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Critical behavior of charmonia across the phase transition: A QCD sum rule approach
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We investigate the medium-induced change of mass and width of J/ψ and ηc across the phase transition in
hot gluonic matter using QCD sum rules. In the QCD sum rule approach, the medium effect on heavy quarkonia
is induced by the change of both scalar and twist-2 gluon condensates, whose temperature dependencies are
extracted from the lattice calculations of energy density and pressure. Although the stability of the operator
product expansion side seems to break down at T > 1.06Tc for the vector channel and T > 1.04Tc for the
pseudoscalar channel, we find a sudden change of the spectral property across the critical temperature Tc, which
originates from an equally rapid change of the scalar gluon condensate characterized by ε − 3p. By parametrizing
the ground state of the spectral density by the Breit-Wigner form, we find that for both J/ψ and ηc, the masses
suddenly decrease maximally by a few hundreds of MeV and the widths broaden to ∼100 MeV slightly above Tc.
The implications for recent and future heavy-ion experiments are discussed. We also carry out a similar analysis
for charmonia in nuclear matter, which could serve as a testing ground for observing the precursor phenomena
of the QCD phase transition. We finally discuss the possibility of observing the mass shift at nuclear matter at
the FAIR project at GSI.
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I. INTRODUCTION

The in-medium change of spectral properties of heavy
quarkonia is one of the interesting problems in recent
hadron physics. First, the recent relativistic heavy-ion collision
experiment at the Relativistic Heavy Ion Collider (RHIC)
has revealed the exciting nature of QCD matter through a
number of observations [1–5]. However, there are many open
questions involving both experimental facts and our theoretical
understanding of QCD matter. Hence, it is important to
establish appropriate experimental observables that reflect
the consequences of a deeper theoretical understanding of
the matter. Heavy quarkonia have been regarded as one of
the most suitable diagnostic tools in this respect, since the
suppression of J/ψ yields would reflect the Debye screening
phenomenon caused by the deconfinement phenomenon in the
quark-gluon plasma (QGP), as was originally argued by Matsui
and Satz [6]. Until now, quarkonium production, especially
that of J/ψ , in relativistic heavy-ion collisions has been
extensively studied both experimentally [7,8] and theoretically
[9,10]. However, remarkable progress comes from recent
lattice QCD calculations, which indicate that, contrary to the
earlier expectation, the J/ψ will survive as a bound state even
in the QGP up to T ∼ (1.6–2)Tc [11–13], which had been
anticipated based on the nonperturbative nature of QGP [14].
Nowadays, the state of matter at this temperature region
has been characterized as “strongly coupled” QGP (sQGP).
Hence, there will be change of spectral properties even for a
heavy-quark system that has to be considered in interpreting
experimental observables.

Second, charmonium in a nuclear medium is also an
interesting issue. In relativistic heavy-ion collisions, we
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need knowledge of the quarkonium-nucleon interaction to
discriminate the suppression by QGP from the “cold nuclear
matter effect” induced by such an interaction. Furthermore,
multigluon exchange can lead to an attractive interaction
between cc̄ and a nucleon, which may result in a bound
state of charmonium and light nuclei, as pointed out by
Brodsky et al. [15]. It should also be noted that the planned
Panda experiment at GSI-FAIR involves reaction of an-
tiprotons with a nucleus target, which will yield charmonia
in nuclear matter. It could serve as a testing ground for
observing the precursor phenomenon of the QCD phase
transition.

In this paper, we investigate the change of mass and width of
J/ψ and ηc induced by strongly interacting hot gluonic matter
and by the nuclear medium using QCD sum rule. The QCD
sum rule provides a systematic procedure for studying hadrons
from a viewpoint of the asymptotic freedom in QCD [16,17].
Since the QCD sum rule can take nonperturbative effects
into account through the condensate terms, it is a suitable
theoretical tool for the current study. Indeed, QGP at T < 3Tc

cannot be understood by using perturbation theory alone [18].
Furthermore, the sum rule is more promising for heavy-quark
systems because we do not have to take the quark-antiquark
condensate into account as we do for light-quark systems. In
this respect, the sum rule has been applied to charmonium
and bottonium. Shifman et al. established the framework in
Refs. [16,17] and Reinders et al. extended it to the deep
Euclidean region Q2 = −q2 > 0 [19] for the vacuum case.
For in-medium quarkonia, one of us together with Furnstahl
and Hatsuda has investigated the mass shift of J/ψ in hot
hadronic matter [20], using a QCD sum rule approach, where
the temperature effect was introduced to the perturbative
Wilson coefficient through the scattering terms. A consistent
formalism at lower density was developed by one of us [21]
and independently by Hayashigaki [22] to study the mass shift
of J/ψ in nuclear matter.
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Along this direction, we investigated the mass shift and
width broadening of J/ψ in hot gluonic plasma (GP) [23]
just above the phase transition by consistently using the exact
temperature dependencies of condensates from the lattice
calculation. In the present paper, as a subsequent paper to
Ref. [23], we present details of the analysis and further
application to ηc and to spectral changes in nuclear matter.

In the next section, we will give an explanation of the
QCD sum rule for heavy quarkonium in medium used in the
present work. Sections III and IV describe the details of the
numerical computations of the sum rule for hot gluonic matter
and the nuclear medium, respectively. Section V is devoted to
discussion and summary.

II. QCD SUM RULE FOR HEAVY QUARKONIUM

In this section, first we review the sum rule for heavy
quarkonium in vacuum [19]. Then we introduce the extension
to finite temperature and nuclear medium cases, in which the
medium effect is eventually induced only by the expectation
values of gluonic operators without any additional change in
the operator product expansion (OPE).

A. Moment sum rule in vacuum

We start with the time-ordered current-current correlation
function for theJ channel,

�J (q) = i

∫
d4xeiq·x〈T [jJ (x)jJ (0)]〉, (1)

where we consider the J = P (pseudoscalar) and V (vector)
currents of the heavy quark. Namely, jP = ic̄γ5c and jV

µ =
c̄γµc for charm. The expectation value 〈· · ·〉 is taken for the
vacuum. If we go to the deep Euclidean region Q2 ≡ −q2 �
0, the product of the current can be expanded via the OPE [24].
If we denote �̃(q2) such that �µν(q) = (qµqν − q2gµν)�̃(q2)
for the vector current, �̃(q2) can be written as

�̃J (q2) =
∑

n

CJ
n 〈On〉, (2)

where On are the operators of mass dimension n renormalized
at scale µ2 and CJ

n are the Wilson coefficients. By virtue
of a much heavier quark mass than the confinement scale,
heavy-quark operators, such as mcc̄c for dimension four, are
rewritten in terms of gluonic operator with a factor of 1/mc

via a heavy-quark expansion [16,25]. Hence, only gluonic
operators contribute to the OPE for the heavy-quark currents.

