµ = lµ = −eQAµ = −e
(τ3

2

)
Aµ.

We also need to define the covariant derivative as

DµU = ∂µU − irµU + iUlµ. (2)

From these, we define the following operators that will
contribute to the terms relevant in this paper (in the general
SU(n) notation):

uµ = i{u†(∂µ − irµ)u − u(∂µ − ilµ)u†},
χ± = u†χu† ± uχ †u,

(3)
f

µν
± = uF

µν

L u† ± u†Fµν

R u,

χ
µ
− = u†Dµχu† − uDµχ †u,
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which are defined

F
µν

R = ∂µrν − ∂νrµ − i[rµ, rν],
(4)

F
µν

L = ∂µlν − ∂νlµ − i[lµ, lν].

Note that in the case we are considering, F
µν

R = F
µν

L .
U can be parametrized in several ways, but we will use the

Weinberg parametrization

U = σ + iπaτ a

F
, σ 2 + �π2

F 2
= 1. (5)

Here, πa are still the dynamical fields, and σ is represented as
an expansion in terms of πa from the second equation.

Using these definitions, L2 and L4 can be written as follows
(in the general SU(N ) form), where 〈A〉 denotes the trace of
A [14]:

L2 = F 2

2
〈uµuµ + χ+〉,

L4 = l1

4
〈uµuµ〉2 + l2

4
〈uµuν〉〈uµuν〉 + l3

16
〈χ+〉2

+ il4

4
〈uµχ

µ
−〉 − l5

2
〈f µν

− f−µν〉

+ il6

4
〈f µν

+ [uµ, uν]〉 − l7

16
〈χ−〉2

+ contact terms. (6)

The calculation here is up to O(p6), which means that
we will be using the L2 Lagrangian up to two loops and the
L4 Lagrangian up to one loop; the L6 Lagrangian will also
contribute at tree level. This Lagrangian has been calculated in
Ref. [18], and has more terms than we will list (112 for SU(n)
and 53 for SU(2)). Fortunately, only one of these (in SU(2))
will be relevant for our calculation, as we will see later, and it
can be expressed as

L6 = c34〈χ+f+µνf
µν
+ 〉 +

∑
i �=34

ciPi. (7)

B. Renormalization

Renormalization of the theory to O(p4) was calculated in
Ref. [1]. It has also more recently been calculated for theO(p6)
Lagrangian in [17].

Using the SU(2) LECs, the renormalized couplings can be
written

li = (cµ)d−4
(
lri + γi	

)
	 = 1

16π2(d − 4)
,

(8)

γ1 = 1

3
, γ2 = 2

3
, γ3 = −1

2
, γ4 = 2,

γ5 = −1

6
, γ6 = −1

3
, γ7 = 0.

When M �= 0, these can be expressed in terms of scale-
independent parameters as

lri = γi

32π2

(
l̄i + log

M2

µ2

)
. (9)

The renormalization of the L6 term that we will be using later
can be expressed similarly in terms of the renormalized LECs
from L4 as

ci = (cµ)2(d−4)

F 2

(
cr
i (µ, d) − γ

(2)
i 	2 − (γ (1)

i + γ
(L)
i (µ,d))	

)
,

(10)

γ
(L)
34 = −lr5 + 1

2
lr6, γ

(1)
34 = γ

(2)
34 = 0.

III. CALCULATION OF � FROM VACUUM ENERGY

The term in the QCD Lagrangian which is relevant to 


is mqq̄q. Since we know that 
 ∼ 〈q̄q〉, in the isospin limit
of mu = md = m̂ we can calculate the condensate from the
vacuum energy as


 = −∂εvac

∂m̂
. (11)

To first order in M2
π/F 2

π , the Gell-Mann–Oakes–Renner
relation F 2

πM2
π = 
(mu + md ) [19] applies, and can be used

to calculate the shift in the condensate. Unfortunately, we
will need the next order result, which will introduce some
ambiguity as follows. Neither the chiral condensate or the
quark mass can be defined independently; only their product
has a physical meaning. In the language of χPT [1],

2m̂
 = F 2M2

{
1 + M2

π

32π2F 2
π

(4h̄1 − l̄3) + O(M4
π )

}
. (12)

The ambiguity here is codified in the unphysical LEC h̄1,
which will vary according to the renormalization convention.
This is an ambiguity in the definition of 
. In order to avoid
this difficulty, we choose to normalize our results according to
the quantity 
0, which we define by

2m̂
0 = F 2
πM2

π , (13)

with Fπ and Mπ at their physical values. We will thus express
our results in terms of �
/
0, where �
 ≡ 
(H ) − 
(H =
0). As we will see, this ratio is unambiguous at the order to
which we work.

