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Causal viscous hydrodynamics in 2 + 1 dimensions for relativistic heavy-ion collisions
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We explore the effects of shear viscosity on the hydrodynamic evolution and final hadron spectra of
Cu + Cu collisions at ultrarelativistic collision energies, using the newly developed (2 + 1)-dimensional
viscous hydrodynamic code VISH2+1. Based on the causal Israel-Stewart formalism, this code describes the
transverse evolution of longitudinally boost-invariant systems without azimuthal symmetry around the beam
direction. Shear viscosity is shown to decelerate the longitudinal and accelerate the transverse hydrodynamic
expansion. For fixed initial conditions, this leads to a longer quark-gluon plasma (QGP) lifetime, larger radial
flow in the final state, and flatter transverse momentum spectra for the emitted hadrons compared to ideal fluid
dynamic simulations. We find that the elliptic flow coefficient v2 is particularly sensitive to shear viscosity:
even the lowest value allowed by the AdS/CFT conjecture η/s � 1/4π suppresses v2 enough to have significant
consequences for the phenomenology of heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC).
A comparison between our numerical results and earlier analytic estimates of viscous effects within a blast-wave
model parametrization of the expanding fireball at freeze-out reveals that the full dynamical theory leads to much
tighter constraints for the specific shear viscosity η/s, thereby supporting the notion that the quark-gluon plasma
created at RHIC exhibits almost “perfect fluidity.”
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I. INTRODUCTION

Hydrodynamics is an efficient tool for describing the
expansion of the fireballs generated in relativistic heavy-ion
collisions. As a macroscopic description that provides the four-
dimensional space-time evolution of the energy-momentum
tensor T µν(x), it is much less demanding than microscopic
descriptions based on kinetic theory that evolve the (on-shell)
distribution function f (x, p) in seven-dimensional phase
space.

Ideal fluid dynamics is even more efficient since it reduces
the number of independent fields needed to describe the
symmetric energy-momentum tensor from 10 to 5: the local
energy density e(x), pressure p(x), and the normalized flow
four-velocity uµ(x) (which has 3 independent components).
The equation of state (EOS) p(e) provides a further constraint
which closes the set of four equations ∂µT µν(x) = 0.

Ideal fluid dynamics is based on the strong assumption
that the fluid is in local thermal equilibrium and evolves
isentropically. While local momentum isotropy in the co-
moving frame is sufficient for a unique decomposition of the
energy-momentum tensor in terms of e, p, and uµ, it does not
in general guarantee a unique relationship p(e). Generically,
the equation of state p(e) (a key ingredient for closing the set of
hydrodynamic equations) becomes unique only after entropy
maximization, i.e. after a locally thermalized state, with
Maxwellian (or Bose-Einstein and Fermi-Dirac) momentum
distributions in the comoving frame, has been reached. For
this assumption to be valid, the microscopic collision time
scale must be much shorter than the macroscopic evolution
time scale. Since the fireballs created in relativistic heavy-ion
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collisions are small and expand very rapidly, applicability of
the hydrodynamic approach has long been doubted.

It came therefore as a surprise to many that the bulk
of the matter produced in Au + Au collisions at the BNL
Relativistic Heavy Ion Collider (RHIC) was found to behave
as an almost ideal fluid. Specifically, ideal fluid dynamic
models correctly reproduce the hadron transverse momentum
spectra in central and semiperipheral collisions, including
their anisotropy in noncentral collisions given by the elliptic
flow coefficient v2(pT ) and its dependence on the hadron rest
mass, for transverse momenta up to about 1.5–2 GeV/c [1],
which covers more than 99% of the emitted particles. This
observation has led to the conclusion that the quark-gluon
plasma (QGP) created in RHIC collisions thermalizes very fast
and must therefore be strongly (nonperturbatively) interacting
[2], giving rise to the notion that the QGP is a strongly coupled
plasma [3–5] that behaves as an almost perfect fluid.1

1In an attempt to soften this conclusion it has been noted that
the QGP is special in that for any gas of massless particles, the
trace of the energy momentum tensor always vanishes (at least at
the classical level) [6]. Local momentum isotropy is then indeed
sufficient to ensure a unique relationship e = 3p between energy
density and pressure (EOS), irrespective of the particular form of
the local (isotropic) momentum distribution. It has been suggested
that this simple fact may extend the validity of ideal fluid dynamical
descriptions to earlier times [6], after local momentum isotropy has
already been reached but before complete thermalization, charac-
terized by local entropy maximization, has been achieved [7–11].
This argument ignores, however, the observation from lattice QCD
that quantum effects significantly violate the identity e = 3p even
in thermal equilibrium for temperatures up to about 2Tc (i.e., in the
temperature regime probed by heavy-ion collisions at RHIC), and the
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At RHIC energies, the almost perfect ideal fluid dynamical
description of experimental data gradually breaks down in
more peripheral collisions, at high transverse momenta, and
at forward and backward rapidities; at lower energies, it lacks
quantitative accuracy even in the most central collisions at
midrapidity [12]. Most of these deviations from ideal fluid
dynamical predictions can be understood as the result of
strong viscous effects during the late hadronic stage of the
fireball expansion [13] after the QGP has hadronized. As the
initial energy density of the fireball decreases, the dissipative
dynamics of the hadronic stage takes on increasing importance,
concealing the perfect fluidity of any quark-gluon plasma
possibly created at the beginning of the collision. However,
as also pointed out in [13], persisting uncertainties about the
initial conditions in heavy-ion collisions leave room for a small
amount of viscosity even during the early QGP stage. Further-
more, the observed deviations of the elliptic flow parameter
v2(pT ) at large pT even in the largest collision systems at the
highest available collision energies are consistent with viscous
effects during the early epoch of the fireball [14,15]. During
this epoch, the matter is so dense and strongly interacting that
a microscopic description based on classical kinetic theory
of on-shell partons [14] may be questionable. We therefore
develop here a dissipative generalization of the macroscopic
hydrodynamic approach, viscous relativistic fluid dynamics.

The need for such a framework is further highlighted by
the recent insight that, due to quantum mechanical uncertainty
[16], no classical fluid can have exactly vanishing viscosity
(as is assumed in the ideal hydrodynamic approach). Even in
the limit of infinitely strong coupling, the QGP must hence
maintain a nonzero viscosity. Recent calculations of the shear
viscosity to entropy ratio (the “specific shear viscosity” η/s) in
a variety of conformal gauge field theories which share some
properties with QCD, using the AdS/CFT correspondence,
suggest a lower limit of η

s
= 1

4π
[17–19]. This is much smaller

than the value obtained from weak coupling calculations in
QCD [20] (although close to a recent first numerical result
from lattice QCD [21]) and more than an order of magnitude
below the lowest measured values in standard fluids [18]. Some
alternative ideas of how small effective viscosities could be
generated by anomalous effects (chaoticity) in anisotropically
expanding plasmas [22] or by negative eddy viscosity in two-
dimensional turbulent flows [23] have also been proposed.

Initial attempts to formulate relativistic dissipative fluid
dynamics as a relativistic generalization of the Navier-Stokes
equation [24,25] ran into difficulties because the resulting
equations allowed for acausal signal propagation, and their
solutions developed instabilities. These difficulties are avoided
in the “second-order formalism” developed 30 years ago by
Israel and Stewart [26] which expands the entropy current
to second order in the dissipative flows and replaces the
instantaneous identification of the dissipative flows with their

novel fact, to be exposed later in this paper, that viscous effects caused
by rapid longitudinal expansion at early times act against rapid local
isotropization of the momentum distribution. Ideal hydrodynamics
becomes valid only after these viscous effects have died away, and
this happens sufficiently quickly only in strongly coupled plasmas.

driving forces multiplied by some transport coefficient (as
is done in Navier-Stokes theory) by a kinetic equation that
evolves the dissipative flows rapidly but smoothly toward their
Navier-Stokes limit. This procedure eliminates causality and
stability problems at the expense of numerical complexity:
the dissipative flows become independent dynamical variables
whose kinetic equations of motion are coupled and must
be solved simultaneously with the hydrodynamic evolution
equations. This leads effectively to more than a doubling of
the number of coupled partial differential equations to be
solved [27].

Only recently, computers have become powerful enough to
allow efficient solution of the Israel-Stewart equations. The
last 5 years have seen the development of numerical codes that
solve these equations (or slight variations thereof [26–30])
numerically, for systems with boost-invariant longitudinal
expansion and transverse expansion in zero [28,30], one
[29,31–33], and two dimensions [34–37] (see also Ref. [38] for
a numerical study of the relativistic Navier-Stokes equation in
2 + 1 dimensions). The process of verification and validation
of these numerical codes is still ongoing. While different initial
conditions and evolution parameters used by the different
groups of authors render a direct comparison of their results
difficult, it seems unlikely that accounting for these differences
will bring all the presently available numerical results in line
with each other.

We here present results obtained with an independently
developed (2 + 1)-dimensional causal viscous hydrodynamic
code, VISH2+1.2 While a short account of some of our main
findings has already been published [36], we here report
many more details, including extensive tests of the numerical
accuracy of the code. We checked that (i) in the limit of
vanishing viscosity, it accurately reproduces results obtained
with the (2 + 1)-dimensional ideal fluid code AZHYDRO [39];
(ii) for homogeneous transverse density distributions (i.e. in
the absence of transverse density gradients and transverse
flow) and vanishing relaxation time, it accurately reproduces
the known analytic solution of the relativistic Navier-Stokes
equation for boost-invariant one-dimensional longitudinal
expansion [40]; (iii) for very short kinetic relaxation times,
our Israel-Stewart code accurately reproduces results from
a separately coded (2 + 1)-dimensional relativistic Navier-
Stokes code, under restrictive conditions where the latter
produces numerically stable solutions; and (iv) for simple
analytically parametrized anisotropic velocity profiles, the
numerical code correctly computes the velocity shear tensor
that drives the viscous hydrodynamic effects.

In its present early state, and given the existing open
questions about the mutual compatibility of various numerical
results reported in the recent literature, we believe that it is
premature to attempt a detailed comparison of VISH2+1 with
experimental data, in order to empirically constrain the specific
shear viscosity of the QGP. Instead, we concentrate in this
paper on describing and trying to understand the robustness of
a variety of fluid dynamical effects generated by shear viscosity

2The acronym stands for “viscous Israel-Stewart hydrodynamics in
2 + 1 space-time dimensions.”
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in a relativistic QGP fluid. We report here only results for
Cu + Cu collisions, with initial entropy densities exceeding
significantly those that can be reached in such collisions at
RHIC. The reasons for doing so are purely technical. Initially
our numerical grid was not large enough to accommodate
Au + Au collision fireballs with sufficient resolution, and
although this restriction has been lifted in the meantime,
a large body of instructive numerical results had already
been accumulated which would have been quite expensive
to recreate for the Au + Au system. The unrealistic choice
of initial conditions was driven by the wish to allow for a
sufficiently long lifetime of the QGP phase even in peripheral
Cu + Cu collisions such that shear viscous effects on elliptic
flow would be still dominated by the quark-gluon plasma stage.
The main goals of the present paper are to (i) quantitatively
establish shear viscous effects on the evolution of the energy
and entropy density, flow profile, source eccentricity, and total
momentum anisotropy, on the final hadron spectra, and on the
elliptic flow in central and noncentral heavy-ion collisions,
under the influence of different equations of state; and
(ii) explore in detail and explain physically how these effects
arise, trying to extract general rules and generic features which
should also apply for other collision systems and collision
energies. We note that recent calculations for Au + Au
collisions [41] have shown that viscous effects are somewhat
bigger in the smaller Cu + Cu studied here than in the larger
Au + Au system for which the largest body of experimental
data exists. The reader must therefore apply caution when
trying to compare (in his or her mind’s eye) our results with
the well-known RHIC Au + Au data.

The paper is organized as follows. Section II gives a brief
review of the Israel-Stewart formalism for causal relativistic
hydrodynamics for dissipative fluids, lists the specific form
of these equations for the (2 + 1)-dimensional evolution of
noncentral collision fireballs with boost-invariant longitudinal
expansion which are solved by VISH2+1, and details the initial
conditions and the equation of state (EOS) employed in our
calculations. In Sec. III we report results for central (b = 0)
Cu + Cu collisions. Section IV gives results for noncentral
collisions, including a detailed analysis of the driving forces
behind the strong shear viscous effects on elliptic flow
observed by us. In Sec. V we explore the influence of different
initializations and different relaxation times for the viscous
shear pressure tensor on the hydrodynamic evolution and
establish the limits of applicability for viscous hydrodynamics
in the calculation of hadron spectra. Some technical details
and the numerical tests performed to verify the accuracy of
the computer code are discussed in Appendices A–D, and
in Appendix E we compare our hydrodynamic results with
analytical estimates of shear viscous effects by Teaney [15]
that were based on Navier-Stokes theory and a blast-wave
model parametrization of the fireball.