The correlation function given by Eq. (2) is related to its
imaginary part through the dispersion relation

�̃J (q2) = 1

π

∫ ∞

4m2
c

Im �̃J (s)

s − q2
ds, (3)

where we ignore +iε in the denominator of the integrand since
q2 = −Q2 < 0. Taking the nth derivative of Eqs. (2) and (3)
as

MJ
n (Q2) ≡ 1

n!

(
d

dq2

)n

�̃J (q2)

∣∣∣∣
q2=−Q2

, (4)

we obtain the nth-order moments of

MJ
n (Q2)OPE = AJ

n (ξ )
[
1 + aJ

n (ξ )αs + bJ
n (ξ )φb

]
(5)

for the OPE side and

MJ
n (Q2)phen. = 1

π

∫ ∞

4m2
c

Im �̃J (s)

(s + Q2)n+1
ds (6)

for the phenomenological (dispersion) side. Here, we have
introduced a dimensionless scale variable ξ = Q2/4m2

c . In
Eq. (5), AJ

n (ξ ), aJ
n (ξ ), and bJ

n (ξ ) are the Wilson coefficients
that correspond to bare loop diagrams, perturbative radiative
correction up to order αs , and scalar gluon condensate,
respectively. These coefficients were derived in Ref. [19] and
we summarize them in the Appendix.

In evaluation of spectral properties, we take the ratio of the
(n − 1)th moment to the nth moment and equate the OPE side
with the phenomenological side. Then we obtain the sum rule

MJ
n−1

MJ
n

∣∣∣∣∣
OPE

= MJ
n−1

MJ
n

∣∣∣∣∣
phen.

, (7)

which relates the hadron properties (r.h.s.) with asymptotically
free QCD (l.h.s.).

B. Moment sum rule for the hot gluonic medium

In this paper, we first consider the gluonic medium at finite
temperature around Tc. Then, the expectation value in Eq. (1) is
taken as 〈O〉 = Tr(e−βHO)/Tr(e−βH ). Hereafter, we set both
medium and cc̄ at rest. We denote qµ = (ω, q) and take the
q → 0 limit. In this case, the transverse and the longitudinal
components of the correlation function for the vector channel
are simply related with �T = ω2�L and �L = �µ

µ/(−3ω2).
We denote the longitudinal component as �̃J (ω) for the vector
channel.

At finite temperature, the retarded correlation function is
related to the spectral function [26]. In the Euclidean region
ω2 < 0, the retarded correlation function �R(ω) becomes
�(ω2) and the dispersion relation is given by [20,27]

�̃J (ω2) =
∫ ∞

0−
du2 ρ(u)

u2 − ω2
, (8)

where ρ(u) is the spectral function connecting with the
imaginary part as

ρ(u) = 1

π
tanh

( u

2T

)
Im�̃J (u2). (9)

Then Eq. (8) reduces to the vacuum case [Eq. (3)] when
Im�̃J (u2) has nonzero value only at u � T . Since we are
interested in charmonia for which the mass is much larger
than the temperature considered here, this condition seems to
be appropriate one. However, there are formally two additional
terms in the finite temperature spectral function [28]. One is
the continuum part, which also exists in the vacuum case.
Following the prescription in Ref. [19], we can suppress
contribution from this part as described later because this
part has finite values beyond some threshold. The other
part arising from scattering of the current with quarks in
medium is proportional to δ(u2) and the contribution grows

064904-2



CRITICAL BEHAVIOR OF CHARMONIA ACROSS THE . . . PHYSICAL REVIEW C 77, 064904 (2008)

with T in the hadronic medium [20]. However, since we
are considering the gluonic medium in which there are no
(anti)quarks that annihilate with the current, such a scattering
term does not appear. Hence, we can use the same expression
of the phenomenological side as in the vacuum case [Eq. (6)]
for charmonia in the hot gluonic medium.

For the OPE side, there is an important change from the
vacuum case to the medium one. Since we no longer have
Lorentz invariance, nonscalar operators have nonvanishing
values [27]. In the present case, the twist-2 gluon operator
has a leading contribution and the nth-order moment of the
OPE side [Eq. (5)] should be modified to

MJ
n (Q2)OPE = AJ

n (ξ )
[
1 + aJ

n (ξ )αs + bJ
n (ξ )φb + cJ

n (ξ )φc

]
,

(10)

where cn and φc are the Wilson coefficients and the medium
expectation value for the twist-2 operator. Since we are
considering heavy-quark systems, only the condensate terms
are temperature dependent as long as T � mc, |Q| [20,27].
Hence, the Wilson coefficients are the same as in the vacuum
case. In the following, we show that the gluon condensates
φb,c are written in terms of thermodynamic quantities that can
be extracted from lattice QCD data.

If we define these condensate terms as

G0(T ) =
〈αs

π
Ga

µνG
aµν

〉
T

, (11)
(

uµuν − 1

4
gµν

)
G2(T ) =

〈αs

π
Gaµ

ρ Gaνρ
〉
T

, (12)

where uµ is the four-velocity of the medium and taken to be
uµ = (1, 0, 0, 0), explicit forms of φb,c are given as

φb = 4π2

9
(
4m2

c

)2 G0(T ), (13)

φc = 4π2

3
(
4m2

c

)2 G2(T ). (14)

Actually, it is possible to calculate the condensates
[Eqs. (11) and (12)] directly by using lattice QCD, but we
do not adopt such an approach here. The gluon condensates
generally consist of a perturbative piece and a nonperturbative
piece. At zero temperature, the condensate term appearing
in QCD sum rules is the nonperturbative piece only and it
is shown that the nonperturbative part extracted from lattice
QCD by subtracting the perturbative part is indeed consistent
with the value of the condensate determined from QCD sum
rules for charmonium [30–32]. Similar consideration holds
also for the finite temperature case [33], in which we would
have to subtract the perturbative part at T 	= 0 if we directly
calculated the nonperturbative condensates from lattice QCD.
In this paper, since we are putting all the temperature
dependencies in the condensates, including the perturbative
and nonperturbative contributions, we can just extract total
temperature dependencies of the operators from the lattice.
This is possible by noting that the scalar gluon condensate and
twist-2 gluon condensates are, respectively, just the trace part
and symmetric traceless part of the energy-momentum tensor.
This energy-momentum tensor is well calculated on the lattice

from the pressure and energy density of the plasma through
the following equation:

T αβ = (ε + p)

(
uαuβ − 1

4
gαβ

)
+ 1

4
(ε − 3p)gαβ. (15)

The scalar condensate can be related to the trace part
through the trace anomaly as

T µ
µ =

〈
β(g)

2g
Ga

µνG
aµν

〉
, (16)

with β(g) being the beta function, β(g) = − g3

48π2 (33 − 2Nf )
for one-loop Nf flavors, and Nc colors. Using this expression
with Nf = 0 and Nc = 3 for the beta function and recalling
that T µ

µ = ε − 3p, we obtain

G0(T ) = Gvac
0 − 8

11 (ε − 3p), (17)

where Gvac
0 is the value of the scalar gluon condensate in

vacuum [34]. For the twist-2 part, the symmetric traceless part
of the energy-momentum tensor is the gluon operator

T αβ = −GaαλG
aβ

λ . (18)

Hence we can identify the traceless part of the energy-
momentum tensor to (ε + p) as given in Eq. (15). From
Eq. (12), the twist-2 part becomes

G2(T ) = −αs(T )

π
(ε + p), (19)

so that G2(T ) is proportional to the entropy density of the
system, s = (ε + p)/T . We extract the temperature-dependent
quantities ε, p [35], and αs(T ) [29] from lattice calculations
for the pure SU(3) system. To construct G2, we need
the temperature-dependent effective coupling constant. The
coupling constant, however, cannot be uniquely determined by
lattice QCD [29]. In Ref. [29] four kinds of coupling constant
were extracted from the color singlet heavy quark-antiquark
free energy. Two of them are measured in the short-distance
regime and the others are done in the long-distance regime.
In the former, one is from the free energy and the other is
from the spatial derivative of the free energy (force). Both
coupling constants are almost independent of temperature at
short distance, r < 0.1 fm. Whereas the former goes to a
negative value at larger distance owing to the remnant of the
confinement force, the latter shows a temperature-dependent
maximum value, at which the distance is denoted by rscreen.
Here, we adopt the latter one, αqq(r, T ) at r = rscreen, as one
of reasonable coupling constants since it characterizes the
relevant length scale for the separation of the short-distance
regime from long-distance one. In contrast, the long-distance
regime is based on a fit of the free energy to the Debye-screened
functional form, which has two coupling parameters: the
Coulomb force strength α(T ) and screening α̃(T ). Although
both of the coupling constants show reasonable temperature
dependencies and agree with each other at T > 6Tc, we adopt
α̃(T ) because the Coulomb force strength is not relevant for
characterizing the long-distance nonperturbative physics at the
temperature considered here. Unlike αqq, the uncertainty in
the result of α̃(T ) is too large. Therefore, we use the two-loop
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FIG. 1. (Color online) Temperature-dependent coupling con-
stants extracted from lattice QCD. The boxes denote the lattice data
points of αqq(rscreen, T ) taken from Ref. [29]. The solid line is drawn
by Bezier interpolation of the lattice data points. The dotted line
shows the case of Eq. (20).

perturbative running coupling form

g−2
pert(T ) = 11

8π2
ln

(
2πT

�MS

)
+ 51

88π2
ln

[
2 ln

(
2πT

�MS

)]
, (20)

with Tc/�MS 
 1.14, and rescale this as α̃(T ) = 2.095αpert(T )
[29]. Here we put Tc = 264 MeV [35]. The two coupling
constants as a function of temperature are displayed in
Fig. 1. As explained later, we will consider only the tem-
perature region near Tc in this paper. Hence, αqq is stronger
than α̃(T ) throughout the analyses in this paper.

The resultant gluon condensates G0 and G2 for two cases
of the coupling constant are shown in Fig. 2.1 For G0, we
use Gvac

0 = (0.35 GeV)4 
 0.015 GeV4. We can see that G0

decreases as temperature increases and reaches less than half
of the vacuum value at T/Tc 
 1.04. It becomes negative at
higher temperature but remains positive in the temperature
region considered here [33].

C. Moment sum rule for the nuclear medium

In this case, the medium consist of nucleons; thus we do
not have to worry about the scattering term. As long as we
follow the same method to suppress the contribution from the
continuum, we can use the same form of the phenomenological
side for the vacuum and finite temperature cases.

Thus, since the medium effect is similarly imposed on the
gluon condensates, the difference between the nuclear matter
case from that of hot gluonic matter is in the explicit form of
φb,c. To evaluate the expectation value for the ground state of
nuclear matter, we employ the linear density approximation
[36]

〈O〉n.m. = 〈O〉0 + ρN

2mN

〈N |O|N〉, (21)

where ρN and mN are the normal nuclear matter density
and the nucleon mass, respectively. The nucleon state |N〉

1We have renewed the extraction from lattice data by improving the
resolution, so that the present values are slightly different from those
of Ref. [23].
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FIG. 2. (Color online) Gluon condensates near Tc.

is normalized as 〈N (p′)|N (p)〉 = 2p0(2π )3δ3(p − p′). Then,
the scalar condensate becomes [21]〈αs

π
Ga

µνG
aµν

〉
n.m.

=
〈αs

π
Ga

µνG
aµν

〉
0
− 8

9
m0

NρN, (22)

where m0
N 
 750 MeV is the nucleon mass in the chiral limit

[37]. The traceless and symmetric twist-2 operator is given
as [21],〈
N (p)

∣∣∣αs

π
Ga

ασ Gaβσ
∣∣∣ N (p)

〉
= −

(
pαpβ − 1

4
gβ

αp2

)
αs

π
AG,

(23)

where AG is related to the moment of the gluon distribution
function,

AG(µ2) = 2
∫ 1

0
dxxG(x, µ2). (24)

Following Ref. [21], we take AG(8m2
c) 
 0.9. Although G2 at

finite temperature is related to the entropy, this correspondence
does not hold in the nuclear matter case. Note that Eq. (18)
does not contain the quark sector. By using these expressions,
the condensate terms that appear in Eq. (5) finally result in [21]

φb = 4π2

9
(
4m2

c

)2

〈αs

π
Ga

µνG
aµν

〉
n.m.

(25)

φc = −2π2

3

αs

π
AG(

4m2
c

)2 mNρN. (26)

The form of φb is the same as for the hot gluonic matter case but
now the expectation value is taken through Eq. (22). We depict
the density dependence of the gluon condensates based on
Eqs. (22) and (26) in Fig. 3. The twist-2 case is renormalized
so that it corresponds to the finite temperature case (14). We can
see that the change of the scalar condensate reaches as large
as that in the T = Tc case at ρ ∼ 5ρ0 but is much smaller
at normal nuclear density. The twist-2 contribution is much
smaller than that of the finite temperature case.

