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Traditional cutoff regularization schemes of the Nambu–Jona-Lasinio model limit the applicability of the model
to energy-momentum scales much below the value of the regularizing cutoff. In particular, the model cannot
be used to study quark matter with Fermi momenta larger than the cutoff. In the present work, an extension of
the model to high temperatures and densities recently proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri
is used in connection with an implicit regularization scheme. This is done by making use of scaling relations
of the divergent one-loop integrals that relate these integrals at different energy-momentum scales. Fixing the
pion decay constant at the chiral symmetry breaking scale in the vacuum, the scaling relations predict a running
coupling constant that decreases as the regularization scale increases, implementing in a schematic way the
property of asymptotic freedom of quantum chromodynamics. If the regularization scale is allowed to increase
with density and temperature, the coupling will decrease with density and temperature, extending in this way the
applicability of the model to high densities and temperatures. These results are obtained without specifying an
explicit regularization. As an illustration of the formalism, numerical results are obtained for the finite density
and finite temperature quark condensate and applied to the problem of color superconductivity at high quark
densities and finite temperature.
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I. INTRODUCTION

The Nambu–Jona-Lasinio (NJL) [1] model has been the
prototype model for studying chiral symmetry restoration
in hadronic matter at finite baryon densities ρB and finite
temperatures T . Since the earlier applications of the model
at high ρB and T [2,3], an extensive and important body
of work has been done in this direction—for reviews and a
comprehensive list of references see Refs. [4–10]. Because
the model is nonrenormalizable, the high momentum part
of the model has to be regularized in a phenomenological way.
The common practice has been to regularize the divergent
loop amplitudes with a three-dimensional momentum cutoff
� ∼ 1 GeV, which also sets the energy-momentum scale for
the validity of the model. That is, the model cannot be used
for studying phenomena involving momenta running in loops
larger than �. In particular, the model cannot be used to study
quark matter at high densities ρB ∼ k3

F with kF > �, where
kF is the quark Fermi momentum. One of the symptoms of this
problem is the prediction of vanishing superconducting gaps
at high baryon densities, a feature of the model that is solely
caused by the use of a regularizing momentum cutoff � of the
divergent loop integrals [11–13].

Recently, we [14] presented an alternative to the cutoff regu-
larization of the NJL model, in which the one-loop integrals are
reorganized through mathematical identities in such a way that
finite integrals become separated from density-independent
divergent integrals. The finite integrals are integrated without
imposing any restriction on the integration momenta, and the
divergent integrals are related to physical quantities at the
dynamical chiral symmetry breaking in vacuum. As a result,

instead of a vanishing gap like that in the cutoff regularization,
one obtains a finite gap that grows with density. However,
this does not mean that the model can be used at arbitrarily
high densities. The point is that any implicit regularized
integral contains an implicit scale, the regularization scale.
When such an integral is fitted to a physical quantity in
vacuum, we are implicitly also fitting this scale. Now, in
a loop integral at nonzero density and/or temperature, the
vacuum part is determined by the regularization scale, and
the finite integrals are governed by the chemical potential and
temperature. When these scales are very different, one obtains
nonsense results. Nevertheless, this mismatch of scales is less
problematic in the implicit regularization scheme than in any
other cutoff regularization scheme, in the sense that one can go
to much higher densities and temperatures before the problem
shows up.

The root of the problem is of course the nonrenormalizabil-
ity of the model. In a renormalizable theory, all the dependence
on the cutoff can be removed in favor of running physical
parameters, such as the coupling constants of QED and QCD.
The running is given by the renormalization group equations of
the theory and is controlled by an energy scale that is adjusted
to the scale of the experimental conditions under consideration.
In a recent publication, Casalbuoni et al. [11] introduced the
concept of a running coupling constant for the NJL model
to extend the applicability of the model to high density. The
arguments are based on making the cutoff density dependent,
using an analogy with an ordinary solid. In an ordinary solid,
there is a natural maximum phonon frequency—the Debye
frequency—that increases as the lattice spacing gets smaller.
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In quark matter, as the density of quarks increases, the quarks
get closer together, and therefore the ultraviolet cutoff � of
the NJL model should be allowed to increase correspondingly.
The cutoff can be changed consistently without spoiling the
predictions of the model for the chiral properties of the vacuum
if the four-fermion coupling constant G of the model is
allowed to change with the cutoff. In Ref. [11], the cutoff
dependence of G is obtained from the joint consideration
of the divergent expressions for the pion decay constant fπ