II. ISRAEL-STEWART THEORY OF CAUSAL VISCOUS
HYDRODYNAMICS

In this section, we review briefly the second-order Israel-
Stewart formalism for viscous relativistic hydrodynamics and

the specific set of equations solved by VISH2+1 for anisotropic
transverse expansion in longitudinally boost-invariant fire-
balls. Details of the derivation can be found in Ref. [27], with
a small correction pointed out by Baier et al. in Ref. [30]. For
simplicity, and in view of the intended application to RHIC
collisions whose reaction fireballs have almost vanishing net
baryon density, the discussion will be restricted to viscous
effects, neglecting heat conduction and working in the Landau
velocity frame [25].

A. Basics of Israel-Stewart theory

The general hydrodynamic equations arise from the local
conservation of energy and momentum,

∂µT µν(x) = 0, (1)

where the energy-momentum tensor is decomposed in the form

T µν = euµuν − (p + �)�µν + πµν. (2)

Here e and p are the local energy density and thermal
equilibrium pressure, and uµ is the (timelike and normalized,
uµuµ = 1) four-velocity of the energy flow. � is the bulk
viscous pressure; it combines with the thermal pressure p

to the total bulk pressure. In Eq. (2) it is multiplied by the
projector �µν = gµν − uµuν transverse to the flow velocity;
i.e., in the local fluid rest frame, the bulk pressure is diagonal
and purely spacelike, (p + �)δij . πµν is the traceless shear
viscous pressure tensor, also transverse to the four-velocity
(πµνuν = 0) and thus purely spatial in the local fluid rest
frame.

For ideal fluids, � and πµν vanish, and the only dynamical
fields are e(x), p(x), and uµ(x), with e and p related by
the equation of state p(e). In dissipative fluids without heat
conduction, � and the five independent components of πµν

enter as additional dynamical variables which require their own
evolution equations. In relativistic Navier-Stokes theory, these
evolution equations degenerate to instantaneous constituent
equations,

� = −ζ ∇·u, πµν = 2η ∇〈µ uν〉, (3)

which express the dissipative flows � and πµν directly
in terms of their driving forces, the local expansion rate
θ ≡ ∇·u and velocity shear tensor σµν ≡ ∇〈µuν〉, multiplied by
phenomenological transport coefficients ζ, η � 0 (the bulk and
shear viscosity, respectively). Here ∇ν ≡ �µν∂ν is the gradient
in the local fluid rest frame, and ∇〈µuν〉 ≡ 1

2 (∇µuν + ∇νuµ) −
1
3 (∇·u)�µν , showing that, like πµν , the velocity shear tensor is
traceless and transverse to uµ. The instantaneous identification
(3) leads to causality problems through instantaneous signal
propagation, so that this straightforward relativistic general-
ization of the Navier-Stokes formalism turns out not to be a
viable relativistic theory.

The Israel-Stewart approach [26] avoids these problems by
replacing the instantaneous identifications (3) with the kinetic
evolution equations

D� = − 1

τ�

(
� + ζ∇·u)

, (4)
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Dπµν = − 1

τπ

(πµν − 2η∇〈µuν〉) − (uµπνα + uνπµα)Duα,

(5)

where D = uµ∂µ is the time derivative in the local fluid
rest frame, and the last term in the bottom equation ensures
that the kinetic evolution preserves the tracelessness and
transversality of πµν .3τ� and τπ are relaxation times and
related to the second-order expansion coefficients in the
entropy current [26,28]. The fact that in the Israel-Stewart
approach the dissipative flows � and πµν no longer respond
to the corresponding thermodynamic forces ∇ · u and ∇〈µ.u.ν〉
instantaneously, but on finite albeit short kinetic time scales,
restores causality of the theory [26].

We should caution that the form of the kinetic evolution
equations (4) and (5) is not generally agreed upon because of
unresolved ambiguities in their derivation [26–31,34–37]. We
will here use the form given in Eqs. (4) and (5) and comment
on differences with other work when we discuss our results.

In the following calculations, we further simplify the
problem by neglecting bulk viscosity. Bulk viscosity vanishes
classically for a system of massless partons, and quantum
corrections arising from the trace anomaly of the energy-
momentum tensor are expected to be small, rendering bulk
viscous effects much less important than those from shear
viscosity. This expectation has been confirmed by recent lattice
calculations [21,42] which yield very small bulk viscosity
in the QGP phase. The same calculations show, however, a
rapid rise of the bulk viscosity near the quark-hadron phase
transition [42], consistent with earlier predictions [43,44]. In
the hadronic phase, it is again expected to be small [43]. We
leave the discussion of possible dynamical effects of bulk
viscosity near the quark-hadron phase transition for a future
study. Bulk viscous pressure effects can be easily restored
by substituting p → p + � everywhere below and adding the
kinetic evolution equation (4) for �.

3The last term in Eq. (5) does not contribute to entropy production
and thus was missed in the derivation given in Ref. [27], which
was based on an expansion of the entropy production rate to second
order in the dissipative flows. Its importance for guaranteeing the
preservation of tracelessness and transversality of πµν under kinetic
evolution was pointed out in Ref. [30]. It happens to vanish identically
for the case of azimuthally symmetric (1 + 1)-dimensional transverse
expansion if one uses as independent dynamical fields those selected
in Ref. [27] (namely, πηη and πφφ); hence these (1 + 1)-d equations
preserve tracelessness and transversality automatically. The same
is not true for the set of (1 + 1)-d evolution equations studied in
Ref. [32], which instead of πηη evolves πrr , and for azimuthally
asymmetric transverse expansion in 2 + 1 dimensions as discussed
in the present paper, the last term in Eq. (5) must also be kept
explicitly. (Note that this term was not included in Ref. [34], with
unknown consequences.) We found that dropping the last term in
Eq. (5) leads to problems with the velocity finding algorithm (see
Appendix B), causing the code to crash after some time: as the
shear pressure tensor evolves away from transversality to uµ, the
identity e = T ττ − vxT

τx − vyT
τy [see Eq. (B1)] gets broken, leading

eventually to unphysical solutions for e and [through Eqs. (B2) and
(B3)] for the flow velocity.

B. Viscous hydrodynamics in 2 + 1 dimensions

In the present paper, we eliminate one of the three spatial
dimensions by restricting our discussion to longitudinally
boost-invariant systems. These are conveniently described
in curvilinear xm = (τ, x, y, η) coordinates, where τ =√

t2 − z2 is the longitudinal proper time, η = 1
2 ln( t+z

t−z
) is

the space-time rapidity, and (x, y) are the usual Cartesian
coordinates in the plane transverse to the beam direction z.
In this coordinate system, the transport equations for the full
energy momentum tensor T µν are written as [27]

∂τ T̃
ττ + ∂x(vxT̃

ττ ) + ∂y(vyT̃
ττ ) = Sττ ,

∂τ T̃
τx + ∂x(vxT̃

τx) + ∂y(vyT̃
τx) = Sτx, (6)

∂τ T̃
τy + ∂x(vxT̃

τy) + ∂y(vyT̃
τy) = Sτy .

Here T̃ mn ≡ τ (T mn
0 + πmn), T mn

0 = eumun − p�mn being
the ideal fluid contribution, um = (uτ , ux, uy, 0) = γ⊥(1, vx,

vy, 0) is the flow profile [with γ⊥ = (
√

1 − v2
x − v2

y)−1], and

gmn = diag(1,−1,−1,−1/τ 2) is the metric tensor for our
coordinate system. The source terms Smn on the right-hand
side of Eq. (6) are given explicitly as

Sττ = −p − τ 2πηη − τ∂x(pvx + πxτ − vxπ
ττ )

− τ∂y(pvy + πyτ − vyπ
ττ )

≈ −p − τ 2πηη − τ∂x(pvx) − τ∂y(pvy), (7)

Sτx = −τ∂x(p + πxx − vxπ
τx) − τ∂y(πxy − vyπ

τx)

≈ −τ∂x(p + πxx), (8)

Sτy = −τ∂x(πxy − vxπ
τy) − τ∂y(p + πyy − vyπ

τy)

≈ −τ∂y(p + πyy). (9)

We will see later (see the right panel of Fig. 13 below) that
the indicated approximations of these source terms isolate the
dominant drivers of the evolution and provide a sufficiently
accurate quantitative understanding of its dynamics.

The transport equations for the shear viscous pressure
tensor are

(∂τ + vx∂x + vy∂y)π̃mn

= − 1

γ⊥τπ

(π̃mn − 2ησ̃mn) − (
umπ̃n

j + unπ̃m
j

)
× (∂τ + vx∂x + vy∂y)uj . (10)

The expressions for σ̃ mn and π̃mn are found in Eqs. (A1) and
(A2); they differ from πmn in Eqs. (7)–(9) and σmn given
in Ref. [27] by a Jacobian τ 2 factor in the (ηη) component:
π̃ ηη = τ 2πηη, σ̃ ηη = τ 2σηη. This factor arises from the
curved metric where the local time derivative D = umdm must
be evaluated using covariant derivatives dm.4 Since uη = 0,
no such extra Jacobian terms arise in the derivative Duj in the
second line of Eq. (10).

The algorithm requires the propagation of πττ , πτx, πτy ,
and πηη with Eq. (5), even though one of the first three

4This subtlety was overlooked in Eq. (5.6) of Ref. [27]; cor-
respondingly, the left-hand sides of Eqs. (5.16a) and (5.21a) in
Ref. [27] were written incorrectly. They should be corrected to read
1
τ2 (∂τ + vx∂x + vy∂y)(τ 2πηη) = · · ·.
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is redundant (see Ref. [36] and Appendix B). In addition,
we have chosen to evolve several more, formally redundant
components of πmn using Eq. (5), and to use them for testing
the numerical accuracy of the code, by checking that the
transversality conditions umπmn = 0 and the tracelessness
πm

m = 0 are preserved over time. We find them to be satisfied
with an accuracy of better than 1–2% everywhere except for
the fireball edge where the πmn are very small and the error on
the transversality and tracelessness constraints can become as
large as 5%.

C. Initial conditions

For the ideal part T ττ
0 , T τx

0 , T τx
0 of the energy momentum

tensor, we use the same initialization scheme as for ideal
hydrodynamics. For simplicity and ease of comparison with
previous ideal fluid dynamical studies, we here use a simple
Glauber model initialization with zero initial transverse flow
velocity where the initial energy density in the transverse plane
is taken proportional to the wounded nucleon density [45]:

e0(x, y; b)

= KnWN(x, y; b)

= K

TA

(
x + b

2
, y

) 1 −
(

1 − σTB

(
x − b

2 , y
)

B

)B


+ TB

(
x − b

2
, y

) 1 −
(

1 − σTA

(
x + b

2 , y
)

A

)A
 .

(11)

Here σ is the total inelastic nucleon-nucleon cross section,
for which we take σ = 40 mb. TA,B is the nuclear thick-
ness function of the incoming nucleus A or B, TA(x, y) =∫ ∞
−∞ dzρA(x, y, z); ρA(x, y, z) is the nuclear density given by

a Woods-Saxon profile: ρA(r) = ρ0

1+exp[(r−RA)/ξ ] . For Cu +
Cu collisions, we take RCu = 4.2 fm, ξ = 0.596 fm, and
ρ0 = 0.17 fm−3. The proportionality constant K does not
depend on collision centrality but on collision energy; it fixes
the overall scale of the initial energy density and, via the
associated entropy, the final hadron multiplicity to which it
must be fitted as a function of collision energy. We here fix it
to give e0 ≡ e(0, 0; b = 0) = 30 GeV/fm3 for the peak energy
density in central Cu + Cu collisions, at an initial time τ0

for the hydrodynamic evolution that we set as τ0 = 0.6 fm/c.
As already mentioned in the Introduction, this exceeds the
value reached in Cu + Cu collisions at RHIC (it would be
appropriate for central Au + Au collisions at

√
s = 200A

GeV [1]). It ensures, however, a sufficiently long lifetime
of the QGP phase in Cu + Cu collisions such that most of
the final momentum anisotropy is generated during the QGP
stage, thereby permitting a meaningful investigation of QGP
viscosity on the elliptic flow generated in the collision.

Without a microscopic dynamical theory for the early
preequilibrium stage, initializing the viscous pressure tensor
πmn requires some guess work. The effect of different choices
for the initial πmn on viscous entropy production during boost-
invariant viscous hydrodynamic evolution without transverse

expansion was recently studied in Ref. [46]. We will here
explore two options: (i) we set πmn

0 = 0 initially [35]; or
(ii) we assume that at time τ0 one has πmn

0 = 2ησmn
0 where

the shear tensor σmn
0 is calculated from the initial velocity

profile um = (1, 0, 0, 0) [32,34,37,38]. The second option
is the default choice for most of the results shown in this
paper. It gives τ 2π

ηη

0 = −2πxx
0 = −2π

yy

0 = − 4η

3τ0
, i.e., a

negative contribution to the longitudinal pressure and a positive
contribution to the transverse pressure.

We here present results for only one value of the spe-
cific shear viscosity, η

s
= 1

4π

 0.08, corresponding to its

conjectured lower limit [17]. The kinetic relaxation time τπ

will be taken as τπ = 3η

sT
except were otherwise mentioned.

This value is half the one estimated from classical kinetic
theory for a Boltzmann gas of noninteracting massless partons
[26,30]—we did not use the twice larger classical value
because it led to uncomfortably large viscous pressure tensor
components πmn at early times, caused by large excursions
from the Navier-Stokes limit. To study the sensitivity to
different relaxation times and the approach to Navier-Stokes
theory, we also performed a few calculations with τπ = 1.5η

sT
,

which are presented in Sec. V B.