D. Phenomenological side

On the phenomenological side, we use a simple prescription
that describes the lowest lying resonance in each channel. For
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FIG. 3. (Color online) Gluon condensates in nuclear matter. Thick
solid and dashed lines show the scalar and twist-2 condensates,
respectively, as a function of density normalized by the normal nuclear
density. Thin lines are the finite temperature case at T = Tc for a
comparison.

charmonium, previous studies [16,19–22] focused on the mass
and ignored the small but finite width of J/ψ and ηc. In this
case, the imaginary part of the polarization function in Eq. (6)
is simply parametrized by

Im�̃(s) = f0δ(s − m2) + corrections, (27)

where we ignore the channel subscript J . This spectral function
immediately leads to the moment

Mn(ξ ) = f0

π (m2 + Q2)n+1
[1 + δn(ξ )]. (28)

The correction term in Eq. (27) is absorbed in δn(ξ ). By
taking the ratio as in Eq. (7), we can remove the constant
f0 from the equation. To obtain the mass of the lowest lying
resonance, we need to choose sufficiently large n such that
[1 + δn−1(ξ )]/[1 + δn(ξ )] is close to unity. Then the ratio does
not depend on the details of the correction term, which contains
higher resonances and continuum, and the mass is simply given
by

m2 
 Mn−1(ξ )

Mn(ξ )
− 4m2

cξ. (29)

Previous analyses rely on this formula.
In this work, we extend this formulation to include finite

width. Here, we employ the simple relativistic Breit-Wigner
form

Im�̃(s) = f0
√

s�

(s − m2)2 + s�2
+ corrections. (30)

As in the � = 0 case, we can eliminate the unnecessary
constant and the effects of the correction term by taking the
ratio of the moment and choosing appropriately large n. In the
practical analyses of the sum rule, our task is to find values
of (m,�) that satisfy the sum rule [Eq. (7)]. Generally, there
are infinite numbers of the pairs of (m,�) because the sum
rule provides one equation with respect to the two quantities
we want to know. Hence, without additional constraints, the
sum rule can provide only a relation between m and � as in
the case of light vector mesons [38]. Here, before the practical
calculation, we discuss the relation between the mass and the
width that comes from the phenomenological side, Eq. (30).
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FIG. 4. (Color online) Moment ratio of the phenomenological
side as a function of �. Upper panels are for ξ = 1. Left and right
panels denote the cases of n = 9 and n = 14, respectively. Lower
ones are for ξ = 3 with n = 14 (left) and n = 19 (right).

In calculation of the moment ratio of the phenomenological
side, we need to compute the dispersion integral in Eq. (6) with
the spectral function in Eq. (30). Since the width of ground-
state charmonium is much smaller than its mass, we need a
careful treatment of the numerical integration. To achieve good
accuracy, we performed Monte Carlo integration based on the
VEGAS algorithm [39]. In our calculation, the typical relative
numerical uncertainty evaluated from the standard manner in
the Monte Carlo integration is the order of 10−6 for 106 events
with m = 3 GeV and � = 1 MeV. As expected, this accuracy
improves as � increases.

We plot the � dependence of the moment ratio for various
mass values from 2.9 to 3.1 GeV in Fig. 4. Here we show
the result for two values of ξ, ξ = 1 and 3. For each ξ value,
we choose two values of n, which are typical values for the
analyses in the following, to see the n dependence of the
moment ratio. First, comparing the left (smaller n) side to
the right (large n) side, we can see that the � dependence
of the moment ratio becomes stronger as n increases. As we
will see later, larger n is suitable for evaluating mass at higher
temperature. Hence, this fact means that, as the temperature
increases, the system becomes more sensitive to the width.
Second, the moment ratio decreases monotonically as the
width increases if the mass is unchanged. It also decreases as
the mass decreases but the width dependence is much weaker.
For instance, let us suppose that we obtain a 1 GeV2 decrease
of the moment ratio from the OPE side for ξ = 1. If the mass
stays constant, the width must broaden to larger than 100 MeV,
whereas it corresponds to about a 100 MeV mass reduction for
the case where the width remains at its vacuum value. Finally,
as is shown by comparing the upper right with the lower left
plots in Fig. 4, the width dependence becomes weaker if we
choose larger ξ . Its consequence will be discussed in the next
section.
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III. CHARMONIUM IN HOT GLUONIC MATTER

In this section, we present the result of the analysis for
hot gluonic matter. The parameters of the theory are αs and
mc. Hereafter, they are set to 0.21 and 1.24 GeV at ξ = 1,
respectively, which are taken from Ref. [21].

We begin with fixing n such that the moment ratio of
the OPE side takes its minimum value for each temperature.
As briefly mentioned before, we need to choose moderately
large n so that the contributions from excited states and
the continuum can be sufficiently suppressed. Therefore,
this ratio should approach a constant value at adequately
large n. However, on the OPE side contribution from higher
dimensional operators will be important at large n. At the n

value for which the moment ratio takes its minimum value, pole
dominance and truncation of the OPE are valid and the ratio
is close to the real asymptotic value, as has been extensively
studied in the vacuum case [19].

We display the moment ratio for the OPE side [Eq. (10)] in
Figs. 5 and 6 with the gluon condensates shown in Fig. 2.

Figure 5 shows the moment ratio for the vector channel. The
left and right columns show the cases in which we use αqq and
α̃, respectively. Comparing different ξ cases, we can see that
the stability of the moment becomes better as ξ increases. But
the values of n that give the stability to the moment ratio also
become larger. As previously reported in Ref. [23], the stability
is only achieved near Tc and the stronger coupling, which is αqq

in this temperature region, gives worse stability. By increasing
ξ , we can improve the stability a little. Although stability can
be achieved only up to 1.04Tc for ξ = 0, the moment ratio
remains stable up to 1.06Tc for ξ = 3.

We can see a similar situation in the pseudoscalar channel
depicted in Fig. 6. However, the moment ratio is less stable
than the vector case. In the pseudoscalar case, even the best
case (using α̃ and ξ = 3) can stabilize the moment ratio only
up to 1.04Tc.

Note that the lack of stability does not necessarily mean
dissociation of the charmonia. The reason for such instability
can be clearly seen in the terms of the OPE [Eq. (10)], each
of which must be much less than unity for convergence.
These terms are displayed in Figs. 7–9. We can see that
all the coefficients grow with n. An important feature in all
the coefficients is that increasing ξ clearly keeps their value
smaller. Among these three, only cn(ξ )φc always has positive
sign and its magnitude increases with temperature. These two
features are opposite to bn(ξ )φb, in which the sign is always
negative and the value seems to approach zero as temperature
increases. In comparing the two channels, one finds that there
are no significant differences. Hence, the stability will be
determined by a delicate balance among coefficients, and its
breakdown will be caused by a rapid increase of cn(ξ )φc.