and the gap equation for the constituent quark mass M:
fixing the value of fπ at 93 MeV, the divergent expression
of fπ (in the chiral limit), regulated with a cutoff �, leads
to a constituent quark mass M that is � dependent. The
use of this M = M(�) in the gap equation gives rise to a
coupling G that runs with �. Moreover, the running of the
coupling is such that G(�) decreases with increasing �. This
is certainly physically motivated and is also in accord with
the interpretation [2,15] that the cutoff in the NJL model
simulates—albeit in a crude way—the property of asymptotic
freedom of QCD, in the sense that the coupling between
quarks decreases as higher momentum scales are probed. A
similar suggestion was made by Shakin and collaborators [16]
in studies of hadronic correlation functions. They found that
results in qualitative accord with lattice QCD calculations can
be obtained once a significant temperature dependence of the
cutoff and of the coupling G is allowed.

The aim of the present paper is to show that it is
possible to extend the applicability of the NJL model to
high densities and temperatures without the use of an ex-
plicit regularization of divergences. The basic motivation for
avoiding an explicit regularization, such as the commonly used
three- or four-momentum cutoff, Pauli-Villars, or proper-time
regularizations, is that these lead to global and gauge symmetry
violations and to the breaking of causality and unitarity.
Although in many situations these problems do not have great
influences on the final numerical results, there are situations
where they do have drastic consequences, as in studies of
correlation functions. Arguments have been used and tricks
invented to circumvent such problems, but no satisfactory
solution has been found—for a good discussion on these issues,
see, for example, Refs. [17–19].

The implicit regularization scheme was originally proposed
in Ref. [20] and has been used in different contexts [21,22],
including applications to the NJL model [14,23–25]. At the
one-loop approximation, there appears only two divergent
integrals: one is quadratically divergent and the other is
logarithmically divergent. Once the divergent integrals are
assumed to be implicitly regulated, i.e., regulated without
the specification of an explicit regulator, they will depend
implicitly on a momentum scale, which we denote by �.
These integrals satisfy well-defined scaling relations, in that
the integrals at some mass scale can be related to a combination
of the same integrals at some another, arbitrary scale. These
scaling relations allow one to express the divergent parts of
the amplitudes at finite temperature and density in terms of
their counterparts at zero temperature and density. Moreover,
fixing fπ in the vacuum, one can derive a scaling relation for
the four-fermion coupling G which gives a running G(�)
similar to that found in Ref. [11]. All this is achieved,

we reiterate, without specifying an explicit regularization
scheme.

In the next section, we review the main aspects of the
implicit regularization scheme [14,20,21,23–25] that are most
relevant to the present paper. We start by specifying the
Lagrangian density we are going to use, and then we explain
the scaling relations and their use in obtaining the solution
of the gap equation within this scheme. To make contact with
results of the literature, we solve numerically this gap equation
at finite temperature and density and show the results for the
quark condensate as a function of temperature T and quark
chemical potential µ. In Sec. III, we use the scaling relations
to obtain the running of the coupling G of the model and
compare results with those in Ref. [11]. In Sec. IV, we illustrate
the use of our results for obtaining the critical temperature as a
function of quark chemical potential for the spin-0 two-flavor
color superconducting (2SC) gap. Our conclusions and outlook
are presented in Sec. V.

II. CALCULATIONAL STRATEGY TO HANDLE THE
DIVERGENCES

For the purposes of the present work, it is sufficient to
consider the simplest version of the model specified by the
two-flavor SU(2) Lagrangian density

LNJL = ψ̄(i �∂ − m0)ψ + G[(ψ̄ψ)2 − (ψ̄γ 5 �τψ)2]. (1)

Here ψ is the quark field operator (with color and flavor indices
suppressed), m0 is the current-quark mass matrix. At the one-
loop approximation, the gap equation at finite temperature T

and quark chemical potential µ is given by (for simplicity we
work in the chiral limit m0 = 0)

M = 48 GM T
∑

n

∫
d3k

(2π )3

1

(iωn + µ)2 + E(k)2
, (2)

with E(k) = √
k2 + M2, and ωn = (2n + 1)πT, n = 0, ±1,

±2, . . . , being the Matsubara frequencies. Performing the
sum, one obtains

M = 48 GM[iIquad(M) − I (T ,µ)], (3)

where

Iquad(M2) =
∫

d4k

(2π )4

1

k2 − M2
, (4)

and

I (T ,µ) =
∫

d3k

(2π )3

[n−(k) + n+(k)]