D. EOS

Through its dependence on the equation of state (EOS),
hydrodynamic flow constitutes an important probe into the
existence and properties of the quark-hadron phase transition
which softens the EOS near Tc. To isolate effects induced by
this phase transition from generic features of viscous fluid
dynamics, we have performed calculations with two different
equations of state, EOS I and SM-EOS Q. They are described
in this subsection.

EOS I models a noninteracting gas of massless quarks
and gluons, with p = 1

3e. It has no phase transition. Where
needed, the temperature is extracted from the energy density
via the relation e = (16 + 21

2 Nf )π2

30
T 4

(h̄c)3 , corresponding to
a chemically equilibrated QGP with Nf = 2.5 effective
massless quark flavors.

SM-EOS Q is a smoothed version of EOS Q [45] which
connects a noninteracting QGP through a first-order phase
transition to a chemically equilibrated hadron resonance gas.
In the QGP phase, it is defined by the relation p = 1

3e − 4
3B

(i.e., c2
s = ∂p

∂e
= 1

3 ). The vacuum energy (bag constant)
B1/4 = 230 MeV is a parameter that is adjusted to yield a
critical temperature Tc = 164 MeV. The hadron resonance
gas below Tc can be approximately characterized by the
relation p = 0.15 e (i.e., c2

s = 0.15) [45]. The two sides are
matched through a Maxwell construction, yielding a relatively
large latent heat �elat = 1.15 GeV/fm3. For energy densities
between eH = 0.45 GeV/fm3 and eQ = 1.6 GeV/fm3, one
has a mixed phase with constant pressure (i.e., c2

s = 0). The
discontinuous jumps of c2

s from a value of 1/3 to 0 at eQ and
back from 0 to 0.15 at eH generate propagating numerical
errors in VISH2+1 which grow with time and cause problems.
We avoid these by smoothing the function c2

s (e) with a Fermi
distribution of width δe = 0.1 GeV/fm3 centered at e = eQ

and another one of width δe = 0.02 GeV/fm3 centered at
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FIG. 1. (Color online) Equations of state EOS Q and SM-EOS Q
(modified EOS Q).

e = eH . Both the original EOS Q and our smoothed version
SM-EOS Q are shown in Fig. 1. A comparison of simulations
using ideal hydrodynamics with EOS Q and SM-EOS Q is
given in Appendix D 1. It gives an idea of the magnitude of
smoothing effects on the ideal fluid evolution of elliptic flow.

Another similarly smoothed EOS that matches a hadron
resonance gas below Tc with lattice QCD data above Tc has
also been constructed. Results using this lattice-based EOS
will be reported elsewhere.

E. Freeze-out procedure: Particle spectra and v2

Final particle spectra are computed from the hydrodynamic
output via a modified Cooper-Frye procedure [47]. We here
compute spectra only for directly emitted particles and do not
include feeddown from resonance decay after freeze-out. We
first determine the freeze-out surface �(x) by postulating (as
commonly done in hydrodynamic studies) that freeze-out from
a thermalized fluid to free-streaming, noninteracting particles
happens suddenly when the temperature drops below a critical
value. As in the ideal fluid case with EOS Q [45] we choose
Tdec = 130 MeV. The particle spectrum is then computed as
an integral over this surface, that is,

E
d3Ni

d3p
= gi

(2π )3

∫
�

p · d3σ (x)fi(x, p)

= gi

(2π )3

∫
�

p · d3σ (x)[feq,i(x, p) + δfi(x, p)],

(12)

where gi is the degeneracy factor for particle species
i, d3σµ(x) is the outward-pointing surface normal vector on
the decoupling surface �(x) at point x,

p · d3σ (x) = [mT cosh(y − η) − p⊥ · ∇⊥τf (r)]

× τf (r)r drdφdη (13)

[with r = (x, y) = (r cos φ, r sin φ) denoting the transverse
position vector], and fi(x, p) is the local distribution function
for particle species i, computed from hydrodynamic output.

Equation (12) generalizes the usual Cooper-Frye prescription
for ideal fluid dynamics [47] by accounting for the fact that in
a viscous fluid the local distribution function is never exactly
in local equilibrium, but deviates from local equilibrium
form by small terms proportional to the nonequilibrium
viscous flows [15,30]. Both contributions can be extracted
from hydrodynamic output along the freeze-out surface. The
equilibrium contribution is

feq,i(p, x) = feq,i

(
p · u(x)

T (x)

)
= 1

ep·u(x)/T (x) ± 1
, (14)

where the exponent is computed from the temperature T (x)
and hydrodynamic flow velocity uµ = γ⊥(cosh η, v⊥ cos φv,

v⊥ sin φv, sinh η) along the surface �(x):

p · u(x) = γ⊥[mT cosh(y − η) − pT v⊥ cos(φp − φv)]. (15)

Here mT =√
p2

T +m2
i is the particle’s transverse mass. The

viscous deviation from local equilibrium is given by [15,30]

δfi(x, p) = feq,i(p, x)(1∓feq,i(p, x))
pµpνπµν(x)

2T 2(x) (e(x) + p(x))

≈ feq,i · 1

2

pµpν

T 2

πµν

e + p
. (16)

The approximation in the second line is not used in our
numerical results, but it holds (within the line thickness in
all of our corresponding plots) since (1∓feq) deviates from
unity only when p � T where the last factor is small. With it,
the spectrum (12) takes the instructive form

E
d3Ni

d3p
= gi

(2π )3

∫
�

p · d3σ (x)feq,i(x, p)

×
(

1 + 1

2

pµpν

T 2

πµν

e + p

)
. (17)

The viscous correction is seen to be proportional to πµν(x) on
the freeze-out surface (normalized by the equilibrium enthalpy
e + p) and to increase quadratically with the particle’s mo-
mentum (normalized by the temperature T ). At large pT , the
viscous correction can exceed the equilibrium contribution,
indicating a breakdown of viscous hydrodynamics. In that
domain, particle spectra cannot be reliably computed with
viscous fluid dynamics. The limit of applicability depends
on the actual value of πµν/(e + p) and thus on the specific
dynamical conditions encountered in the heavy-ion collision.

The viscous correction to the spectrum in Eq. (17) reads
explicitly as

pµpνπ
µν = m2

T (cosh2(y − η)πττ + sinh2(y − η)τ 2πηη)

− 2mT cosh(y − η)(pxπ
τx + pyπ

τy)

+ (
p2

xπ
xx + 2pxpyπ

xy + p2
yπ

yy
)
. (18)

We can use the expressions given in Appendix 2 of Ref. [27] in
particular, Eqs. (A22) in that paper] to reexpress this in terms
of the three independent components of πmn for which we
choose

π̃ ηη = τ 2πηη, � = πxx + πyy, � = πxx − πyy. (19)

This choice is motivated by our numerical finding (see Fig. 2
in Ref. [36] and Sec. IV C) that π̃ ηη, πxx, and πyy are about an
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order of magnitude larger than all other components of πmn,
and that in the azimuthally symmetric limit of central (b = 0)
heavy-ion collisions, the azimuthal average of � vanishes [see
Eq. (C2)]: 〈�〉φ = 0. We find

pµpνπ
µν

= π̃ ηη

[
m2

T (2 cosh2(y − η) − 1)

− 2
pT

v⊥
mT cosh(y − η)

sin(φp + φv)

sin(2φv)
+ p2

T

v2
⊥

sin(2φp)

sin(2φv)

]
+�

[
m2

T cosh2(y − η) − 2
pT

v⊥
mT cosh(y − η)

×
(

sin(φp + φv)

sin(2φv)
− v2

⊥
2

sin(φp − φv)

tan(2φv)

)
+ p2

T

2
+ p2

T

v2
⊥

(
1 − v2

⊥
2

)
sin(2φp)

sin(2φv)

]
+�

[
pT mT cosh(y − η)v⊥

sin(φp − φv)

sin(2φv)

− p2
T

2

sin(2(φp − φv))

sin(2φv)

]
. (20)

Because of longitudinal boost invariance, the integration
over space-time rapidity η in Eq. (12) can be done analytically,
resulting in a series of contributions involving modified Bessel
functions [33,48]. VISH2+1 does not exploit this possibility and
instead performs this and all other integrations for the spectra
numerically.

Once the spectrum (12) has been computed, a Fourier
decomposition with respect to the azimuthal angle φp yields
the anisotropic flow coefficients. For collisions between equal
spherical nuclei followed by longitudinally boost-invariant
expansion of the collision fireball, only even-numbered co-
efficients contribute, the “elliptic flow” v2 being the largest

and most important one:

E
d3Ni

d3p
(b) = dNi

dypT dpT dφp

(b) = 1

2π

dNi

dypT dpT

× [1 + 2v2(pT ; b) cos(2φp) + · · ·]. (21)

In practice, it is evaluated as the cos(2φp) moment of the final
particle spectrum,

v2(pT ) = 〈cos(2φp)〉 ≡
∫

dφp cos(2φp) dN
dy pT dpT dφp∫

dφp
dN

dy pT dpT dφp

, (22)

where, according to Eq. (12), the particle spectrum is a sum of
a local equilibrium and a nonequilibrium contribution (to be
indicated symbolically as N = Neq + δN ).

III. CENTRAL COLLISIONS

A. Hydrodynamic evolution

Even without transverse flow initially, the boost-invariant
longitudinal expansion leads to a nonvanishing initial stress
tensor σmn which generates nonzero target values for three
components of the shear viscous pressure tensor: τ 2πηη =
−4η

3τ0
, πxx = πyy = 2η

3τ0
. Inspection of the source terms in

Eqs. (7)–(9) then reveals that the initially negative τ 2πηη

reduces the longitudinal pressure, thus reducing the rate of
cooling due to work done by the latter, while the initially
positive values of πxx and πyy add to the transverse pressure
and accelerate the development of transverse flow in x and
y directions. As the fireball evolves, the stress tensor σmn

receives additional contributions involving the transverse flow
velocity and its derivatives [see Eq. (A2)] which render an
analytic discussion of its effects on the shear viscous pressure
impractical.

Figure 2 shows what one gets numerically. Plotted are the
source terms (7) and (8), averaged over the transverse plane
with the energy density as weight function, as a function of
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FIG. 2. (Color online) Time evolution of the hydrodynamic source terms in Eqs. (7)–(9), averaged over the transverse plane, for central
Cu + Cu collisions, calculated with EOS I and SM-EOS Q. The small insets blow up the vertical scale to show more detail. The dashed blue
lines are for ideal hydrodynamics with e0 = 30 GeV/fm3 and τ0 = 0.6 fm/c. Solid red lines show results from viscous hydrodynamics with
identical initial conditions and η

s
= 1

4π
≈ 0.08, τπ = 3η

sT
≈ 0.24

(
200 MeV

T

)
fm/c. The positive source terms drive the transverse expansion, while

the negative ones affect the longitudinal expansion.
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FIG. 3. (Color online) Time evolution of the local temperature in central Cu + Cu collisions, calculated with EOS I and SM-EOS Q, for
the center of the fireball (r = 0) and a point near the edge (r = 9 fm). Same parameters as in Fig. 2.

time, for the evolution of central Cu + Cu collisions with
two different equations of state, EOS I and SM-EOS Q.
(In central collisions 〈|Sτx |〉 = 〈|Sτy |〉.) One sees that the
initially strong viscous reduction of the (negative) source term
Sττ , which controls the cooling by longitudinal expansion,
quickly disappears. This is due to a combination of effects:
while the magnitude of τ 2πηη decreases with time, its negative
effects are further compensated for by a growing positive
contribution τ (∂x(pvx) + ∂y(pvy)) arising from the increasing
transverse flow gradients. In contrast, the viscous increase of
the (positive) transverse source term Sτx persists much longer,
until about 5 fm/c. After that time, however, the viscous
correction switches sign (clearly visible in the upper inset in
the right panel of Fig. 2) and turns negative, thus reducing the
transverse acceleration at late times relative to the ideal fluid
case. We can summarize these findings by stating that shear
viscosity reduces longitudinal cooling mostly at early times
while causing initially increased but later reduced acceleration
in the transverse direction. Because of the general smallness
of the viscous pressure tensor components at late times, the
last-mentioned effect (reduced acceleration) is not very strong.

The phase transition in SM-EOS Q is seen to cause an
interesting nonmonotonic behavior of the time evolution of

the source terms (right panel in Fig. 2), leading to a transient
increase of the viscous effects on the longitudinal source term
while the system passes through the mixed phase.