We will also need the relationships between M and Mπ as
well as F and Fπ (M2 ≡ 2Bm̂). The difference between the
lowest-order O(p4) result and the O(p6) result is O(p2); we
therefore only need one order of corrections [1]:

M2
π = M2

[
1 − M2

32π2F 2
l̄3 + O(M4)

]
,

(14)

Fπ = F

[
1 + M2

16π2F 2
l̄4 + O(M4)

]
.

This will only be applicable in the first term of the expansion,
which is two powers of momentum less than the maximum
order for the calculation.

Our object is to calculate the condensate for the case of a
constant electromagnetic field at O(p6) in χPT. As described
above, we can accomplish this by calculating the vacuum
energy to the same order. As noted by Ref. [3], this calculation
will involve two-loop diagrams with L2 vertices, one-loop
diagrams with anL4 vertex, and tree-level diagrams with anL6
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FIG. 1. Diagrams contributing to the vacuum energy shift due
to an electromagnetic field. Dashed lines denote π0 and solid lines
denote π±.

vertex. Diagrams which contribute to the vacuum energy will
contain only external photon lines coming from the constant
EM field (which is the “vacuum” in this case). Insertions of the
electromagnetic field at theL2 level are calculated as part of the
propagator of the π±. Thus, theO(p4) calculation corresponds
roughly to a closed single propagator and was calculated
in Ref. [10]. Contributing diagrams must be dependent on
the electromagnetic field, either through a direct insertion or
through the propagator of the π±.

With these criteria, we find that the diagrams contributing
to our calculation are as pictured in Fig. 1. Returning, then, to
the χPT Lagrangian, we find that only the terms proportional
to l3, l5, and l6 can contribute from the L4 Lagrangian, and
only the term proportional to c34 (as we anticipated above) can
contribute to the vacuum energy from L6.

We simplify the chiral Lagrangians for SU(2) and mu = md

up to the relevant terms in L6 [3], including only terms which
will contribute to the diagrams in Fig. 1:

L2 = 1

2
(∂µπ0)2 − M2(π0)2

2
− M2π+π−

+ (∂µπ+ + ieAµπ+)(∂µπ− − ieAµπ−)

+ 1

2F 2
[π0∂µπ0 + ∂µ(π+π−)]2

− Mπ2

8F 2
[2π+π− + (π0)2]2,

(15)
L4 = −2l5

F 2
(eFµν)2π+π−

− 2il6

F 2
eFµν[∂µπ−∂νπ+ + ieAµ∂ν(π+π−)]

− 2l3
M4

F 2
π+π−,

L6 = 4c34M
2(eFµν)2.

Here, a term proportional to l3 have been added to the
Lagrangian from Ref. [3], which are down by an order of
M2 but have the same overall chiral order.

As a first case, we will work with the case of pure
magnetic fields, where (eFµν)2 = 2(eH )2. This simplifies the
calculations and allows us to obtain an analytic result. We will
later generalize to an arbitrary combination of E and H fields
for numerical analysis.

The propagator for a scalar particle in a constant H field
was first calculated in Ref. [23], and here we use the convenient
form also used in Ref. [3]:

DH (x, y) = (x, y)
∫

d4k

(2π )4
eik(x−y)DH (k),

(16)

DH (k) =
∫ ∞

0

ds

cosh(eHs)
e−s(k2

‖+k2
⊥

tanh eHs
eHs

+M2),

where (x, y) = exp{ie ∫ x

y
Aµ(z)dzµ}, k2

‖ = k2
3 + k2

4 and

k2
⊥ = k2

1 + k2
2.

We will also need the scalar propagator

D(0) ≡ D(x, x) =
∫

ddk

k2 + M2

= 2M2(cµ)d−4

[
	 + 1

32π2
log

M2

µ2

]
,

	 = 1

16π2(d − 4)
. (17)

D(0) and DH (0) ≡ DH (x, x) are both divergent quantities,
whereas DH (0) − D(0) is finite:

D�H (0) ≡ DH (0) − D(0)

= − eH

16π2

∫ ∞

0

dx

x2
e−βx

(
1 − x

sinh x

)
(18)

with β = M2/eH . This is the same integral as was calculated
in Ref. [10], and can be expressed analytically as

D�H (0) = − eH

16π2
IH (β)

(19)

IH (β) = log(2π ) + β log

(
β

2

)
− β − 2 log �

(
1 + β

2

)
.