2 E(k)
, (5)

with n±(k) being the quark and antiquark Fermi-Dirac distri-
butions

n±(k) = 1

e[E(k)±µ]/T + 1
. (6)

While I (T ,µ) is finite, Iquad(M2) is divergent. The divergent
integral is an element of the systematization adopted in the
calculational strategy [26] which we use in the present work. In
four-dimensional one-loop calculations within the context of
theories and models where the divergence degree is not higher
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than cubic, which is the case of the NJL model, there also
appears, besides Iquad(M2), the basic logarithmically divergent
object

Ilog(M2) =
∫

d4k

(2π )4

1

(k2 − M2)2
. (7)

In the NJL model, Iquad(M2) is related to the constituent quark
mass, as shown in Eq. (3), whereas Ilog(M2) is related to the
pion decay constant in vacuum—see Eq. (22).

The traditional procedure for treating the divergent am-
plitudes in nonrenormalizable models is the introduction of
a regularization distribution in all loop integrals in order to
render them convergent. In the context of the NJL model,
with rare exceptions—such as in Refs. [27–29]—the finite
integral I (T ,µB ) containing the Fermi-Dirac distributions is
also regularized. Because of the nonrenormalizable character
of the model, the regularization introduced in this way
cannot be removed along the calculations, and therefore the
predictions become associated with the chosen regulariza-
tion. In practice, the amplitudes become functions of the
regularization distribution parameters, and consequently the
energy-momentum dependence of the amplitudes, as emerging
from the Feynman rules, are modified. As is well-known, this
leads to violation of fundamental symmetries such as those
associated to space-time homogeneity or to the introduction of
nonphysical thresholds that break unitarity.

Having this in mind, an alternative strategy to handling
the divergences typical of the perturbative calculations in
quantum field theory (QFT) has been developed in Ref. [20].
The main idea is to avoid the critical step of the explicit
evaluation of a divergent integral. The finite and divergent
parts are separated by using a convenient representation for
the propagators in which all the dependence on the physical
momenta is located in finite integrals that are not affected by
regularization, thus avoiding contamination with nonphysical
behaviors. The divergent parts obtained in this way are
reduced to only a small number of basic objects after the
adoption of a set of properties for purely divergent integrals,
denominated consistency relations (CR), which are dictated
by the requirements of symmetry preservation and elimination
of ambiguities [7]. The remaining divergent objects need not
be solved explicitly; in renormalizable theories, they are com-
pletely absorbed in renormalization of physical parameters,
and in nonrenormalizable models they can be directly adjusted
to physical quantities.

There are many advantages to adopting the procedure just
described, but two of them can be immediately noted: the
treatment for the divergences is universal, and the energy-
momentum dependence of the amplitudes is not modified.
Besides, a connection with traditional procedures can be made.
In particular, all results can be mapped to the ones obtained
within the context of dimensional regularization (DR), in
situations where this method applies. On the other hand, the
connection with regularizations based on regularizing distri-
butions requires some care in the case of nonrenormalizable
models, because the effects of regularization on finite integrals
are removed in our strategy. In this sense, it is important to
say that the prescription described above, which has been

applied in many problems involving divergences in QFT [21],
represents a particular prescription to handle the amplitudes
having divergences. Therefore, it should be considered a
procedure to make predictions with nonrenormalizable models
in the same way as with any other regularization prescription.
However, the important point to be noted is that, by construc-
tion, many of the problems intrinsic to the traditional methods
have been circumvented, such as violations of symmetry
relations among Green’s functions, ambiguities, nonphysical
thresholds, and scale invariance breaking. The convenience
or usefulness of the method for the treatment of nonrenor-
malizable models should be judged by the consistency of its
phenomenological implications.