The viscous slowing of the cooling process at early times
and the increased rate of cooling at later times due to
accelerated transverse expansion are shown in Fig. 3. The
upper set of curves shows what happens in the center of
the fireball. For comparison we also show curves for boost-
invariant longitudinal Bjorken expansion without transverse
flow, labeled “(0 + 1)-d hydro”. These are obtained with flat
initial density profiles for the same value e0 (no transverse
gradients). The dotted green line in the left panel shows the
well-known T ∼ τ−1/3 behavior of the Bjorken solution of
ideal fluid dynamics [49], modified in the right panel by the
quark-hadron phase transition where the temperature stays
constant in the mixed phase. The dash-dotted purple line shows
the slower cooling in the viscous (0 + 1)-dimensional case
[16], due to reduced work done by the longitudinal pressure.
The expansion is still boost-invariant á la Bjorken [49] (as
it is for all other cases discussed in this paper), but viscous
effects generate entropy, thereby keeping the temperature
at all times higher than for the adiabatic case. The dashed
blue (ideal) and solid red (viscous) lines for the azimuthally

1 10
τ (fm/c)

0.1

1

10

100

s(
fm

-3
)

viscous (1+1)-d hydro
ideal (1+1)-d hydro
viscous (0+1)-d hydro
ideal (0+1)-d hydro

r=0 fm

r=3fm τ−1

Cu+Cu, b=0 fm
EOS I

X0.5

**

**

1 10
τ(fm/c)

0.1

1

10

100

s(
r=

0)
 (

fm
-3

)

viscous (1+1)-d hydro
ideal (1+1)-d hydro
viscous (0+1)-d hydro
ideal (0+1)-d hydro 

τ−1

Cu+Cu, b=0 fmr=0 fm

r=3 fm
X0.5

SM-EOSQ

FIG. 4. (Color online) Time evolution of the local entropy density for central Cu + Cu collisions, calculated with EOS I and SM-EOS Q,
for the center of the fireball (r = 0) and a point at r = 3 fm. Same parameters and color coding as in Fig. 3.
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FIG. 5. (Color online) Surfaces of constant temperature T and constant transverse flow velocity v⊥ for central Cu + Cu collisions, evolved
with EOS I and SM-EOS Q. In each panel, results from viscous hydrodynamics in the left half are directly compared with the corresponding
ideal fluid evolution in the right half. (The thin isotherm contours in the right halves of each panel are reflected from the left halves, for
easier comparison.) The lines of constant v⊥ are spaced by intervals of 0.1, from the inside outward, as indicated by the numbers near the
top of the figures. The right panel contains two isotherms for Tc = 164 MeV, one separating the mixed phase (MP) from the QGP at energy
density eQ = 1.6 GeV/fm3, the other separating it from the hadron resonance gas (HRG) at energy density eH = 0.45 GeV/fm3.5 See text for
discussion.

symmetric (1 + 1)-dimensional case show the additional
cooling caused by transverse expansion. Again the cooling
is initially slower in the viscous case, but at later times, due
to faster buildup of transverse flow by the viscously increased
transverse pressure, the viscous expansion is seen to cool the
fireball center faster than ideal hydrodynamics. (Note also
the drastic reduction of the lifetime of the mixed phase by
transverse expansion; because of increased transverse flow
and continued acceleration in the mixed phase from viscous
pressure gradients, it is even more dramatic in the viscous
than the ideal case.) The curves for r = 9 fm corroborate this,
showing that the temperature initially increases with time due
to hot matter being pushed from the center toward the edge,
and that this temperature increase happens more rapidly in the
viscous fluid because of the faster outward transport of matter
in this case.

Figure 4 shows how the features seen in Fig. 3 manifest
themselves in the evolution of the entropy density. (In the
QGP phase, s ∼ T 3.) The double-logarithmic presentation
emphasizes the effects of viscosity and transverse expansion
on the power law s(τ ) ∼ τ−α: one sees that the τ−1 scaling
of the ideal Bjorken solution is flattened by viscous effects,
but steepened by transverse expansion. As is well known,
it takes a while (here about 3 fm/c) until the transverse
rarefaction wave reaches the fireball center and turns the ini-
tially one-dimensional longitudinal expansion into a genuinely
three-dimensional one. When this happens, the power law
s(τ ) ∼ τ−α changes from α = 1 in the ideal fluid case to α > 3
[1]. Here 3 is the dimensionality of space, and the fact that α

becomes larger than 3 reflects relativistic Lorentz-contraction
effects through the transverse-flow-related γ⊥ factor that keeps
increasing even at late times. In the viscous case, α changes
from 1 to 3 sooner than for the ideal fluid because of the faster
growth of transverse flow. At late times, the s(τ ) curves for
ideal and viscous hydrodynamics are almost perfectly parallel,

indicating that very little entropy is produced during this late
stage.

In Fig. 5, we plot the evolution of temperature in r − τ

space, in the form of constant-T surfaces. Again, the two
panels compare the evolution with EOS I to the one with
SM-EOS Q. In the two halves of each panel, we directly
contrast viscous and ideal fluid evolution. (The light gray lines
in the right halves are reflections of the viscous temperature
contours in the left halves, to facilitate comparison of viscous
and ideal fluid dynamics.) Beyond the already noted fact
that at r = 0, the viscous fluid cools initially more slowly
(thereby giving somewhat longer life to the QGP phase) but
later more rapidly (thereby freezing out earlier). This figure
also exhibits two other noteworthy features. (i) Moving from
r = 0 outward, one notes that contours of larger radial flow
velocity are reached sooner in the viscous than in the ideal
fluid case; this shows that radial flow builds up more quickly
in the viscous fluid. This is illustrated more explicitly in
Fig. 6, which shows the time evolution of the radial velocity
〈v⊥〉, calculated as an average over the transverse plane with
the Lorentz contracted energy density γ⊥e as the weight
function. (ii) Comparing the two sets of temperature contours
shown in the right panel of Fig. 5, one sees that viscous effects
tend to smoothen any structures related to the (first order)
phase transition in SM-EOS Q. The reason for this is that with
the discontinuous change of the speed of sound at either end of
the mixed phase, the radial flow velocity profile develops dra-
matic structures at the QGP-MP and MP-HRG interfaces [45].

5The structure at τ ∼ 2 fm/c and r ∼ 6 fm in the T = 130 MeV
ideal fluid isotherm for SM-EOS Q (also visible in the corresponding
ideal fluid curves in Fig. 9) appears to be a numerical artifact that
becomes less prominent when the numerical viscosity of the transport
algorithm in AZHYDRO [39] is increased.

064901-9



HUICHAO SONG AND ULRICH HEINZ PHYSICAL REVIEW C 77, 064901 (2008)

0 2 4 6 8 10
τ-τ

0
(fm/c)

0

0.2

0.4

0.6

0.8
〈V

T
〉

viscous hydro
ideal hydro

Cu+Cu, b=0 fm
EOS I *

*

0 2 4 6 8 10
τ-τ

0
(fm/c)

0

0.2

0.4

0.6

0.8

〈V
T

〉

Cu+Cu, b=0 fm
SM-EOS Q

FIG. 6. (Color online) Time evolution of the average radial flow velocity 〈vT 〉 ≡ 〈v⊥〉 in central Cu + Cu collisions, calculated with EOS I
and SM-EOS Q, comparing ideal and viscous fluid dynamics. The initially faster rate of increase reflects large positive shear viscous pressure
in the transverse direction at early times. The similar rates of increase at late times indicate the gradual disappearance of shear viscous effects.
In the right panel, the curves exhibit a plateau from 2 to 4 fm/c, reflecting the softening of the EOS in the mixed phase.

This leads to large velocity gradients across these interfaces
(as can be seen in the right panel of Fig. 5 in its lower right
corner, which shows rather twisted contours of constant radial
flow velocity), inducing large viscous pressures which drive
to reduce these gradients (as seen in lower left corner of that
panel). In effect, shear viscosity softens the first-order phase
transition into a smooth but rapid cross-over transition.

These same viscous pressure gradients cause the fluid to
accelerate even in the mixed phase where all thermodynamic
pressure gradients vanish (and where the ideal fluid therefore
does not generate additional flow). As a result, the lifetime of
the mixed phase is shorter in viscous hydrodynamics, as also
seen in the right panel of Fig. 5.

B. Final particle spectra

After obtaining the freeze-out surface, we calculate the
particle spectra from the generalized Cooper-Frye formula
(12), using the AZHYDRO algorithm [39] for the integration
over the freeze-out surface �. For calculations with EOS I,
which lacks the transition from massless partons to hadrons, we

cannot compute any hadron spectra. For illustration we instead
compute the spectra of hypothetical massless bosons (gluons).
They can be compared with the spectra from SM-EOS Q for
pions, which can also, to good approximation, be considered
as massless bosons.

The larger radial flow generated in viscous hydrodynamics,
for a fixed set of initial conditions, leads, of course, to flatter
transverse momentum spectra [29,32,33] at least at low pT

where the viscous correction δfi to the distribution function can
be neglected in Eq. (12)]. This is seen in Fig. 7, by comparing
the dotted and solid lines. This comparison also shows that
the viscous spectra lie systematically above the ideal ones,
indicating larger final total multiplicity. This reflects the cre-
ation of entropy during the viscous hydrodynamic evolution.
As pointed out in Refs. [32,33], this requires a retuning of
initial conditions (starting the hydrodynamic evolution later
with smaller initial energy density) if one desires to fit a given
set of experimental pT spectra. Since we here concentrate on
investigating the origins and detailed mechanics of viscous
effects in relativistic hydrodynamics, we will not explore
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FIG. 7. (Color online) Midrapidity particle spectra for central Cu + Cu collisions, calculated with EOS I (gluons) and with SM-EOS Q
( π−, K+, and p) for ideal and viscous hydrodynamics. The dotted lines show viscous hydrodynamic spectra that neglect the viscous correction
δfi to the distribution function in Eq. (12); i.e., they include only the effects from the larger radial flow generated in viscous hydrodynamics.
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any variations of initial conditions. All comparisons between
ideal and viscous hydrodynamics presented here use identical
starting times τ0 and initial peak energy densities e0.

The viscous correction δfi in Eqs. (12) and (16) depends
on the signs and magnitudes of the various viscous pressure
tensor components along the freeze-out surface, weighted
by the equilibrium part feq,i of the distribution function.
Its effect on the final pT spectra (even its sign!) is not
a priori obvious. Teaney [15], using a blast-wave model to
evaluate the velocity stress tensor σµν = πµν/(2η), found
that the correction is positive, growing quadratically with pT .
Romatschke et al. [33,35] did not break out separately the
contributions from larger radial flow in feq,i and from δfi .
Dusling and Teaney [37], solving a slightly different set of
viscous hydrodynamic equations and using a different (kinetic)
freeze-out criterion to determine their decoupling surface,
found a (small) positive effect from δfi on the final pion
spectra, at least up to pT = 2 GeV/c, for freeze-out around
Tdec ∼ 130 MeV, turning weakly negative when their effective
freeze-out temperature was lowered to below 100 MeV.
The dashed lines in Fig. 7 show that in our calculations for
pT >∼ 2 GeV/c, the effects from δfi have an overall negative
sign, leading to a reduction of the pT spectra at large pT

relative to both the viscous spectra without δfi and the ideal
hydrodynamic spectra. This is true for all particle species,
irrespective of the EOS used to evolve the fluid.

It turns out that when evaluating the viscous correction δf

in Eq. (16) with the help of Eq. (20), large cancellations occur
between the first and second line in Eq. (20). [After azimuthal
integration, the contribution to δf from the third line ∼ �

vanishes identically for central collisions.] These cancellations
cause the final result to be quite sensitive to small numerical
errors in the calculation of τ 2πηη and � = πxx + πyy .
Increased numerical stability is achieved by trading τ 2πηη for
πττ = τ 2πηη + � and using instead of Eq. (20) the following
expression:

pµpνπ
µν

= πττ

[
m2

T (2 cosh2(y − η) − 1)

− 2
pT

v⊥
mT cosh(y − η)

sin(φp + φv)

sin(2φv)
+ p2

T

v2
⊥

sin(2φp)

sin(2φv)

]
+�

[
− m2

T sinh2(y − η) + pT mT cosh(y − η)v⊥

× sin(φp − φv)

tan(2φv)
+ p2

T

2

(
1 − sin(2φp)

sin(2φv)

)]
+�

[
pT mT cosh(y − η)v⊥

sin(φp − φv)

sin(2φv)

− p2
T

2

sin(2(φp − φv))

sin(2φv)

]
. (23)

The first and second lines of this expression are now
much smaller than before and closer in magnitude to the
final net result for pµpνπ

µν . This improvement carries over
to noncentral collisions as discussed in Sec. IV D, where
we also show the individual contributions from πττ ,�, and
� to the particle spectra. To be able to use Eq. (23), the

numerical code should directly evolve not only πττ , πτx , and
πτy, which are needed for the velocity-finding algorithm (see
Appendix B), but also the components πxx and πyy . Otherwise,
these last two components must be computed from the evolved
πmn components using the transversality and tracelessness
constraints which necessarily involves the amplification of
numerical errors by division with small velocity components.

In Fig. 8, we explore the nonequilibrium contribution to
the final hadron spectra in greater detail. The figure shows
that the nonequilibrium effects from δfi are largest for
massless particles and, at high pT , decrease in magnitude
with increasing particle mass. The assumption |δf | � feq,
which underlies the viscous hydrodynamic formalism, is seen
to break down at high pT , but to do so later for heavier
hadrons than for lighter ones. Once the correction exceeds
O(50%) (indicated by the horizontal dashed line in Fig. 8), the
calculated spectra can no longer be trusted.