With these, the diagrams in Fig. 1 can be calculated fairly
straightforwardly to be [3]

ε
(2)
1(a) = M2

2F 2
D(0)DH (0),

ε
(2)
1(b) = 1

F 2
DH (0)

∫
ddk

(2π )d
(k2 + M2)DH (k),

ε
(2)
1(c) = 2(eH )2

F 2
(2l5 − l6)DH (0), (20)

ε
(2)
1(d) = 2l3

M4

F 2
DH (0),

ε
(2)
1(e) = −8c34M

2(eH )2.

Here, we have used ε
(2)
1(x) to denote the refer to the (second-

order) vacuum energy contribution from the diagram in
Fig. 1(x), with ε(2) denoting the total vacuum energy con-
tribution from the second order calculation.

The only one of these diagrams which is not expressed
solely in terms of DH (0) and D(0) is ε

(2)
1(b), which vanishes

generally as well as in the Mπ = 0 case.
In order to make the divergences and scale-dependence

explicit, we first make the substitution DH (0) = D�H (0) +
D(0). Any term which is dependent on neither H nor DH (0)
can then be reabsorbed into the vacuum energy; we are only
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FIG. 2. A comparison of the shift due to a pure magnetic field in the Mπ = 0 case to the Mπ = 140 MeV case. Shaded regions indicate
uncertainty due to the L6 constant dr .

looking for the shift due to H . After making this substitution,
we see that ε

(2)
1(a) is divergent and canceled by a counterterm

generated by l3. ε
(2)
1(c) has both a finite piece, which will

contribute to the calculation, and a divergent piece, which
is canceled by a counterterm in c34. ε

(2)
1(d) and ε

(2)
1(e) are finite,

aside from the aforementioned counterterms.
Combining, then, all of these terms, we find the vacuum

energy to be

ε(2)(H ) = − (eH )3

(16π2)2F 2

×
{
IH (β)

[
1

3
(l̄6 − l̄5) − β2

2
l̄3

]
+ βd̄(M2)

}
, (21)

where we have defined the scale-independent quantity

d̄(M2) = 8(16π2)2cr
34 − 1

3
(l̄6 − l̄5) log

(
M2

µ2

)
. (22)

We then substitute Eq. (14) to find M2
π from M2 in the first-

order term. We find that the l̄3 term cancels, and that the

correction to F does not play a role (as it only appears at
the second order). Then, taking a derivative, and applying the
Gell-Mann–Oakes–Renner relation as above, with the first-
order corrections for the O(p4) term, we find (βπ = M2

π/eH )

�
(H )


0
= eH

16π2F 2
π

IH (βπ ) +
(

eH

16π2F 2
π

)2
{

− 1

3
(l̄6 − l̄5)

×
[

1 + log 2 + ψ

(
1 + βπ

2

)]
+ d̄(eH )

}
, (23)

with ψ(x) ≡ d
dx

log �(x).
Taking β → 0, ψ( 1

2 ) = −γe, and the shift we find agrees
with the expression found in Ref. [3] for the case Mπ = 0.

For the case of an E field, we can make the substitution
H → iE and get a similar analytic expression. The E · H �= 0
case is somewhat more complicated, but we will write an
integral expression which we can later evaluate numerically.

For a convenient parametrization of the general case, we
introduce the variables φ and f such that with F = H 2−E2

2 =

FIG. 3. A comparison of the shift due to a pure magnetic field in the Mπ = 0 case to the Mπ = 140 MeV case, using only the O(p6)
portion. Shaded regions indicate uncertainty due to the L6 constant dr .
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FIG. 4. The imaginary and real parts of the total value of the shift in the condensate due to general E and H fields, with f and φ as defined
in the text. Shading depicts uncertainty due to c34.

1
4F 2

µν and G = �E · �H [10],

F = f 2 cos(2φ)

2
G = f 2 sin(2φ)

2
. (24)

Expressed in terms of these variables, the shift in the
condensate due to an arbitrary combination of fields will
become (βf = M2

π/ef )

�
(F ,G)


0
= ef

16π2F 2
π

IEH (βf , φ) +
(

ef

16π2F 2
π

)2

cos 2φ

×
{

1

3
(l̄6 − l̄5)(IEH ′(βf , φ) − 1) + d̄(M2

π )

}
,

(25)

IEH (βf , φ) =
∫ ∞

0

dz

z2
e−βf z

×
[

1 − z2 sin 2φ

2 sin(z sin φ) sinh(z cos φ) + iε

]
.

This is the same integral as in Ref. [10], and as before
we have had to avoid some potential ambiguity. The poles in
the integrand indicate an instability in the system, which is
interpreted as due to pair creation in an electric field [23]. We
have chosen to regulate the divergence in a manner which has
an imaginary part corresponding to this pair creation. The
magnitude of the imaginary part indicates the importance
of this instability, though some caution is warranted in
interpreting it quantitatively. This issue was discussed in more
detail in Ref. [10].