Now we proceed to the determination of mass and width.
The values of n are listed in Table I. Note that the stability
achieved at the highest temperature is ambiguous in some
cases; for example, J/ψ of ξ = 2 with the αqq case is stable at
T/Tc = 1.05 with n = 22. However, as seen in Fig. 5, the
moment ratio is almost constant in such a large n region
and never rises as lower temperature cases do. Such a vague
stability is also seen in other cases. Hence, we note that mass
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FIG. 5. (Color online) Moment ratio for the OPE side for the
vector channel (J/ψ). Each panel shows a different ξ and coupling
constant case. The symbols stand for different temperatures.
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FIG. 6. (Color online) Same as Fig. 5, but for the pseudoscalar
channel (ηc).
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FIG. 7. (Color online) Radiative correction term an(ξ )αs in the
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and width values evaluated on the basis of such a stability are
less reliable in the analyses that follows.

Once n and ξ are fixed, we can compute the mass and the
width by making use of Eq. (7). For a fixed moment ratio of
the OPE side, we first compute the mass in the limit of � → 0
using Eq. (29). By virtue of the monotonic behavior of the
moment ratio of the phenomenological side shown in Fig. 4,
we can safely calculate the mass in the case of finite width by
numerically solving Eq. (7) with Eq. (30).

We plot the relation between the mass shift and the width at
various temperatures in Figs. 10 and 11. We can see the almost
linear behavior of the width as a function of the mass shift.
Note that the vacuum mass differs for different ξ . We do not
perform fine tuning of the parameters so that the real vacuum
mass is reproduced. Although there are some exceptions for
the linear relation, especially in small-ξ and high-temperature
cases, these come from the vague stability we mentioned
before. Hence, we can conclude that the mass shift and the
width have the linear relationship provided QCD sum rules
work properly. The other important aspect is the temperature
dependence of the mass shift and the width. We cannot know
how the mass and the width behave in the real situation, since
we cannot simultaneously determine both the mass and the
width within the current framework. Here, we investigate two
extreme cases: the � → 0 limit and the δm → 0 limit.

The results are shown in Figs. 12 and 13. In these figures, we
plot the results of T > 0.9Tc. Figure 12 shows the remarkable
behavior of the mass shift: The mass does not change up to
T ∼ Tc but it suddenly begins to decrease across Tc. This
fact clearly reflects the temperature dependence of the gluon
condensates, which represent the phase transition. Above Tc,
the mass decreases with temperature almost linearly. This
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feature is common for both J/ψ and ηc. Though small-ξ
results, especially those at ξ = 0, show a more rapid decrease,
the curves become almost parallel among large-ξ results,
as a consequence of the better stability. From the nature
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of the phenomenological side shown in Fig. 4, this case
corresponds to the maximum mass shift. The mass shift
shows a reduction of ∼50 MeV from vacuum to Tc, and it
increases additionally by ∼20–50 MeV as the temperature
rises by 0.01Tc. Consequently, it becomes 100–300 MeV at
T = 1.04Tc.

Similarly, Fig. 13 shows that the width begins to increase
with temperature across Tc if no mass shift takes place. This
also shows an almost linear dependence on temperature above
Tc. Though some exceptions can be seen in the small-ξ results,
which are also indicated in Figs. 10 and 11, these behaviors
come from the vague stability appearing at the too large n

values in Table I. Hence, we can conclude that the width
increases linearly with temperature above Tc if the mass
remains unchanged. Since we did not fine tune the parameters
for each ξ , the values of mass shift and width differ for
different ξ . However, the qualitative features do not depend
on ξ where the stability is reliable. This shows the robustness
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FIG. 13. (Color online) Temperature dependence of the widths in
the m → 0 limit. The symbols are the same as in Fig. 12.

of our analysis. A realistic change at each temperature should
be a combined decrease in mass and an increase in width,
whose values are smaller than their maximal changes obtained
here. However, to determine a realistic combination, we need
to have an additional constraint between the changes in the
width and the mass or input the thermal width from another
calculation.2 From Fig. 2, one may think that the dominant
contribution to the change of mass and/or width is the scalar
gluon condensate, which exhibits a sudden decrease around Tc.
However, G2 also exhibits similar behavior since it is related
to the entropy density. Though the value of G2 around Tc is
smaller than G0 because of the prefactor αs/π , the relative
contribution to the moment becomes larger as T increases. To
see the contribution clearly, we show the mass shift of J/ψ

2See Ref. [40] for a recent investigation.
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TABLE I. List of n values at which the moment ratio takes minimum values.

J αs(T ) ξ Vacuum T

Tc
= 1 1.01 1.02 1.03 1.04 1.05 1.06

J/ψ αqq 0 5 6 6 7 9 N/Aa N/A N/A
0.5 7 8 9 10 11 N/A N/A N/A
1 8 10 10 12 13 N/A N/A N/A
1.5 10 11 12 13 15 17 N/A N/A
2 11 13 14 15 16 18 23 N/A
2.5 13 15 15 16 18 20 22 N/A
3 14 16 17 18 19 21 23 29

α̃ 0 5 6 6 7 8 10 N/A N/A
0.5 7 8 8 9 10 12 N/A N/A
1 8 10 10 11 12 13 17 N/A
1.5 10 11 12 13 14 15 17 N/A
2 11 13 13 14 15 16 18 23
2.5 13 14 15 16 17 18 19 22
3 14 16 16 17 18 19 21 23

ηc αqq 0 6 7 8 12 N/A N/A N/A N/A
0.5 8 10 11 15 N/A N/A N/A N/A
1 10 12 14 17 N/A N/A N/A N/A
1.5 12 14 16 19 N/A N/A N/A N/A
2 14 16 18 21 N/A N/A N/A N/A
2.5 15 18 20 22 29 N/A N/A N/A
3 17 20 21 24 29 N/A N/A N/A

α̃ 0 6 7 7 9 14 N/A N/A N/A
0.5 8 9 10 12 16 N/A N/A N/A
1 10 12 13 14 18 N/A N/A N/A
1.5 12 14 15 16 19 N/A N/A N/A
2 14 16 17 18 21 N/A N/A N/A
2.5 15 17 18 20 22 28 N/A N/A
3 17 19 20 22 24 28 N/A N/A

aN/A means the stability is not available.

without the G2 term for ξ = 1 together with the two different
coupling cases in Fig. 14. We can see that almost half of the
mass shift is caused by the decrease of G2. Clearly, a larger G2

value in which αqq is adopted as the coupling constant leads
to a larger mass shift. At T = 1.04Tc, αqq is about 25% larger
than α̃. This difference makes the mass shift 30 MeV larger in
the ξ = 1 case. Unfortunately, the present analysis is limited
to the temperature region around Tc; the role of the twist-2
term will become more important at higher temperature.
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FIG. 14. (Color online) δm of J/ψ without the twist-2 term G2.
See text for details.