At one-loop order, only two divergent integrals, Iquad(M2)
and Ilog(M2), need to be eliminated by some phenomenolog-
ical adjustment. We first note that they are not independent
quantities, that is, they obey two scaling relations [30]

Iquad(M2) = Iquad(λ2) + (M2 − λ2) Ilog(λ2)

+ i

(4π )2

[
M2 − λ2 − M2 log

(
M2

λ2

)]
, (8)

Ilog(M2) = Ilog(λ2) − i

(4π )2
log

(
M2

λ2

)
, (9)

where λ2 is the arbitrary mass scale adopted in the separation of
finite and divergent parts. These relations allow us to relate the
basic divergent quantities in two different mass scales, as we
shall see in a moment. The imposition of scale independence
implies two properties for these objects:

∂Iquad(λ2)

∂λ2
= Ilog(λ2), (10)

∂Ilog(λ2)

∂λ2
= − i

(4π )2

1

λ2
. (11)

It is important to note that only finite quantities have been
differentiated. The above properties work like requirements
that must be imposed in regularizations in order to maintain
the scaling properties of the amplitudes. The above referred
properties can be understood within the context of regular-
izations. For this purpose, we assume that each integral is
regularized through an unspecified distribution f (k/�), where
� is a parameter with the dimensions of momentum such that

Iquad(M2) =
∫

d4k

(2π )4

f (k/�)

k2 − M2
, (12)

Ilog(M2) =
∫

d4k

(2π )4

f (k/�)

(k2 − M2)2
. (13)

Differentiating Iquad(M2), relation (10) follows immediately.
By differentiating Eq. (13), on the other hand, we obtain

∂Ilog
(
M2

)
∂M2

= 2
∫

d4k

(2π )4

f (k/�)

(k2 − M2)3
. (14)

Since the integral is finite and assuming the existence of
the limit lim

�→∞f (k/�) = 1, one can extract the regulating
distribution and perform the integration to obtain Eq. (11).
This last point illustrates the basic difference between our
prescription and the traditional ones.
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The fact that the parameter � plays the role of a cutoff can
be made clear even in the case of an implicit regularization.
That is, it is possible to make the � dependence explicit
without specifying the regulating function. This can be done
by defining the dimensionless ratio M� = M/� and writing
Iquad(M2) and Ilog(M2) in terms of dimensionless integrals
Jquad(M2

�) and Jlog(M2
�) as

Iquad(M2) = �2Jquad
(
M2

�

)
, (15)

Ilog(M2) = Jlog
(
M2

�

)
, (16)

with

Jquad
(
M2

�

) =
∫

d4u

(2π )4

f (u)

u2 − M2
�

, (17)

Jlog
(
M2

�

) =
∫

d4u

(2π )4

f (u)(
u2 − M2

�

)2 , (18)

where the integration variable u is dimensionless. The integrals
Jquad(M2

�) andJlog(M2
�) obey scaling relations completely

similar to those in Eqs. (8) and (9), as they should. A general
parametrization for these integrals, obeying the properties of
Eqs. (10) and (11), can be constructed and written as

i (4π )2 Jlog
(
M2

�

) = ln
(
M2

�

) + c1, (19)

i (4π )2 Jquad
(
M2

�

) = M2
� ln

(
M2

�

) − M2
� + c2. (20)

It should be clear that if a regularization distribution does not
furnish the above general form, the scaling properties of the
amplitudes can be broken. In principle, different (consistent)
regularizations should differ only by the values of the constants
c1 and c2.

After this review on the general procedure to handle
the divergences, let us turn our attention to its application
to the NJL model. First, we have that the vacuum quark
condensate is related to the scalar one-point function, which
can be written as

〈ψψ〉0 = −12M0 iIquad
(
M2

0

)
, (21)

where M0 is the mass obtained by solving the gap equation in
vacuum. On the other hand, the pion decay constant fπ can be
related to the axial-pseudoscalar two-point function such that

f 2
π = −12M2

0 iIlog
(
M2

0

)
. (22)

The point now is that one can express the temperature-
and density-dependent gap equation (3) for quark mass M

in terms of these vacuum quantities. This is so because
in general the scaling relations (8) and (9) can be used to
isolate vacuum contributions from temperature- and density-
dependent contributions in expressions for physical quantities;
that is, it is possible to write Iquad(M2) and Ilog(M2) in
terms of Iquad(M2

0 ) and Ilog(M2
0 ). Using the scaling relation in

Eq. (3), we get

M = 48 GM

{
−〈ψψ〉0

12M0
− (

M2 − M2
0

) f 2
π

12M2
0

− 1

(4π )2

[
M2 − M2

0 − M2 log

(
M2

M2
0

)]
− I (T ,µ)

}
,

(23)
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FIG. 1. One-flavor quark condensate 〈ψψ〉 as function of tem-
perature T and quark chemical potential µ.

where we have made use of Eqs. (21) and (22). The correspond-
ing expression for the case m0 �= 0 is a little more complicated
than the one shown in Eq. (23), since the expression for f 2

π

contains, in addition to Ilog, a finite integral involving the pion
mass.