In contrast to viscous hydrodynamics, ideal fluid dynamics
has no intrinsic characteristic that will tell us when it starts to
break down. Comparison of the calculated elliptic flow v2 from
ideal fluid dynamics with the experimental data from RHIC [1]
suggests that the ideal fluid picture begins to break down above
pT 
 1.5 GeV/c for pions and above pT 
 2 GeV/c for protons.
This phenomenological hierarchy of thresholds where viscous
effects appear to become essential is qualitatively consistent
with the mass hierarchy from viscous hydrodynamics shown
in Fig. 8.

In the region 0 < pT <∼ 1.5 GeV/c, the interplay between
mT - and pT -dependent terms in Eq. (20) is subtle, causing
sign changes of the viscous spectral correction depending on
hadron mass and pT (see inset in Fig. 8). The fragility of the
sign of the effect is also obvious from Fig. 8 in the work by
Dusling and Teaney [37], where it is shown that in this pT

region the viscous correction changes sign from positive to
negative when freeze-out is shifted from earlier to later times
(higher to lower freeze-out temperature). Overall, we agree
with them that the viscous correction effects on the pT spectra
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FIG. 8. (Color online) Ratio of the viscous correction δN ,
resulting from the nonequilibrium correction δf , Eq. (16), to the
distribution function at freeze-out, to the equilibrium spectrum
Neq ≡ dNeq/(dy d2pT ) calculated from Eq. (12) by setting δf = 0.
The gluon curves are for evolution with EOS I, the curves for π−,K+,

and p are from calculations with SM-EOS Q.
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FIG. 9. (Color online) Surfaces of constant temperature T and constant transverse flow velocity v⊥ for semiperipheral Cu + Cu collisions
at b = 7 fm, evolved with SM-EOS Q. In the top row, we contrast ideal and viscous fluid dynamics, with a cut along the x axis (in the reaction
plane) shown in the right half of each panel, while the left half shows a cut along the y axis (perpendicular to the reaction plane). In the bottom
row, we compare ideal and viscous evolution in the each panel, with cuts along the x (y) direction shown in the left (right) panel. See Fig. 5
for comparison with central Cu + Cu collisions.6

are weak in this region [37]. We will see below that a similar
statement does not hold for the elliptic flow.

IV. NONCENTRAL COLLISIONS

A. Hydrodynamic evolution

We now take full advantage of the ability of VISH2+1

to solve the transverse expansion in two spatial dimensions
to explore the anisotropic fireball evolution in noncentral
heavy-ion collisions. Similar to Fig. 5 for b = 0, Fig. 9
shows surfaces of constant temperature and radial flow for
Cu + Cu collisions at b = 7 fm, for the equation of state
SM-EOS Q. The plots show the different evolution into and
perpendicular to the reaction plane and compare ideal with

6The structure at τ ∼ 2 fm/c and r ∼ 6 fm in the T = 130 MeV
ideal fluid isotherm for SM-EOS Q (also visible in the corresponding
ideal fluid curves in Fig. 9) appears to be a numerical artifact that
becomes less prominent when the numerical viscosity of the transport
algorithm in AZHYDRO [39] is increased.

viscous fluid dynamics. Again, even a minimal amount of
shear viscosity ( η

s
= 1

4π
) is seen to dramatically smoothen

all structures related to the existence of a first-order phase
transition in the EOS. However, in distinction to the case of
central collisions, radial flow builds up at a weaker rate in
the peripheral collisions and never becomes strong enough
to cause faster central cooling at late times than seen in
ideal fluid dynamics (bottom row in Fig. 9). The viscous
fireball cools more slowly than the ideal one at all times and
positions, lengthening in particular the lifetime of the QGP
phase, and it grows to larger transverse size at freeze-out.
Note that this does not imply larger transverse HBT radii
than for ideal hydrodynamics (something that—in view of the
“RHIC HBT puzzle” [1]–would be highly desirable): the larger
geometric size is counteracted by larger radial flow such that
the geometric growth, in fact, does not lead to larger transverse
homogeneity lengths [33].

While Fig. 9 gives an impression of the anisotropy of
the fireball in coordinate space, we study now in Fig. 10
the evolution of the flow anisotropy 〈|vx | − |vy |〉. In central
collisions, this quantity vanishes. In ideal hydrodynamics, it
is driven by the anisotropic gradients of the thermodynamic
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FIG. 10. (Color online) Time evolution of
the transverse flow anisotropy 〈|vx | − |vy |〉 (top
row) and of the anisotropy in the transverse
source term 〈|Sτx | − |Sτy |〉 (bottom row). Both
quantities are averaged over the transverse
plane, with the Lorentz-contracted energy den-
sity γ⊥ as weight function. The left (right)
column shows results for EOS I (SM-EOS Q),
comparing ideal and viscous fluid dynamical
evolution.

pressure. In viscous fluid dynamics, the source terms of
Eqs. (8) and (9), whose difference is shown in the bottom
row of Fig. 10, receive additional contributions from gradients
of the viscous pressure tensor which contribute their own
anisotropies. Figure 10 demonstrates that these additional
anisotropies increase the driving force for anisotropic flow
at very early times (τ − τ0 < 1 fm/c), but reduce this driving
force throughout the later evolution. At times τ − τ0 > 2 fm/c,
the anisotropy of the effective transverse pressure even
changes sign and turns negative, working to decrease the
flow anisotropy. As a consequence of this, the buildup of
the flow anisotropy stalls at τ − τ0 ≈ 2.5 fm/c (even earlier
for SM-EOS Q, where the flow buildup stops as soon as
the fireball medium enters the mixed phase) and proceeds
to slightly decrease thereafter. This happens during the crucial
period when ideal fluid dynamics still shows strong growth of
the flow anisotropy. By the time the fireball matter decouples,
the average flow velocity anisotropy of viscous hydrodynamics
lags about 20–25% behind the value reached during ideal fluid
dynamical evolution.

These features are mirrored in the time evolution of the
spatial eccentricity εx = 〈x2−y2〉

〈x2+y2〉 [calculated by averaging
over the transverse plane with the energy density e(x) as
weight function [45] and shown in the top row of Fig. 11]
and of the momentum anisotropies εp and ε′

p (shown in

the bottom row). The momentum anisotropy εp = 〈T xx
0 −T

yy

0 〉
〈T xx

0 +T
yy

0 〉
[50] measures the anisotropy of the transverse momentum
density due to anisotropies in the collective flow pattern, as
shown in top row of Fig. 10; it includes only the ideal fluid
part of the energy momentum tensor. The total momentum
anisotropy ε′

p = 〈T xx−T yy 〉
〈T xx+T yy 〉 , similarly defined in terms of the

total energy momentum tensor T µν = T
µν

0 + πµν , addition-
ally counts anisotropic momentum contributions arising from

the viscous pressure tensor. Since the latter quantity includes
effects due to the deviation δf of the local distribution
function from its thermal equilibrium form which, according to
Eq. (12), also affects the final hadron momentum spectrum
and elliptic flow, it is this total momentum anisotropy that
should be studied in viscous hydrodynamics if one wants
to understand the evolution of hadron elliptic flow. In other
words, in viscous hydrodynamics, hadron elliptic flow is
not simply a measure for anisotropies in the collective
flow velocity pattern, but additionally reflects anisotropies
in the local rest frame momentum distributions, arising
from deviations of the local momentum distribution from
thermal equilibrium and thus being related to the viscous
pressure.

Figure 11 correlates the decrease in time of the spatial
eccentricity εx with the buildup of the momentum anisotropies
εp and ε′

p. In viscous dynamics the spatial eccentricity is
seen to decrease initially faster than for ideal fluids. This
is less a consequence of anisotropies in the large viscous
transverse pressure gradients at early times than a consequence
of the faster radial expansion caused by their large overall
magnitude. In fact, it was found a while ago [51] that for a
system of free-streaming partons, the spatial eccentricity falls
even faster than the viscous hydrodynamic curves (solid lines)
in the upper row of Fig. 11. The effects of early pressure
gradient anisotropies is reflected in the initial growth rate of
the flow-induced momentum anisotropy εp, which is seen to
slightly exceed that observed in the ideal fluid at times up to
about 1 fm/c after the beginning of the transverse expansion
(bottom panels in Fig. 11). This parallels the slightly faster
initial rise of the flow velocity anisotropy seen in the top panels
of Fig. 10. Figure 10 also shows that in the viscous fluid, the
flow velocity anisotropy stalls about 2 fm/c after start and
remains about 25% below the final value reached in ideal fluid
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FIG. 11. (Color online) Time evolution for the spatial eccentricity εx , momentum anisotropy εp, and total momentum
anisotropy ε ′

p (see text for definitions), calculated for b = 7 fm Cu + Cu collisions with EOS I (left column) and SM-
EOS Q (right column). Dashed lines are for ideal hydrodynamics, while the solid and dotted lines show results from viscous
hydrodynamics.

dynamics. This causes the spatial eccentricity of the viscous
fireball to decrease more slowly at later times than that of the
ideal fluid (top panels in Fig. 11) which, at late times, features
a significantly larger difference between the horizontal (x) and
vertical (y) expansion velocities.

It is very instructive to compare the behavior of the flow-
induced ideal-fluid contribution to the momentum anisotropy,
εp, with that of the total momentum anisotropy ε′

p. At
early times, they are very different, with ε′

p being much
smaller than εp and even turning slightly negative at very
early times (see insets in the lower panels of Fig. 11). This
reflects very large negative contributions to the anisotropy
of the total energy momentum tensor from the shear viscous
pressure whose gradients along the out-of-plane direction y

strongly exceed those within the reaction plane along the
x direction. At early times, this effect almost compensates
for the larger in-plane gradient of the thermal pressure. The
negative viscous pressure gradient anisotropy is responsible
for reducing the growth of flow anisotropies, thereby causing
the flow-induced momentum anisotropy εp to significantly lag
behind its ideal fluid value at later times. The negative viscous
pressure anisotropies responsible for the difference between
εp and ε′

p slowly disappear at later times, since all viscous
pressure components then become very small (see Fig. 13
below).

The net result of this interplay is a total momentum
anisotropy in Cu + Cu collisions (i.e., a source of elliptic
flow v2) that for a “minimally” viscous fluid with η

s
= 1

4π

is 40–50% lower than for an ideal fluid, at all except the
earliest times (where it is even smaller). The origin of this

reduction changes with time: initially it is dominated by strong
momentum anisotropies in the local rest frame, with momenta
pointing preferentially out-of-plane, induced by deviations
from local thermal equilibrium and associated with large
shear viscous pressure. At later times, the action of these
anisotropic viscous pressure gradients integrates to an overall
reduction in collective flow anisotropy, while the viscous
pressure itself becomes small; at this stage, the reduction
of the total momentum anisotropy is indeed mostly due to
a reduced anisotropy in the collective flow pattern while mo-
mentum isotropy in the local fluid rest frame is approximately
restored.

B. Elliptic flow v2 of final particle spectra

The effect of the viscous suppression of the total momentum
anisotropy ε′

p on the final particle elliptic flow is shown in
Fig. 12. Even for the “minimal” viscosity η

s
= 1

4π
considered

here, one sees a very strong suppression of the differential
elliptic flow v2(pT ) from viscous evolution compared with the
ideal fluid. Both the viscous reduction of the collective flow
anisotropy (whose effect on v2 is shown as the dotted lines)
and the viscous contributions to the anisotropy of the local
momentum distribution [embodied in the term δf in Eq. (12)]
play big parts in this reduction. The runs with EOS I (which is
a very hard EOS) decouple more quickly than those with SM-
EOS Q; correspondingly, the viscous pressure components are
still larger at freeze-out and the viscous corrections δf to the
distribution function play a bigger role. With SM-EOS Q, the
fireball does not freeze-out until πmn has become very small
(see Fig. 13 below), resulting in much smaller corrections
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FIG. 12. (Color online) Differential elliptic flow v2(pT ) for Cu + Cu collisions at b = 7 fm.

from δf (difference between dashed and dotted lines in
Fig. 12).7 On the other hand, because of the longer fireball
lifetime, the negatively anisotropic viscous pressure has more
time to decelerate the buildup of anisotropic flow, so v2 is
strongly reduced because of the much smaller flow-induced
momentum anisotropy εp.

The net effect of all this is that for Cu + Cu collisions
and in the soft momentum region pT < 1.5 GeV/c, the viscous
evolution with η

s
= 1

4π
leads to a suppression of v2 by about

a factor 2,8 in both the slope of its pT dependence and its
pT -integrated value. [Because of the flatter pT spectra from

7The right panel of Fig. 12 seems to indicate that v2(pT ) can even
become negative at sufficiently large pT —an observation first made in
Ref. [15]. However, this only happens in the region where the viscous
correction δf to the distribution function becomes comparable to or
larger than the equilibrium contribution, so this feature cannot be
trusted.

8Recently completed first simulations of Au + Au collisions
indicate that the viscous suppression effects are not quite as big in

the viscous dynamics, the effect in the pT -integrated v2 is not
quite as large as for v2(pT ) at fixed pT .]