IV. NUCLEAR MATTER

In this section, we analyze change of mass and width of
the charmonium induced by the nuclear medium within the
same framework that was implemented in the previous section.
Here, we use Eqs. (25) and (26) instead of Eqs. (13) and (14),
respectively. With the common parameter set, the condensates
are φb = 1.74 × 10−3 for vacuum, 1.64 × 10−3 for nuclear
matter, and φc = −1.28 × 10−5.

As previously shown in Ref. [21], the change of mass,
which is identical to the change of the moment ratio of the
OPE side [Eq. (29)], is not as large as in the hot gluonic matter
case. Thus we do not have to worry about the stability of the
OPE. Nevertheless, increasing ξ improves the validity of the
OPE. We will show the results for 0�ξ�3 as well as in the hot
gluonic matter case to show the robustness and the consistency
of the calculation.

We list in Table II values of n in which the moment ratio of
the OPE side for the nuclear medium becomes minimum. The
vacuum case has been already shown in Table I. Comparing
these two cases, we can see that the values of n are the same
except for a few J/ψ cases, by virtue of the small shift of the
gluon condensates in the nuclear matter. In such exceptional
cases, the difference of the values of the moment ratio from
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TABLE II. List of n values that stabilize the moment ratio for nuclear matter.

Channel ξ = 0 ξ = 0.5 ξ = 1 ξ = 1.5 ξ = 2 ξ = 2.5 ξ = 3

J/ψ 5 7 9 10 12 13 14
ηc 6 8 10 12 14 15 17

the same vacuum case n value is almost negligible (i.e., the
moment ratio is almost constant around these n).

We plot the width � as a function of the mass shift δm in
Fig. 15 as well as in the GP case. In both J/ψ and ηc cases,
values of ξ smaller than 1.5 show a larger mass shift and
width broadening but larger ξ results agree each other. From
the stability argument, larger ξ results will be more reliable.
Then, possible mass shifts are maximally −7 MeV for J/ψ

and −4 MeV ηc whereas maximum widths are 10 MeV for
J/ψ and 6 MeV for ηc.

V. DISCUSSION AND SUMMARY

In Sec. III, we have shown that mass decreases suddenly
across Tc and the shift reaches maximally a few hundred
MeV above Tc in hot gluonic matter. Alternatively, width can
also maximally broaden to ∼200 MeV. Although our analysis
cannot determine both of mass and width simultaneously,
this is a notable result that should be examined in future
experiments. In fact, a next-to-leading-order QCD calculation
shows that the thermal width of J/ψ slightly above Tc is
smaller than a few 10 MeV [41,42]. Hence a large mass shift
will take place. Note that such a large mass shift has been
expected from different points view; an AdS/QCD analysis
shows a sudden drop of mass at the phase transition [43]. In
Ref. [43], although the mass begins to slowly increase at higher
temperature, the temperature region investigated in the present
paper corresponds to the critical region. A sudden reduction of
the asymptotic value of the potential seen in lattice QCD [44]
leads to a lowering of the bound-state energy [45]. Recent
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FIG. 15. (Color online) Relation between mass shift and width in
nuclear matter.

lattice QCD calculations based on the maximum entropy
method also show survival of the peak in the spectral function
above Tc [46] but the resolution is still insufficient to allow
discussion of the shift and broadening of the peak. Since our
results access only the region near Tc, we are still far from
a complete understanding of the behavior of the charmonium
in the deconfined medium. In the most plausible picture from
our current understanding, charmonia are melting at the very
high temperature expected in the early stage of the heavy-ion
collisions at RHIC and LHC. Then the pairs of heavy quark and
antiquark form the bound states at a certain temperature, which
depends on quantum number. The temperature is expected as
∼2Tc for J/ψ at RHIC [47]. After charmonia are produced,
they will dissociate by collisions with partons. If this phase
lasts long enough compared to the inverse of the width, the
charmonia can decay in the medium. In fact, the lifetime of
the partonic medium is about 4–5 fm/c in a hydrodynamic
calculation for the central Au+Au collisions at the maximum
RHIC energy [48]. This will be much longer at LHC. From
Fig. 10, we expect an ∼200 MeV J/ψ mass reduction in the
case of the small decay width. This shift is larger than the
experimental mass resolutions (∼35 MeV for the dielectron
channel of PHENIX at RHIC [8] and 33 MeV for the dielectron
channel and 75 MeV for the dimuon channel of ALICE at
LHC [49]).

Alternatively, statistical hadronization near the phase
boundary has also been examined [50]. In this case, the
number of produced charmonia will be enhanced if a notable
mass shift occurs. For example, there may be a factor of 2
enhancement for T = 170 MeV and δm = −100 MeV since
the enhancement factor is given by e−δm/T . This enhancement
might be observed by comparing particle ratio.

For the nuclear medium result, we have extended the
analysis carried out in Ref. [21] by taking account of finite
width. We have also shown the results for different ξ values.
Since we have given the relation between the mass shift and
width, we can estimate the mass shift in the presence of a finite
width effect by considering the dissociation cross section of
the charmonium by a nucleon. Provided the Fermi momentum
is pF 
 250 MeV and the cross section is σJ/ψ−N 
 2 mb,
the decay width � = 〈σJ/ψ−NvrelρN 〉 becomes ∼1.3 MeV
for charmonium at rest. The cross section may be smaller,
because the incident momentum is considered to be small and
the process will be near threshold. From this estimate, if we
take into account the broadening of the width, the mass shift
becomes slightly smaller, by about 0.5 MeV, according to the
results shown in Fig. 15. Therefore, this justifies the argument
in Ref. [21] that the influence of the decay widths is expected
to be small.