For illustrative purposes, we present in Fig. 1 the quark
condensate as a function of temperature T and quark chemical
potential µ; the results here are obtained solving the gap
equation with m0 = 5.5 MeV, G = 4.9 × 10−6 MeV−2, and
the fitting mass M0 = 312 MeV. As seen in Fig. 1, this implicit
regularization scheme gives the expected reduction of the
quark condensate in medium. In addition, this reduction is in
qualitative agreement with the result obtained with traditional
cutoff regularization schemes; see, for example, Fig. 26 of
Ref. [4]. In the chiral limit, the order of the phase transition
is first order. It is also worth mentioning that with these same
parameters, one is able to obtain good values for the π - and
σ -meson masses [25].

Of course, the point of the exercise here was not only to
show that this different way of handling the divergent integrals
gives results in accord with the expected phenomenology.
What should be noted here is that once we have eliminated
Iquad(M2

0 ) and Ilog(M2
0 ) in favor of 〈ψ̄ψ〉0 and fπ, we have

kept � implicitly fixed. If one wants to change � without
changing the low-energy results, G has to run with �, as in
Ref. [11]. The point here is that one can implement this using
the scaling relations (8) and (9), which are independent of an
explicit regularization. This will be done in the next section.

III. RUNNING OF THE COUPLING

Fixing fπ = 93 MeV and using the expression of fπ in
terms of Ilog at the scales (M,�) and (M0,�0), one obtains
M = M(�) as the solution of the transcendental equation

M2 = M2
0

�2

�2
0

exp

[
4π2

3

f 2
π

M2

(
M2

M2
0

− 1

) ]
. (24)

Using the value of 〈ψ̄ψ〉0 at the reference scale (M0,�0), and
using the scaling relation (8) to obtain Iquad at (M,�) in the
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FIG. 2. Constituent quark mass M as a function of �.

gap equation, one obtains G = G(�) as

[48�2G(�)]−1

= −〈ψ̄ψ〉0

12M0�
2
0

−
(

M2

�2
− M2

0

�2
0

)
f 2

π

12M2
0

− 1

(4π )2

×
[
M2

�2
− M2

0

�2
0

− M2

�2
log

(
M2�2

0

�2M2
0

)]
, (25)

where it is understood that M = M(�), as given by Eq. (24).
This is our main result in the present paper. It is an

interesting result, in that it was obtained without specifying
any explicit regularization; only very general scaling relations
of the divergent integrals were used. In this sense, the result
seems very general and robust. Once a temperature and density
dependence for � is specified, G becomes also temperature
and density dependent.

In Fig. 2, we present the numerical results for the �

dependence of M , as obtained from the solution of Eq. (24)
after solving the gap equation. The constituent mass decreases
as � is increased. If G were kept fixed, M would increase, of
course. But G decreases with �, as shown in Fig. 3, and the
net effect is that M decreases. These results for M = M(�)
and G = G(�) are in qualitative agreement with the results of
Ref. [11].

1000 1100 1200 1300 1400
Λ (MeV)

3.25

3.50

3.75

4.00

4.25

G
(Λ

) 
Λ

2

FIG. 3. Running of the coupling G(�).

The specification of a density and temperature dependence
for � might seem a little arbitrary. But this need not be the
case, because the entire line of arguments can be turned around:
instead of fixing fπ at some value, one could postulate in a
physically motivated way a running behavior for G = G(�)
and work backward. What would change in this case? First,
using the postulated G(�) in the gap equation, one would
obtain a corresponding M(�). When this M(�) is replaced in
the expression for fπ , in general fπ will be also � dependent,
but this � dependence would be very weak, since the integral
for fπ is only logarithmically divergent. In this way, the
chiral physics in vacuum would be maintained. This is very
interesting, since one could use the predicted density and
temperature running of the QCD coupling constant for G and
in this way fit the density and temperature dependence of �. In
this way, one would be modeling, admittedly in a crude way,
the asymptotic freedom of QCD in the NJL model.