C. Time evolution of the viscous pressure tensor components
and hydrodynamic source terms

In Fig. 13, we analyze the time evolution of the viscous
pressure tensor components and the viscous hydrodynamic
source terms on the right-hand side of Eq. (6). As already
mentioned, the largest components of πmn are τ 2πηη, πxx,

and πyy (see Fig. 2 in Ref. [36] and left panel of Fig. 13).9 At

this larger collision system as in the smaller Cu + Cu fireball studied
here [41].

9Note that Fig. 2 in Ref. [36] shows averages over the entire
10 × 10 fm transverse grid used in VISH2+1, while the averages in
our Figs. 13, 17, and 19 have been restricted to the thermalized region
inside the freeze-out surface �. This eliminates a dependence of the
average on the total volume covered by the numerical grid and more
accurately reflects the relevant physics, since hydrodynamics applies
only inside the decoupling surface.

0 2 4 6
τ−τ0(fm/c)

-0.2

-0.1

0

0.1

0.2

〈π
m

n /(
e+

p)
〉

0 2 4 6
τ−τ0(fm/c)

-0.01

0

0.01

〈π
m

n /(
e+

p)
〉

τ2πηη

Σ

πτx

πτy

πττ

πxy

Cu+Cu, b=7 fm
SM-EOS Q

∆

∆

0 2 4 6 8
τ−τ0(fm/c)

-2

-1

0

〈S
τn

〉 (
G

eV
/f

m
3 )

〈-p-τ∂
x
(pv

x
)-τ∂

y
(pv

y
)-τ2πηη〉

〈|-τ∂
x
p-τ∂

x
πxx

|〉
〈|-τ∂

y
p-τ∂

y
πyy

|〉

full viscous 〈Sττ〉
full viscous 〈|Sτx

|〉
full viscous 〈|Sτy

|〉

Cu+Cu, b=7 fm
SM-EOS Q
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early times, both τ 2πηη and the sum � = πxx + πyy reach
(with opposite signs) almost 20% of the equilibrium enthalpy
e + p. At this stage, all other components of π are at least
an order of magnitude smaller (see inset). The largest of
these small components is the difference � = πxx − πyy,

which we choose as the variable describing the anisotropy of
the viscous pressure tensor in noncentral collisions. At late
times (τ − τ0 > 5 fm/c), when the large components of πmn

have strongly decreased, � becomes comparable to them in
magnitude. As a fraction of the thermal equilibrium enthalpy
e + p ∼ T 4 which sets the scale in ideal fluid dynamics and
which itself decreases rapidly with time, all viscous pressure
components are seen to decrease with time. In a fluid with
a set ratio η/s, viscous effects thus become less important
with time. In real life, however, the ratio η/s depends itself
on temperature and rises dramatically during the quark-hadron
phase transition and below [52,53]. Shear viscous effects will
therefore be larger at late times than considered here. The
consequences of this will be explored elsewhere.

The observation that many components of πmn are very
small throughout the fireball evolution underlies the validity
of the approximation of the hydrodynamic source terms given
in the second lines of Eqs. (7)–(9). The excellent quality
of this approximation is illustrated in the right panel of
Fig. 13.

D. Viscous corrections to final pion spectra and elliptic flow

The large viscous reduction of the elliptic flow seen in
Fig. 12 warrants a more detailed analysis of the viscous
corrections to the particle spectra and v2. In Fig. 14, we show,
for Cu + Cu collisions at b = 7 fm evolved with SM-EOS Q,
the time evolution of the independent components πττ ,�,

and � of the viscous pressure tensor πmn, normalized by
the equilibrium enthalpy e + p, along the Tdec = 130 MeV
decoupling surface plotted in the upper right panel of Fig. 9.
Solid (dashed) lines show the behavior along the x (y) direction
[right (left) half of the upper right panel in Fig. 9]. We see that
generically all three of these viscous pressure components are
of similar magnitude, except for � which strongly dominates
over the other two during the first 2 fm/c after the beginning of
the expansion stage. However, since most particle production,
especially that of low-pT particles, occurs at late times (τ >

4 fm/c for b = 7 fm/c Cu + Cu, see Fig. 9 and the discussion
around Fig. 27 in Ref. [1]), the regions where � is large do
not contribute much. As far as the nonequilibrium contribution
to the spectra is concerned, we can thus say that the viscous
pressure at freeze-out is of the order of a few percent of e + p.
The anisotropy term � is even smaller because of cancellations
between the in-plane (x) and out-of-plane (y) contributions
when integrating over the azimuthal angle in Eq. (12).

These viscous pressure components generate the nonequi-
librium contribution δf to the distribution function on
the freeze-out surface according to Eqs. (16) and (23),
resulting in a corresponding viscous correction to the az-
imuthally integrated particle spectrum δN ≡ ∫

dφp δ(E d3N
d3p

).
Figure 15 shows these nonequilibrium contributions for pions,
normalized by the azimuthally averaged equilibrium part

Neq ≡ ∫
dφp

d3Neq

d3p
. We show both the total viscous correc-

tion and the individual contributions arising from the three
independent pressure tensor components used in Eq. (23) and
shown in Fig. 14.

In the viscous correction, the term from Eq. (23) [normal-
ized by T 2(e + p)] is weighted by particle production via the
equilibrium distribution function feq(x, p). It is well known
(see Fig. 27 in Ref. [1]) that for low-pT particles, this weight is
concentrated along the relatively flat top part of the decoupling
surface in Fig. 9, corresponding to τ >∼ 5 − 6 fm/c in Fig. 14.
In this momentum range, the contributions from πττ ,�, and
� to δN/Neq are of similar magnitude and alternating signs
(see Fig. 15), making the sign of the overall viscous correction
to the spectra hard to predict.

High-pT particles, on the other hand, come from those
regions in the fireball that feature the largest transverse flow
velocity at freeze-out. Figure 9 shows that this restricts their
emission mostly to the time interval 3 < τ < 6 fm/c. In this
region, πττ is negative; see Fig. 14. A detailed study of
the different terms in Eq. (23) reveals that (after azimuthal
integration), the expression multiplying πττ is positive, hence
the negative sign of πττ explains its negative contribution
to δN/Neq at high pT , as seen in Fig. 15. Figure 15 also
shows that in the region pT >∼ 1 GeV/c the first line ∼ πττ in
Eq. (23) completely dominates the viscous correction to the
spectra. We found that this involves additional cancellations
between terms of opposite sign (after azimuthal integration)
inside the square brackets multiplying � and � in the second
and third lines of Eq. (23). Furthermore, the term ∼ πττ is
the only contribution whose magnitude grows quadratically
with pT . For the contributions involving � and �, the
apparent quadratic momentum dependence seen in Eq. (23)
is tempered by the integrations over space-time rapidity η and
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FIG. 15. (Color online) Viscous corrections to the azimuthally
averaged pion spectrum resulting from individual components of the
viscous pressure tensor πmn as indicated, as well as the total correction
δN/Neq, for Cu + Cu collisions at b = 7 fm with SM-EOS Q. The
horizontal dashed line at −50% indicates the limit of validity.

azimuthal angle φ in Eq. (12), resulting in only linear growth at
large pT .

In the absence of higher order momentum anisotropies
vn, n> 2, the elliptic flow v2(pT ) can be easily computed
from the momentum spectra in x(φp = 0) and y(φp = π

2 )
directions:

2v2(pT ) = Nx − Ny

N
= (Nx,eq − Ny,eq) + (δNx − δNy)

Neq + δN
,

(24)

where N = Neq + δN is shorthand for the azimuthally
averaged spectrum dN/(2π dy pT dpT ), and Nx,y denote
the pT spectra along the x and y directions, respectively:
Nx ≡Nx,eq + δNx ≡ d3N

dy pT dpT dφp
(φp = 0), and similarly for

Ny with φp = π
2 . Equation (24) shows that v2 receives

contributions from anisotropies in the equilibrium part of the
distribution function feq, which reflect the hydrodynamic flow
anisotropy along the freeze-out surface, and from the viscous
correction δf , which reflects nonequilibrium momentum
anisotropies in the local fluid rest frame. The dashed line in
Fig. 16 shows the relative magnitude of these two anisotropy
contributions, δNx−δNy

Nx,eq−Ny,eq
, and compares it with the relative

magnitude δN
Neq

of the nonequilibrium and equilibrium con-
tributions to the total, φp-integrated pion spectrum for Cu +
Cu at b = 7 fm. We see that the nonequilibrium contribution
to the momentum anisotropy v2 is always negative and larger
in relative magnitude than the nonequilibrium contribution to
the azimuthally averaged spectrum. Since v2 is a small quantity
reflecting the anisotropic distortion of the single-particle
spectrum, it reacts more sensitively than the spectrum itself
to the (anisotropic) nonequilibrium contributions caused by
the small viscous pressure πmn on the decoupling surface.
Furthermore, the viscous corrections to the φp-integrated
spectrum change sign as a function of pT ; the corrections
to v2 are negative everywhere, decreasing v2(pT ) at all values
of pT , but especially at large transverse momenta.

0 1 2 3
p

T
(GeV)

-1

-0.8

-0.6

-0.4

-0.2

0

δN/N
eq

(δN
x -δN
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FIG. 16. (Color online) Ratio of nonequilibrium and equilibrium
contributions to particle production (solid line) and to its momentum
anisotropy (dashed line), as a function of pT for pions from Cu + Cu
collisions at b = 7 fm with SM-EOS Q.

V. SENSITIVITY TO INPUT PARAMETERS AND LIMITS
OF APPLICABILITY

A. Initialization of πmn

Lacking input from a microscopic model of the pree-
quilibrium stage preceding the (viscous) hydrodynamic one,
one must supply initial conditions for the energy momentum
tensor, including the viscous pressure πmn. The most popular
choice has been to initialize πmn with its Navier-Stokes value,
i.e., to set initially πmn = 2ησmn. Up to this point, this has also
been our choice in the present paper. Reference [35] advocated
the choice πmn = 0 at time τ0 in order to minimize viscous
effects and thus obtain an upper limit on η/s by comparison
with experimental data. In the present section, we explore the
sensitivity of the final spectra and elliptic flow to these different
choices of initialization, keeping all other model parameters
unchanged.

Figure 17 shows the time evolution of the viscous pressure
tensor and viscous hydrodynamic source terms for the two
different initializations. Differences with respect to the results
shown in Fig. 13 (which are reproduced in Fig. 17 for
comparison) are visible only at early times τ − τ0 <∼ 5τπ ≈
1 fm/c. After τπ ∼ 0.2 fm/c, the initial difference πmn − 2ησmn

has decreased by roughly a factor of 1/e, and after several
kinetic scattering times τπ , the hydrodynamic evolution has
apparently lost all memory of how the viscous terms were
initialized.

Correspondingly, the final spectra and elliptic flow show
very little sensitivity to the initialization of πmn, as seen in
Fig. 18. With vanishing initial viscous pressure, viscous effects
on the final flow anisotropy are a little weaker (dotted lines in
Fig. 18), but this difference is overcompensated in the total
elliptic flow by slightly stronger anisotropies of the local rest
frame momentum distributions at freeze-out (solid lines in
Fig. 18). For shorter kinetic relaxation times τπ , the differences
resulting from different initializations of πmn would be smaller
still.
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FIG. 17. (Color online) Similar to Fig. 13, but now comparing runs with different initial conditions. The thick lines reproduce the results
from Fig. 13, obtained with πmn = 2 ησmnat initial time τ0, while thin lines of the same type show the corresponding results obtained by
setting initially πmn = 0. The right panel shows the full viscous source terms, without approximation: 〈|Sτx |〉 (dashed), 〈|Sτy |〉 (dotted), and
〈Sττ 〉 (dash-dotted).

B. Kinetic relaxation time τπ

While the finite relaxation time τπ for the viscous pressure
tensor in the Israel-Stewart formalism eliminates problems
with superluminal signal propagation in the relativistic Navier-
Stokes theory, it also keeps the viscous pressure from ever fully
approaching its Navier-Stokes limit πmn = 2ησmn. In this
section, we explore how far, on average, the viscous pressure
evolved by VISH2+1 deviates from its Navier-Stokes limit, and
how this changes if we reduce the relaxation time τπ by a
factor of 2.

In Fig. 19, we compare for central Cu + Cu collisions,
the time evolution of the scaled viscous pressure tensor,
averaged in the transverse plane over the thermalized region
inside the freeze-out surface, with its Navier-Stokes limit,
for two values of τπ , that is, τπ = 3η/sT = τ class

π /2 and
τπ = τ class

π /4. For the larger relaxation time, the deviations
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FIG. 18. (Color online) Differential elliptic flow v2(pT ) for pions
from b = 7 fm Cu + Cu collisions with SM-EOS Q. Thick lines
reproduce the pion curves from Fig. 12, obtained with πmn =
2 ησmnat initial time τ0, while thin lines of the same type show the
corresponding results obtained by setting initially πmn = 0.

from the Navier-Stokes limit reach 25–30% at early times,
but this fraction gradually decreases at later times. For the
twice shorter relaxation time, the fractional deviation from
Navier-Stokes decreases by somewhat more than a factor of 2
and never exceeds a value of about 10%.