The change of spectral properties in nuclear matter can
be experimentally investigated by the Panda experiment
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at GSI-FAIR in which incident antiprotons collide with a
nuclear target. Here we present some predictions for cross
sections of charmonium production through p̄p annihilation
and subsequent decay into dileptons or radiative decay in
the experiment. We compute the cross sections with the
Breit-Wigner formula

σBW(s) = BinBout(2J + 1)

(2s1 + 1)(2s2 + 1)

4π

k2
cm

s�2
tot

(s − m2)2 + s�2
tot+med

,(31)

where s, k2
cm, and m are the Mandelstam variable, c.m. mo-

mentum, and mass of charmonium with spin J , respectively;
�tot is the total decay width of the charmonium and �tot+med =
�tot + �medium; Bin and Bout are the branching fraction of the
resonance into the entrance and exit channels, respectively; and
si is the spin of the incident particles, which are antiprotons
and protons in the present calculation. Since the target protons
are in the nucleus, we have to take the Fermi motion into
account for accurate estimation. We average the Breit-Wigner
cross section with respect to the target momentum as

σBW = 4

ρ0

∫ kF

0
k2 dkd�

(2π )3
σBW. (32)

In addition to J/ψ and ηc, we also calculate cross sections
for χc, which are expected to show larger mass shifts,
with δm 
 −40 to −60 MeV [51]. The parameters in the
calculations are summarized in Table III. �medium is treated as
a free parameter varied from 1 to 20 MeV.

Results of the cross sections as a function of incident
antiproton energy are shown in Figs. 16–20. We can clearly see
that sharp peaks of the resonances disappear. This is because
of the Fermi motion of the target protons in the nucleus.
For example, an incident energy to create J/ψ (3097) is
Elab = 4.17 GeV, but the fluctuation of the target momentum
makes it possible to create J/ψ with 3.17 � Elab � 5.51 GeV,
in which the minimum and the maximum Elab correspond to
the target momenta along the collision axis of p2z = −kF and
kF , respectively. This effect considerably broadens the cross
section. Consequently, one needs no fine tuning of incident
proton energy to produce charmonium. For J/ψ and ηc, mass
shifts are so small that the peak positions of incident energy
do not change. However, a mass shift of χc ∼ −60 MeV is
sufficiently large to show a clear shift of the peak in the
cross section. In these calculations, we treat �medium as a free
parameter. It is shown that this parameter affects only the
magnitude of the cross section, which is larger for smaller
change from the vacuum width. Hence, though we cannot
predict both the mass shift and the in-medium width, we can
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FIG. 16. (Color online) Cross section of J/ψ production in p̄-A
collisions. The upper panel shows smaller medium width (1- and
5-MeV) cases and the lower one shows larger (10- and 20-MeV)
cases with and without mass shift.

obtain information on both quantities from the experimentally
measured cross sections. We summarize the cross sections and
expected event rate at GSI-FAIR, the luminosity of which is
expected to be 2 × 1032 cm−2 s−1, in the last two column of
Table III. We can see that the expected event rates are large
enough for the mass shift of χc to be observed.

Finally, we address possible improvements of this work.
Since we restricted ourselves to a hot medium consisting of
gluons only in the first part of this paper, we should take the
quarks into account for a more realistic estimation.

To consider the quark effects, first we consider the quark
operators appearing on the OPE side. We can neglect the
light-quark contribution to the OPE, because the light-quark
operators appear in the OPE at order α2

s (q2): This is why
the light-quark condensate can be neglected in the sum rules
for a heavy-quark system. However, thermal heavy quarks
that directly couple to the heavy-quark current contribute
to the OPE at leading order. This is different from the
heavy-quark condensates that are perturbatively generated
from the gluon condensates and contribute to the OPE through
gluon condensates, whose Wilson coefficients are calculated
in the momentum representation. The direct thermal quark
contributions are called the scattering terms. However, similar
terms also appear on the phenomenological side, which also

TABLE III. Parameters and results in charmonium productions at GSI-FAIR. Cross sections and event per
day correspond to the case of maximum medium width, �med = 20 MeV.

Resonance m (MeV) δm (MeV) �tot Final state σBW at peak (pb) Events per day

J/ψ 3097 −7 93.4 keV e+ + e− 0.435 7.5
ηc 2980 −4 25.5 MeV e+ + e− 10.7 184
χc0 3415 −60 10.4 MeV J/ψ + γ 18.0 311
χc1 3511 −60 0.89 MeV J/ψ + γ 4.5 78
χc2 3556 −60 2.05 MeV J/ψ + γ 19.8 343
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FIG. 17. (Color online) Same as Fig. 16, but for ηc.

has a free charm quark mode that is not coupled with a light
quark in the form of a D meson above Tc, as been recently
studied in Ref. [52]. Therefore, the scattering term will cancel
out between the OPE side and the phenomenological side in
the deconfined medium.

Second, the gluon condensates themselves can have a
different temperature dependence in the presence of dynamical
quarks. As discussed before, the important input for the mass
and width change is the temperature dependence of gluon
condensates in Fig. 2; in particular the dominant contribution
comes from the temperature dependence of G0. For that
purpose, we note that the trace of the energy-momentum tensor
to leading order is given as

T µ
µ = −

(
11 − 2/3Nf

8

) 〈αs

π
Ga

µνG
aµν

〉
+

∑
q

mq〈q̄q〉. (33)
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FIG. 18. (Color online) Same as Fig. 16, but for χc0.
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FIG. 19. (Color online) Same as Fig. 16, but for χc1.

Therefore, we start from the lattice calculation of the trace of
the energy-momentum tensor for the full QCD with realistic
quark masses given in Ref. [53]. Then, we subtract the
fermionic part of the trace anomaly, which was also shown
in the literature, from the total. Next, we divide the result
for the relevant prefactor with Nf = 3, multiplying the gluon
condensate as given in Eq. (33). Since the critical temperature
Tc differs, we compared it as a function of T/Tc in which
Tc = 196 MeV for the full QCD case [53]. As can be seen in
Fig. 21, the magnitudes of the resulting change near the critical
temperature are remarkably similar for the full and pure gluon
QCD; although the slope at Tc is milder for full QCD as a
consequence of the rapid cross-over transition instead of the
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FIG. 20. (Color online) Same as Fig. 16, but for χc2.
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FIG. 21. (Color online) Comparison of the scalar gluon conden-
sate in pure gauge theory with the one of full QCD. Horizontal error
bars in the full QCD case are drawn by assuming the 2% uncertainty
in the conversion from the lattice units to physical temperature [53].

first-order phase transition. Since the change of the condensate
sets in at a lower T/Tc in the full QCD case, the mass and
width of charmonia might start varying at a lower temperature
in a realistic case than in pure glue theory. For the twist-2
condensates, the results will be less affected by taking into
account the fermionic part since the effect will be small in this
temperature region. Therefore we believe our main argument
and the quantitative result will not be altered even in a realistic
situation.