In closing this section, we reiterate that the purpose for
making G to run with � is to extend the applicability of the
model to high densities and temperatures. At high densities
and temperatures, high momentum components are present in
the system, and a cutoff of the order of the chiral symmetry
breaking scale invalidates the use of the model in such
situations. To illustrate the use of the extension in practice,
we consider in the next section color superconductivity in
high-density quark matter.

IV. COLOR SUPERCONDUCTIVITY

For reviews and a comprehensive list of references on the
subject of color superconductivity, see Refs. [31–38]. Since
the aim here is to illustrate the formalism, we simplify matters
by using the same Lagrangian density as used above; although
for obtaining a better phenomenological description of both
chiral symmetry breaking and color superconductivity, a more
general four-fermion Lagrangian should be used [12,13,39].
At the one-loop level, the self-consistent equation for the
superconducting gap is given by (we use the same letter G to
denote both the diquark coupling here and the quark-antiquark
coupling in the last section)

1 = 16 G

∫
d4k

(2π )4

i

k2
0 − (k + µ)2 − �2

+ (µ → −µ). (26)

The integrals above are divergent. The application of the
implicit regularization scheme to this problem proceeds as
follows [14]. Instead of introducing a cutoff in the integrals,
the integrands are assumed to be implicitly regularized and
then manipulated in such a way that divergences are isolated
in µ-independent divergent integrals. These divergent integrals
can be related to the divergent integrals Iquad and Ilog of
the problem of chiral symmetry breaking in vacuum through
the use of the scaling relations discussed above. From the
manipulation of the integrand in Eq. (26), finite integrals
also result, and these are integrated without imposing any
restriction to their integrands. Initially we consider T = 0.
In this case, the equation for the superconducting gap is
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FIG. 4. Zero temperature superconducting gap as a function of
quark chemical potential for three different values of α in Eq. (28).

given by

1 = 2 G (�) �2

{
−4

3

〈ψψ〉0

M0 �2
0

− 4

3

(
�2

�2
− M2

0

�2
0

)
f 2

π

M2
0

− 1

π2

[
�2

�2
− M2

0

�2
0

− �2

�2
log

(
�2�2

0

�2M2
0

)
+ 2

µ2

�2

]

+ µ2

�2

[
8

3

f 2
π

M2
0

− 2

π2
log

(
�2�2

0

�2M2
0

)] }
, (27)

where we used the manipulations of the integrand in Eq. (26)
as explained above and shown explicitly in Ref. [14].

One very interesting result of the application of the implicit
regularization to the problem of color superconductivity is that,
as shown with greater detail in Ref. [14], the superconducting
gap as a function of µ does not vanish at µ 	 �, as happens
with the traditional cutoff schemes. The numerical result for �

is shown by the solid line in Fig. 4. This is interesting because
a nonvanishing gap at high quark densities is predicted by
QCD [40]; see also the reviews in Refs. [31–38]. Of course,
if the implicit regularization scale � is kept fixed, the use of
the model at high densities is questionable. However, we are
able to make explicit the � dependence in the gap equation
(and in other physical quantities as well) by extracting the �

dependence from the implicit regularization function. In this
way, one can very easily extend the applicability of the model
to larger values of µ by allowing a running G(�) and a µ

dependence for �.
For the density dependence of �, as said above, there

is a great deal of arbitrariness. As discussed, one could
fix this dependence, for instance, by matching the density
dependence of G(�)�2 with the prediction of perturbative
QCD for the running of the QCD coupling constant αs at
high densities—the one-loop prediction is that the coupling
decreases logarithmically with µ for large values of µ.
However, for our purposes here of showing the qualitative
results only, we use the simple formula for µ � µ0 = 235 MeV,

� = �0

[
1 + α log

(
µ

µ0

)]
, (28)

where α is a constant. When this is used in the expression for
G(�)�2, one obtains that G(�)�2 decreases logarithmically
with µ, mocking up in a rather crude way the prediction of
perturbative QCD for the running of αs with µ. In Fig. 4, we
show the numerical results � as a function of µ for different
values of α. We use for the diquark pairing strength the value
G = 3.1 GeV−2. The other parameters are M0 = 312 MeV
and �0 = 932 MeV, which are the values obtained in vacuum
for fπ = 93 MeV and 〈ψ̄ψ〉0 = (−250 MeV)3. The results
show the expected behavior of the gap growing faster with µ

as � increases with µ, i.e., as α increases.
For completeness, we include the effects of temperature. We

calculate the critical temperature Tc above which � = 0, for
different values of µ. We rewrite Eq. (26) for � = 0 including
the effect of temperature