Equations (23) and (25) are the principal results of this
work.

IV. NUMERICAL RESULTS

Because the behavior of the theory is encoded in the
LECs, a real-world interpretation of the low-energy behavior
requires the use of measured LECs. For the L4 LECs, this
is straightforward, as these are individually determined with
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FIG. 5. The imaginary and real parts of the ratio of the shift at two loops to the total shift for the case of general E and H fields, with f

and φ as defined in the text. Shading depicts uncertainty due to c34.

relatively small error. On the other hand, L6 LECs, such as c34,
are more problematic, as there are in general many more LECs
than easily measurable processes to determine them. These
LECs are often estimated (at a particular scale) by resonance
exchange. Unfortunately, c34 in particular is difficult to extract,
as the resonance processes to which it contributes involve
only scalar exchange, and because it appears squared in these
processes, its sign is undetermined. This resonance exchange
occurs at a scale Mρ = 768 [14], and it is the (scale-dependent)
value determined by experiment that has an undetermined sign.
The scale-independent d̄ is positive in both cases.

The values we use for these constants are [14,24]

l̄6 − l̄5 = 3.0 ± 0.3,
(26)

dr ≡ 8(16π2)2cr
34 = ±1.5 ± 1.5.

With these experimental values, we can plot realistic values
of the shift in the condensate. In Fig. 2, for the case of a
pure magnetic field, we compare the value calculated for a

finite Mπ to that for Mπ = 0. It is clear that these values are
significantly different, as in the O(p4) case [10]. In Fig. 3,
we have plotted the magnitude of the O(p6) portion alone.
The magnitude of the O(p6) shift is not so different in the
massive vs the massless case, however, because the magnitude
of the total shift is less in the massive case, this correction is
potentially more significant. In this and the figures following,
we have chosen to extend our results up to ef = 290 MeV (the
expansion parameter is 	H = 4πFπ = 1.2 GeV).

Here, we use the same numerical trick as in Ref. [10] to
extract the principal value of the integral numerically. We
remove the singularities due to the poles located at zi with
residue Ri by subtracting the expression

i
∑

n

Rn(zn)

(
1

z − zn

− 1

z + zn

)
. (27)

The principal value of the integral of this expression is zero,
but it has a singularity at zi which exactly cancels the singular
behavior of the integrand in IEH .
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Using this method, we plot the total shift in the condensate
up to O(p6) from a general E and H field in Fig. 4, and in
Fig. 5, we plot the ratio of the added correction at O(p6) to the
total shift. In these plots, we have included a shaded region to
indicate the possible values for the shift based on a range for
dr of (−3, 3).

The asymptotic expression for the shift as βπ → ∞ (for an
H field, which also provides some qualitative insight to other
cases) is

�
(H )


0
= eH

16π2F 2
π

(
F 2

π

6M2
π

− l̄6 − l̄5

48π2
+ d̄

16π2

)
, (28)

which is, of course, zero for βπ → ∞ (H → 0). This
expression encodes low-energy behavior for a more realistic
regime, namely, that of the actual pion mass and a very small
magnetic field. We see from Fig. 5 and in Eq. (28) that the
(unknown) sign of dr has a profound impact on the importance
of the O(p6) calculation. The shift in the condensate for a
positive dr is significant enough even as f → 0, whereas the
shift for a negative one is negligible up to large values of
ef/F 2

π .
Another notable feature is that the contribution to the

imaginary part is larger at O(p6) order as a pure H field is
approached (while the total imaginary part is going to zero).
Except in this case where the total imaginary part is negligible,
the fraction of the imaginary part at two loops will be much
less significant than its real counterpart in regimes where the

chiral expansion would be expected to converge (ef ∼ M2
π or

below).
The calculation as a whole will only be valid when the real

part is significantly larger than the imaginary part. When the
imaginary part dominates, the system will break down due to
the instability from pair creation.

V. DISCUSSION AND CONCLUSIONS

We have studied the shift in the chiral condensate due to an
electromagnetic field using chiral perturbation theory, which
is a powerful tool for analyzing the low-energy behavior of
QCD. Our analysis was done at O(p6) with Mπ = 140 MeV.
It is obvious that the inclusion of a nonzero pion mass greatly
affects the result.

The importance of the O(p6) correction is less clear.
Large-NC reasoning coupled with the results of model-based
calculations give circumstantial evidence that it could play an
important role in the final result. However, because the sign
of the relevant LEC at L6 is undetermined by experiment, its
effect at O(p6) could be significant or virtually irrelevant.
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