It is also important to study the change of χc at finite
temperature, which may influence the quantitative feature of
the sequential melting [54], since the non-negligible fraction
of J/ψ comes from the decay of ψ ′ and χc in relativistic
heavy-ion collisions. This can be done by calculating Wilson
coefficients for tensor operators for these channels. It should
also be noted that the continuum part of the spectral function
may play an important role. This will be possible by modeling
the medium with a gas of quasiparticles. One more thing to be
done is to extend the study to higher temperature. The failure
of T > 1.06Tc for J/ψ and T > 1.04Tc for ηc originates
from the instability of the moment ratio of the OPE side.
The twist-2 gluon condensates becomes larger as temperature
increases and then leads to the breakdown of the stability on
the OPE side, including up to dimension four (see Fig. 9)
and O(αs). In Fig. 7, we can also see that the expansion is
not good at the large n values that stabilize the moment ratio
at higher temperature. These facts suggest the necessity of
including higher dimensional operators, which is examined in
Ref. [55]. However, we do not know a simple way to extract the
temperature dependencies of the higher dimensional operators
from the lattice calculation, as was done in the present work
for dimension-four operators. The other way to extend this
study is to improve the phenomenological side by includ-
ing a temperature-dependent continuum contribution. The
decrease of the scalar gluon condensates above Tc indicates
that a perturbative contribution becomes more important at
higher temperature. If we can construct a more appropriate
phenomenological side reflecting the nature of the strongly
interacting matter, this will lead to n-independent results for
physical parameters until the charmonia really dissolve.

We also note that there are some opportunities to improve
the analyses for nuclear matter. The present analysis shows
that the mass shift of χc states are likely to be observed in
forthcoming experiments. However, the current estimate of
the mass shift is not a decisive one; we have to take the twist-2
contribution into account for a more accurate estimation.

In summary, we have given a comprehensive analysis of
medium-induced change of the spectral properties of J/ψ and
ηc in the hot gluonic medium and the nuclear medium by
making use of QCD sum rules. In the case of the gluonic
medium, our analysis shows that there must be a notable
change of mass or width, or both around Tc, caused by the
rapid change of the gluon condensates. Although the present
formalism is found to be applicable only up to T 
 1.06Tc,
the change of mass and width can maximally reach a few
hundred MeV. We have discussed its implication for the future
heavy-ion experiment at CERN-LHC. For the nuclear matter
case, we extend the past work to include small but finite width
and check the robustness by varying the scale parameter of
the theory. We also examined the possibility of detecting such
mass shifts in the future experiment at GSI-FAIR. Although
J/ψ and ηc do not show prominent signals, χc exhibits more
promising results. These analyses will provide the basis for
future improvements in studying the nature of the strongly
interacting matter deeply with charmonia.
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APPENDIX: WILSON COEFFICIENTS

Here we list explicit forms of the Wilson coefficients that
appear in Eq. (10) and are originally given in Refs. [19] and
[21]. In the following, ρ = ξ/(1 + ξ ) and F (a, b, c; x) is the
hypergeometric function 2F1(a, b, c; x).

For the pseudoscalar channel,

AP
n (ξ ) = 3

8π2

2n(n − 1)!

(2n + 1)!!
(4m2)−n(1 + ξ )−n

×F (n, 1/2, n + 3/2; ρ), (A1)

aP
n (ξ ) = (2n + 1)!!

3 · 2n−1n!

[
π − 1

2(n + 1)

(
1

2
π − 3

4π

)

×F (n, 1, n + 2; ρ)

]
1

F (n, 1/2, n + 3/2; ρ)

−
(

1

2
π − 3

4π

)
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+ 1

π

[
8

3
− 4

n

F (n, 3/2, n + 3/2; ρ)

F (n, 1/2, n + 3/2; ρ)

− 5

6

1

n + 3/2

F (n, 3/2, n + 5/2; ρ)

F (n, 1/2, n + 3/2; ρ)

]

− 2n
ln(2 + ξ )

π

(2 + ξ )

(1 + ξ )2

F (n + 1, 1/2, n + 3/2; ρ)

F (n, 1/2, n + 3/2; ρ)
,

(A2)

bP
n (ξ ) = −n(n + 1)(n + 2)(n + 3)

2n + 3
(1 + ξ )−1

×
[
F (n + 1,−3/2, n + 5/2; ρ)

F (n, 1/2, n + 3/2; ρ)

− 6

n + 3

F (n + 1,−1/2, n + 5/2; ρ)

F (n, 1/2, n + 3/2; ρ)

]
, (A3)

cP
n (ξ ) = bP

n (ξ ) − 4n(n + 1)

(1 + ξ )

F (n + 1,−1/2, n + 3/2; ρ)

F (n, 1/2, n + 3/2; ρ)
.

(A4)

Similarly, for the vector channel,

AV
n (ξ ) = 3

4π2

2n(n + 1)(n − 1)!

(2n + 3)!!

F (n, 1/2, n + 5/2; ρ)

[(4m2)(1 + ξ )]n
,

(A5)

aV
n (ξ ) = (2n + 1)!!

3 · 2n−1n!F (n, 1/2, n + 5/2; ρ)

(
2n + 3

2n + 2

)

×
{
π −

[
π

3
+ 1

2

(
π

2
− 3

4π

)]
F (n, 1, n + 2; ρ)

n + 1

+ F (n, 2, n + 3; ρ)

3(n + 1)(n + 2)

(
π

2
− 3

4π

)}
−

(
π

2
− 3

4π

)

− 2n
ln(2 + ξ )

π

(2 + ξ )

(1 + ξ )2

F (n + 1, 1/2, n + 7/2; ρ)

F (n, 1/2, n + 5/2; ρ)
,

(A6)

bV
n (ξ ) = −n(n + 1)(n + 2)(n + 3)

(2n + 5)(1 + ξ )2

× F (n + 2,−1/2, n + 7/2; ρ)

F (n, 1/2, n + 5/2; ρ)
, (A7)

cV
n (ξ ) = bV

n (ξ ) − 4n(n + 1)

3(2n + 5)(1 + ξ )2

× F (n + 2, 3/2, n + 7/2; ρ)

F (n, 1/2, n + 5/2; ρ)
. (A8)

In Eqs. (A1) and (A5), m is the running quark mass m =
mc[p2 = −(ξ + 1)m2

c], which is given by [56]

mc(ξ )

mc(ξ = 0)
= 1 − αs

π

[
2 + ξ

1 + ξ
ln(2 + ξ ) − 2 ln 2

]
. (A9)
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