1 = 16 G

∫
d4k

(2π )4

i

k2
0 − (k + µ)2 tanh

(
β

2
|k + µ|

)
+ (µ → −µ), (29)

where

tanh

(
β

2
|k ± µ|

)
= 1 − 2n′

± (k) , (30)

with

n′
± (k) = 1

eβ|k±µ| + 1
. (31)

Using the same manipulations to isolate the divergent integrals
as explained before and after some algebraic effort, we can
write

1

4G
= �2

{
−2

3

〈ψ̄ψ〉0

M0�
2
0

+ 2

3

(
M2

0

�2
0

+ 2µ2

�2

)
f 2

π

M2
0

+ 1

2π2

[
M2

0

�2
0

− 3µ2

�2
− 2µ2

�2
ln

(
µ2

�2

�2
0

M2
0

)]}

+Q(µ, T ) + Q(−µ, T ), (32)

where

Q(µ, T ) = − 2

π2

∫ ∞

0
dk

k2

(k2 + µ2)1/2
[n′

+(k) + n′
−(k)]

+ 2µ

π2

∫ ∞

0
dk

k3

(k2 + µ2)3/2
[n′

+(k) − n′
−(k)]

− 3µ2

π2

∫ ∞

0
dk

k4

(k2 + µ2)5/2
[n′

+(k) + n′
−(k)]

+ 1

2π2

∫ ∞

0
dk k2 I (k) tanh

(
β

2
|k + µ|

)
, (33)

with

I (k) = 2k5 + 5k2µ2(k − µ) − 2µ5 − 2(k2 + µ2)5/2

(k2 + µ2)5/2(k − µ)

In Fig. 5, we plot the critical temperature as function of µ.
In the solid line, we have kept the coupling G fixed; and in
the dashed and dotted lines, the coupling is a function of µ

through the µ dependence of � as in Eq. (28). As seen, the
critical temperature increases with µ, and this increase is faster
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FIG. 5. Critical temperature for the superconducting gap as a
function of µ for different values of α in Eq. (28).

as α increases for large µ. The values of Tc obtained within
this scheme seem a little larger than those obtained with cutoff
regularization.

V. CONCLUSIONS AND PERSPECTIVES

We have considered an extension of the NJL model to high
densities and temperatures as proposed in Ref. [11] and used
an alternative strategy to handle ultraviolet divergences. This
extension is implemented by allowing the regularization scale
� to increase at high densities with the simultaneous decrease
of the coupling G. Making use of the scaling relations of
Eqs. (8) and (9), and the definitions in Eqs. (15) and (16), the
two one-loop divergent integrals Iquad and Ilog at scales �0 and
M0 can be related to the same Iquad and Ilog at different scales
� and M .

Although our numerical results are in qualitative agreement
with those of Casalbuoni et al. [11] for the µ dependence of
the superconducting gap �, we believe the present approach is
different from their results in several aspects. Perhaps the most
important one is that no specific regularization distribution
was used to obtain the running of G with �. Proceeding this
way made it possible to circumvent many troubles commonly
found when traditional regularization schemes are used, such
as those based on a three- or four-momentum cutoff or Pauli-
Villars and proper-time regularizations, leading in general to
global and gauge symmetry violations, and to the breaking
of causality and unitarity. Although in some circumstances
such aspects might not be of crucial importance, in many
others, such as in hadronic correlation functions, remarkable
differences appear [41]. Among them, only physical thresholds
(independent of �) are present, allowing thus the preservation
of unitarity. In addition, it is easy to show that causality is also
preserved by checking that the amplitudes obey the correct
dispersion relations. Gauge symmetry is also preserved, and
the ambiguities are eliminated at the one-loop level, as shown
in Ref. [23] in the context of the gauged NJL model. These
matters are discussed in detail in a separate publication [25].

Another interesting aspect of the present approach is that it
can be used with heavy quarks. The scaling relations involve
the ratio of the quark mass to the implicit regulation scale
and naturally take into account short-distance effects as the
quark mass increases. This is very important in connection
with studies of heavy-quark bound states in highly excited
quark matter.
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