Figure 20 shows that, small as they may appear, these
deviations of πmn from its Navier-Stokes limit 2ησmn (es-
pecially on the part of the decoupling surface corresponding
to early times τ − τ0) still play an important role in the viscous

5 10

-0.002

-0.001

0

0.001

0.002

0 5 10
τ−τ0(fm/c)

0

0.05

0.1
〈2ησmn

/(e+p)〉, τπ=3η/sT

Cu+Cu, b=0 fm

SM-EOSQ

〈2ησmn
/(e+p)〉, τπ=1.5η/sT

τπ=3η/sT

τπ=1.5η/sT

〈πmn
/(e+p)〉,

πττ

〈πmn
/(e+p)〉,

Σ

FIG. 19. (Color online) Time evolution of the two independent
viscous pressure tensor components πττ and � = πxx + πyy for
central Cu + Cu collisions (solid lines), compared with their Navier-
Stokes limits 2ησ ττ and 2η(σ xx + σ yy) (dashed lines), for two values
of the relaxation time, τπ = 3η/sT (thick lines) and τπ = 1.5 η/sT

(thin lines). All quantities are scaled by the thermal equilibrium
enthalpy e + p and transversally averaged over the thermalized region
inside the decoupling surface.
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FIG. 20. (Color online) Differential elliptic flow v2(pT ) for π−

from b = 7 fm Cu + Cu collisions with SM-EOS Q, calculated from
viscous hydrodynamics with two different values for the relaxation
time τπ . Thick lines reproduce the pion curves from Fig. 12, thin lines
show results obtained with a twice shorter relaxation time. For the
standard (twice larger) classical relaxation time value τπ = 6η/sT

[26,30] deviations from ideal hydrodynamics would exceed those
seen in the thick lines.

reduction of elliptic flow observed in our calculations. While
a decrease of the relaxation time by a factor of 2 leads to
only a small reduction of the viscous suppression of flow
anisotropies (dotted lines in Fig. 20), the contribution to
v2(pT ) resulting from the viscous correction ∼ pmpnπ

mn to
the final particle spectra is also reduced by about a factor
of 2, leading to a significant overall increase of v2(pT ) in
the region pT > 1 GeV/c. To avoid strong sensitivity to the
presently unknown value of the relaxation time τπ in the
QGP, future extractions of the specific shear viscosity η/s

from a comparison between experimental data and viscous
hydrodynamic simulations should therefore be performed at
low transverse momenta, pT < 1 GeV/c, where our results
appear to be reasonably robust against variations of τπ .

C. Breakdown of viscous hydrodynamics at high pT

As indicated by the horizontal dashed lines in Figs. 8
and 15, the assumption |δf | � |feq| under which the viscous
hydrodynamic framework is valid breaks down at sufficiently
large transverse momenta. For a quantitative assessment,
we assume that viscous hydrodynamic predictions become
unreliable when the viscous corrections to the particle spectra
exceed 50%. Figure 8 shows that the characteristic transverse
momentum p∗

T where this occurs depends on the particle
species and increases with particle mass. To be specific,
we here consider p∗

T for pions—the values for protons would
be about 15% higher. The discussion in the preceding section
of the τπ dependence of viscous corrections to the final spectra
makes it clear that reducing τπ will also push p∗

T to larger
values. Since we do not know τπ , we refrain from a quantitative
estimate of this effect.

In Fig. 21, we show the breakdown momentum p∗
T for pions

as a function of the peak initial energy density in the fireball
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3
)
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FIG. 21. (Color online) Characteristic transverse momentum p∗
T

where the viscous corrections to the final pion spectrum become so
large (> 50%) that the spectrum becomes unreliable, as a function
of the initial energy density in the center of the fireball. Stars are
for central Cu + Cu collisions, open circles for peripheral Cu + Cu
collisions at b = 7 fm. Note that identical e(r = 0) values correspond
to higher collision energies in peripheral than in central collisions.
p∗

T values are higher for more massive hadrons (see Fig. 8), and
they also increase for smaller relaxation times τπ (see discussion of
Fig. 20).

center (i.e., indirectly as a function of collision energy), for
both central and peripheral Cu + Cu collisions. (The initial
time was held fixed at τ0 = 0.6 fm.) Generically, p∗

T rises
with collision energy. The anomaly at low values of e(r = 0)
results, as far as we could ascertain, from effects connected
with the phase transition in SM-EOS Q. The rise of p∗

T with
increasing e(r = 0) reflects the growing fireball lifetime which
leads to smaller viscous pressure components at freeze-out.
This lifetime effect is obviously stronger for central than for
peripheral collisions, leading to the faster rise of the stars than
the open circles in Fig. 21. Taking further into account that a
given beam energy leads to higher e(r = 0) values in central
than in peripheral collisions such that, for a given experiment,
the peripheral collision points are located farther to the left in
the figure than the central collision points, we conclude that
in central collisions, the validity of viscous hydrodynamics
extends to significantly larger values of pT than in peripheral
collisions: viscous effects are more serious in peripheral than
in central collisions.

VI. SUMMARY AND CONCLUSIONS

In this paper, we numerically studied the shear viscous
effects on the hydrodynamic evolution, final hadron spectra,
and elliptic flow v2, using a (2 + 1)-dimensional causal viscous
hydrodynamic code, VISH2+1, based on the second-order
Israel-Stewart formalism. Using a fixed set of initial and final
conditions, we explored the effects of shear viscosity for a
“minimally” [18] viscous fluid with η

s
= 1

4π
in central and

peripheral Cu + Cu collisions, comparing the evolution with
two different equations of state, an ideal massless parton gas
(EOS I) and an EOS with a semirealistic parametrization
of the quark-hadron phase transition (SM-EOS Q). Final
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hadron spectra and their elliptic flow were calculated from
the hydrodynamic output using the Cooper-Frye prescription.

We found that shear viscosity decelerates longitudinal
expansion but accelerates the build-up of transverse flow.
This slows the cooling process initially, leading to a longer
lifetime for the QGP phase, but causes accelerated cooling at
later stages by faster transverse expansion. Viscous pressure
gradients during the mixed phase increase the acceleration
during this stage and slightly reduce its lifetime. They
counteract large gradients of the radial velocity profile that
appear in ideal fluid dynamics as a result of the softness of
the EOS in the mixed phase, thereby de facto smoothing the
assumed first-order phase transition into a rapid cross-over
transition. In the end, the larger radial flow developing in
viscous hydrodynamics leads to flatter transverse momentum
spectra of the finally emitted particles, while their azimuthal
anisotropy in noncentral heavy-ion collisions is found to be
strongly reduced.

Although the viscous hardening of the hadron pT spectra
can be largely absorbed by retuning the initial conditions,
starting the transverse expansion later and with lower initial
entropy density [30,33], this only acerbates the viscous effects
on the elliptic flow v2, which in this case is further reduced
by the decreased fireball lifetime. The reduction of the elliptic
flow v2 by shear viscous effects is therefore a sensitive and
robust diagnostic tool for shear viscosity in the fluid [54].

Our results indicate that in semiperipheral Cu + Cu colli-
sions, even a “minimal” amount of shear viscosity [18] causes a
reduction of v2 by almost 50% relative to ideal fluid dynamical
simulations. In the present paper, we explored the origin of this
reduction in great detail. The effects observed by us for Cu +
Cu collisions [36] are larger than those recently reported in
Refs. [35,37] for Au + Au collisions. While some of these
differences can be attributed to an increased importance of
viscous effects in smaller systems, the bulk of the difference
appears to arise from the fact that the different groups solve
somewhat different sets of viscous hydrodynamic equations
[41,55]. (See also the recent interesting suggestion by Pratt
[56] for a phenomenological modification of the Israel-Stewart
equations for systems with large velocity gradients.) This
raises serious questions: if theoretical ambiguities in the
derivation of the viscous hydrodynamic equations reflect
themselves in large variations of the predicted elliptic flow,
any value of the QGP shear viscosity extracted from relativistic
heavy-ion data will strongly depend on the specific hydrody-
namic model used in the comparison. A reliable quantitative
extraction of η/s from experimental data will thus only be
possible if these ambiguities can be resolved.

Our studies show that shear viscous effects are strongest
during the early stage of the expansion phase when the longi-
tudinal expansion rate is largest. At later times, the viscous
corrections become small, although not negligible. Small
nonzero viscous pressure components along the hadronic
decoupling surface have significant effects on the final hadron
spectra that grow with transverse momentum and thus limit
the applicability of the viscous hydrodynamic calculation to
transverse momenta below 2–3 GeV/c, depending on impact
parameter, collision energy, and particle mass. Viscous effects
are more important in peripheral than in central collisions, and

larger for light than for heavy particles. They increase with
the kinetic relaxation time for the viscous pressure tensor.
Since the breakdown of viscous hydrodynamics is signaled
by the theory itself, through the relative magnitude of the
viscous pressure, the applicability of the theory can be checked
quantitatively case by case and during each stage of the
expansion.

For the kinetic relaxation times τπ considered in the present
work, sensitivities to the initial value of the viscous pressure
tensor were found to be small and practically negligible.
Sensitivity to the value of τπ was found for the hadron spectra,
especially the elliptic flow, at large transverse momenta. This
leads us to suggest restricting any comparison between theory
and experiment with the goal of extracting the shear viscosity
η/s to the region pT <∼ 1 GeV/c where the sensitivity to τπ is
sufficiently weak.

The dynamical analysis of shear viscous effects on the mo-
mentum anisotropy and elliptic flow in noncentral collisions
reveals an interesting feature: the total momentum anisotropy
receives two types of contributions, the first resulting from
the anisotropy of the collective flow pattern and the second
arising from a local momentum anisotropy of the phase-space
distribution function in the local fluid rest frame, reflecting
viscous corrections to its local thermal equilibrium form.
During the early expansion stage, the latter effect (i.e., the
fact that large viscous pressure effects generate momentum
anisotropies in the local fluid rest frame) dominates the
viscous effects on elliptic flow. At later times, these local
momentum anisotropies get transferred to the collective flow
profile, manifesting themselves as a viscous reduction of the
collective flow anisotropy. The time scale for transferring the
viscous correction to v2 from the local rest frame momentum
distribution to the collective flow pattern appears to be of the
same order as that for the evolution of the total momentum
anisotropy itself.

Several additional steps are necessary before the work
presented here can be used as a basis for a quantitative
interpretation of relativistic heavy-ion data. First, the above-
mentioned ambiguity of the detailed form of the kinetic
evolution equations for the viscous pressure must be resolved.
Second, the equation of state must be fine-tuned to lattice
QCD data and other available information to make it as
realistic as presently possible. The hydrodynamic scaling of
the final elliptic flow v2 with the initial source eccentricity
εx [57] and its possible violation by viscous effects need to be
explored [41], in order to assess the sensitivity of the scaled
elliptic flow v2/εx to details of the model used for initializing
the hydrodynamic evolution [13]. The temperature dependence
of the specific shear viscosity η/s, especially across the
quark-hadron phase transition [52,53], must be taken into
account, and bulk viscous effects, again particularly near Tc,
must be included. To properly account for the highly viscous
nature of the hadron resonance gas during the last collision
stage, it may be necessary to match the viscous hydrodynamic
formalism to a microscopic hadronic cascade to describe the
last part of the expansion until hadronic decoupling [52]. We
expect to report soon on progress along some of these fronts.

Note added. Just before submitting this work for publication
we became aware of Ref. [60], in which the form of the kinetic
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evolution equations for the viscous pressure is revisited and it
is argued that Eqs. (4) and (5) must be amended by additional
terms that reduce the strong viscous suppression of the elliptic
flow observed by us [55]. While details of the numerical results
will obviously change if these terms are included (cf. Refs.
[35,37]), our discussion of the driving forces behind the finally
observed viscous corrections to ideal fluid results and of the
evolution of these corrections with time is generic, and the
insights gained in the present study are expected to hold, at least
qualitatively, also for future improved versions of VISH2+1

that properly take into account the new findings reported in
Ref. [60].
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APPENDIX A: EXPRESSIONS FOR π̃mn AND σ̃ mn

The expressions for π̃mn and σ̃ mn in Eq. (10) are

π̃mn =


πττ πτx πτy 0

πτx πxx πxy 0

πτy πxy πyy 0

0 0 0 τ 2πηη

 , (A1)

σ̃ mn =


∂τu

τ ∂τ u
x−∂xu

τ

2
∂τ u

y−∂yu
τ

2 0
∂τ u

x−∂xu
τ

2 −∂xu
x − ∂xu

y+∂yu
x

2 0
∂τ u

y−∂yu
τ

2 − ∂xu
y+∂yu

x

2 −∂yu
y 0

0 0 0 − uτ

τ



− 1

2


D((uτ )2) D(uτux) D(uτuy) 0

D(uτux) D((ux)2) D(uxuy) 0

D(uτuy) D(uxuy) D((uy)2) 0

0 0 0 0



+ 1

3
(∂ · u)


(uτ )2 − 1 uτux uτuy 0

uτux (ux)2 + 1 uxuy 0

uτuy uxuy (uy)2 + 1 0

0 0 0 1

. (A2)

Here D = uτ ∂τ + ux∂x + uy∂y and ∂ · u = ∂τu
τ + ∂xu

x +
∂yu

y + uτ

τ
.

APPENDIX B: VELOCITY FINDING

As shown in Ref. [27], since we evolve all three components
πττ , πτx , and πτy (one of which is redundant because of the
constraint πτmum = 0), the flow velocity and energy density
can be found from the energy-momentum tensor components
with the same efficient one-dimensional zero-search algorithm
employed in ideal hydrodynamics [59]. This is important since
this step has to be performed after each time step at all spatial
grid points in order to evaluate the EOS p(e).

Using the output from the numerical transport al-
gorithm, one defines the two-dimensional vector M =
(Mx,My) ≡ (T τx − πτx, T τy − πτy). This is the ideal fluid
part of the transverse momentum density vector; as such
it is parallel to the transverse flow velocity v⊥ = (vx, vy).
Introducing further M0 ≡ T ττ − πττ , one can write the energy
density as

e = M0 − v⊥ · M = M0 − v⊥M, (B1)

where v⊥ =
√
v2

x + v2
y is the transverse flow speed and M ≡√

M2
x + M2

y . One sees that solving for e requires only the
magnitude of v⊥ which is obtained by solving the implicit
relation [27,59]

v⊥ = M

M0 + p(e = M0 − v⊥M)
(B2)

by a one-dimensional zero-search. The flow velocity compo-
nents are then reconstructed using

vx = v⊥
Mx

M
, vy = v⊥

My

M
. (B3)

Note that this requires direct numerical propagation of all
three components (πττ , πτx, and πτy) since the flow velocity
is not known until after the velocity-finding step has been
completed. Hence the transversality constraint πτmum = 0
cannot be used to determine, say, πττ from πτx and πτy .
However, it can be used after the fact to test the numerical
accuracy of the transport code.

APPENDIX C: πmn IN TRANSVERSE POLAR
COORDINATES

Although VISH2+1 uses Cartesian (x, y) coordinates in the
transverse plane, polar (r, φ) coordinates may be convenient
for understanding some of the results in the limit of zero
impact parameter where azimuthal symmetry is restored. In
(τ, r, φ, η) coordinates, the flow velocity takes the form um =
γ⊥(1, vr , vφ, 0), with γ⊥ = 1/

√
1 − v2

⊥ = 1/

√
1 − v2

r − r2v2
φ .

The polar coordinate components of the shear pressure tensor
components πmn are obtained from those in (τ, x, y, η)
coordinates by the transformations

πτr = πτx cos φ + πτy sin φ,

rπτφ = −πτx sin φ + πτy cos φ,

πrr = πxx cos2 φ + 2πxy sin φ cos φ + πyy sin2 φ, (C1)

r2πφφ = πxx sin2 φ − 2πxy sin φ cos φ + πyy cos2 φ,

rπrφ = (πyy − πxx) sin φ cos φ + πxy(cos2 φ − sin2 φ),
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FIG. 22. (Color online) Left: Differential elliptic flow v2(pT ) for π− from b = 4 fm Cu + Cu collisions and b = 7 fm Au + Au collisions,
using EOS Q. Results from VISH2+1 for η = 0 and πmn = 0 are compared with the ideal fluid code AZHYDRO. Right:v2(pT ) for π− from
Cu + Cu collisions at impact parameters b = 4 and 7 fm, comparing VISH2+1 evolution with EOS Q and SM-EOS Q in the ideal fluid limit
η = 0, πmn = 0.

with cos φ = x/r and sin φ = y/r . In terms of these, the
independent components � and � of Eqs. (19) and (20) are
given as

� = πrr + r2πφφ,
(C2)

� = cos(2φ)(πrr − r2πφφ) − 2 sin(2φ) rπrφ,

from which we easily get

2πxx = πrr (1 + cos(2φ)) + r2πφφ(1 − cos(2φ)),
(C3)

2πyy = πrr (1 − cos(2φ)) + r2πφφ(1 + cos(2φ)).

Note that azimuthal symmetry at b = 0 implies πrφ = 0 and
a vanishing azimuthal average for �, that is, 〈�〉φ = 0 or
〈πxx〉φ = 〈πyy〉φ .

APPENDIX D: TESTS OF THE VISCOUS HYDRODYNAMIC
CODE VISH2+1

A. Testing the ideal hydrodynamic part of VISH2+1

When one sets πmn = 0 initially and takes the limit η = 0,
VISH2+1 simulates the evolution of an ideal fluid, and its
results should agree with those of the well-tested and publicly
available (2 + 1)-dimensional ideal fluid code AZHYDRO [39].
Since VISH2+1 was written independently, using only the
flux-corrected SHASTA transport algorithm from the AZHYDRO

package [39,58] in its evolution part, this is a useful test of
the code. The left panel in Fig. 22 shows that for identical
initial and final conditions as described in Sec. II, the two
codes indeed produce almost identical results. The small
difference in the Au+Au system at b = 7 fm is likely due
to the slightly better accuracy of AZHYDRO, which, in contrast
to VISH2+1, invokes an additional time-splitting step in its
evolution algorithm.

When comparing our VISH2+1 results with AZHYDRO, we
initially found somewhat larger discrepancies which, however,
could be traced back to different versions of the EOS used in
the codes: EOS Q in AZHYDRO, the smoothed version SM-EOS

Q in VISH2+1. In the left panel of Fig. 22, this difference
has been removed, by running also VISH2+1 with EOS Q. In
the right panel, we compare VISH2+1 results for EOS Q and
for SM-EOS Q, showing that even the tiny rounding effects
resulting from the smoothing procedure used in SM-EOS Q
(which renders the EOS slightly stiffer in the mixed phase)
lead to differences in the elliptic flow for peripheral collisions
of small nuclei which exceed the numerical error of the
code.

B. Comparison with analytical results for (0 + 1)-d
boost-invariant viscous hydro

For boost-invariant longitudinal expansion without
transverse flow, the relativistic Navier-Stokes equations
read [16]

∂e

∂τ
+ e + p + τ 2πηη

τ
= 0, (D1)

τ 2πηη = −4

3

η

τ
. (D2)

For an ideal gas EOS p = 1
3e ∼ T 4 this leads to the following

analytic solution for the temperature evolution [16]:

T (τ )

T0
=

(τ0

τ

)1/3
[

1 + 2η

3sτ0T0

(
1 −

(τ0

τ

)2/3
)]

. (D3)

To test our code against this analytical result, we initialize
VISH2+1 with homogeneous transverse density distributions
(not transverse pressure gradients and flow) and use the Navier-
Stokes identification πmn = 2ησmn in the hydrodynamic part
of the evolution algorithm, sidestepping the part of the code
that evolves πmn kinetically. It turns out that in this case,
the relativistic Navier-Stokes evolution is numerically stable.
Figure 23 compares the numerically computed temperature
evolution from VISH2+1 with the analytic formula (D3), for
η/s = 0.08 and T0 = 360 MeV at τ0 = 0.6 fm/c. They agree
perfectly.
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FIG. 23. (Color online) Comparison between the analytical
temperature evolution for (0 + 1)-d boost-invariant Navier-Stokes
viscous hydrodynamics and numerical results from VISH2+1 with
homogeneous transverse initial energy density profiles.

C. Reduction of VISH2+1 to relativistic Navier-Stokes theory for
small η and τπ

Having tested the hydrodynamic part of the evolution
algorithm in Appendix D 1, we would like to demonstrate also
the accuracy of the kinetic evolution algorithm that evolves
the viscous pressure tensor components. A straightforward
approach would be to take VISH2+1, set the relaxation time
τπ as close to zero as possible, and compare the result with a
similar calculation as in Appendix D 1 in which we sidestep
the kinetic evolution algorithm and instead insert directly into
the hydrodynamic evolution code the Navier-Stokes identity
πmn = 2ησmn. Unfortunately, this naive procedure exposes
us to the well-known instability and acausality problems
of the relativistic Navier-Stokes equations. The suggested
procedure only works if a set of initial conditions and transport
coefficients can be found where these instabilities do not kick
in before the freeze-out surface has been reached.

We found that sufficiently stable evolution of the rela-
tivistic Navier-Stokes algorithm (i.e., of VISH2+1 with the
identification πmn = 2ησmn) can be achieved for standard
initial density profiles in Cu + Cu collisions and the simple
ideal gas equation of state EOS I by choosing a very
small and temperature-dependent specific shear viscosity η

s
=

0.01 T
200 MeV = T

2 GeV . For the Israel-Stewart evolution, we use
a relaxation time that is correspondingly short: τπ = 3η

sT
=

0.03 fm/c.
Figure 24 shows the differential elliptic flow v2(pT ) for

gluons in b = 7 fm Cu + Cu collisions evolved with these
parameters. The dashed line gives the ideal fluid result. The
solid and dotted lines show the total elliptic flow and the
anisotropic flow contribution to v2(pT ), respectively, similar
to the left panel in Fig. 12. There are two solid and dotted
lines with different colors, corresponding to Israel-Stewart and
Navier-Stokes evolution; they are indistinguishable, but clearly
different from the ideal fluid result. We conclude that for small
shear viscosity η/s and in the limit τπ → 0, the second-order
Israel-Stewart algorithm reproduces the Navier-Stokes limit

0 1 2 3 4
p

T
(GeV)

0.1

0.2

0.3

0.4

0.5
v

2 ideal hydro
1st order viscous hydro
1st order viscous hydro (flow anisotropy only)
2nd order viscous hydro
2nd order viscous hydro (flow anisotropy only)

gluons

Cu+Cu, b=7 fm
EOS I

FIG. 24. (Color online) Differential elliptic flow v2(pT ) for
gluons from b = 7 fm Cu + Cu collisions, calculated with ideal
hydrodynamics, relativistic Navier-Stokes (NS) hydrodynamics, and
Israel-Stewart (IS) viscous hydrodynamics with η

s
= T

2 GeV and
τπ = 0.03 fm/c, using EOS I. The lines for NS and IS viscous
hydrodynamics are almost indistinguishable. Solid lines show the
full results from viscous hydrodynamics, dotted lines neglect viscous
corrections to the spectra and take only the flow anisotropy effect into
account.

and that, therefore, VISH2+1 evolves the kinetic equations for
πmn accurately.

APPENDIX E: HYDRODYNAMICS VS BLAST WAVE
MODEL

As discussed in Sec. III B, the viscous corrections to
the final pion spectra from the hydrodynamic model have a
different sign (at least in the region pT > 1 GeV) than those
originally obtained by Teaney [15]. In this Appendix we try
to explore the origins of this discrepancy. We will see that the
sign and magnitude of viscous corrections to the (azimuthally
averaged) particle spectra are fragile and depend on details
of the dynamical evolution and hydrodynamic properties on
the freeze-out surface. Fortunately, the same caveat does not
seem to apply to the viscous corrections to elliptic flow
where hydrodynamic and blast wave model calculations give
qualitatively similar answers.

Following Teaney’s procedure, we calculate πmn in the
Navier-Stokes limit πmn = 2ησmn. We do this both in the
blast wave model and using the results for σmn from VISH2+1.
For the blast wave model, we assume, as Teaney did, freeze-out
at constant τ with a boxlike density profile e(r) = edecθ (R0 −
r), where edec = 0.085 GeV/fm3 is the same freeze-out energy
density as in the hydrodynamic model for EOS I, and R0 = 6
fm. The velocity profile in the blast wave model is taken to
be linear, ur (r) = a0

r
R0

θ (R0 − r), with a0 = 0.5; freeze-out
is assumed to occur at τdec = 4.1 fm/c. R0, a0, and τdec are
somewhat smaller than in Ref. [15] since we study Cu +
Cu instead of Au + Au collisions. We concentrate here on
a discussion of πrr for illustration; the expression for σ rr

is found in Ref. [27], Eq. (A11c). While πrr from VISH2+1

differs from 2ησ rr because of the finite relaxation time τπ (see
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FIG. 25. (Color online) Top row: Velocity profiles from the blast wave model (left) and from the hydrodynamic model with EOS I at fixed
times (middle) and along the decoupling surface (right). Bottom row: The corresponding profiles for the transverse shear viscous pressure πrr

in the Navier-Stokes limit, πrr = 2η∇〈µ u ν〉. Calculations are for central Cu + Cu collisions, and the curves in the middle panels correspond
to the times τ = 1, 2, 4, and 6 fm/c.

Sec. V C), we have checked that the signs of these two
quantities are the same on the freeze-out surface so that
our discussion provides at least a qualitatively correct
analysis of the viscous spectra corrections in the two
models.

In Fig. 25, we compare the freeze-out profiles for the radial
flow velocity and 2ησ rr from the blast wave model. In spite of
the qualitative similarity of the velocity profiles, the freeze-out
profiles of 2ησ rr are entirely different and even have the
opposite sign in the region where most of the hydrodynamic
particle production occurs (left and right columns in Fig. 25).

The middle column shows that at fixed times τ , the hydrody-
namic profile for 2ησ rr shows some similarity with the blast
wave model in that 2ησ rr is positive throughout most of the
interior of the fireball. What matters for the calculation of the
spectra via Eq. (12), however, are the values of 2ησ rr on
the freeze-out surface � where they are negative, mostly
because of radial velocity derivatives. This explains the
opposite sign of the viscous correction to the spectra in the
hydrodynamic model and shows that as far as an estimate
of these viscous corrections goes, the blast wave model has
serious limitations.
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