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Nuclear fission with mean-field instantons
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We present a description of nuclear spontaneous fission, and generally of quantum tunneling, in terms of
instantons, that is, periodic imaginary-time solutions to time-dependent mean-field equations. This description
allows comparisons to be made with the more familiar generator coordinate (GCM) and adiabatic time-dependent
Hartree-Fock (ATDHF) methods. It is shown that the action functional whose value for the instanton is the
quasiclassical estimate of the decay exponent fulfills the minimum principle when additional constraints are
imposed on trial fission paths. In analogy with mechanics, these are conditions of energy conservation and
the velocity-momentum relations. In the adiabatic limit, the instanton method reduces to the time-odd ATDHF
equation, with collective mass including the time-odd Thouless-Valatin term, while the GCM mass completely
ignores velocity-momentum relations. This implies that GCM inertia generally overestimates the instanton-related
decay rate. The very existence of the minimum principle offers hope for a variational search for instantons. After
the inclusion of pairing, the instanton equations and the variational principle can be expressed in terms of
the imaginary-time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory. The adiabatic limit of this theory
reproduces ATDHFB inertia.
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I. INTRODUCTION

Decay of a metastable state of a system of interacting
fermions or bosons is an important phenomenon relevant to
nuclear, atomic, and condensed matter physics. The calculation
of decay rate requires the exact knowledge of the wave
function in the proper asymptotic region, which is usually
very difficult to achieve for many-body systems. In fact,
very often the only feasible description of systems including
hundreds or more particles relies on the quantum mean-field
theory. Unfortunately, such theory does not contain quantum
tunneling. This gives rise to a notorious arbitrariness in
calculations of decay rates or half-lives which concerns a
selection of relevant degrees of freedom and prescriptions for
potential and inertia parameters.

Specifically, within the Hartree-Fock (HF) method, static
equations give only saddle points of energy,

H[ψ∗, ψ] =
∫

dx
∑

k

h̄2

2m
∇ψ∗

k ∇ψk + V[ψ∗, ψ], (1)

with V[ψ∗, ψ] being potential energy, so one has to resort to
the time-dependent HF (TDHF) equations for dynamics

ih̄∂tψk(t) = ĥ(t)ψk(t) = − h̄2

2m
∇2ψk(t) + δV

δψ∗
k (t)

, (2)

with the mean-field single-particle (s.p.) Hamiltonian ĥ(t)
given by ĥ[ψ∗(t), ψ(t)]ψk(t) = δH/δψ∗

k (t), and the self-
consistent s.p. potential V̂ (t) given by δV/δψ∗

k (t) =
V̂ (t)ψk(t). For the case of energy H given by a density
functional, we assume in the following (if not indicated
otherwise) that it has properties of the expectation value of
the Hamiltonian. Although Eqs. (2) looks like the Schrödinger
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equation, in fact, it is a classical field equation as a result
of the nonlinear dependence of ĥ on ψk . The energy of
Eq. (1) and the overlaps 〈ψk | ψl〉 are conserved by Eqs. (2).
The energy conservation forbids a tunneling within TDHF, i.e.,
an escape from a minimum of H with energy lower than the
saddle. Evidently, this comes about by projection of the full
many-body theory onto Slater states.

A quasiclassical treatment of quantum tunneling within
the many-body mean-field theory, which is a natural gen-
eralization of the Gamow treatment of α decay to an
infinite-dimensional system of fields, leads to instantons, i.e.
imaginary-time solutions to TDHF equations [1]. This method
exploits an idea of trajectories evolving in imaginary time [2]
which emerge from the stationary-phase approximation to the
path-integral expression for Tr(E − Ĥ )−1. The decay rate of
a metastable state is proportional to exp(−S/h̄), where S is
action for the optimal instanton. We do not consider here
a prefactor coming from quantum fluctuations around the
optimal path.

For a particle in an external potential, such an optimal decay
trajectory describes classical motion in the inverted potential. It
starts at the metastable state (being a local maximum of the in-
verted well) and returns there after bouncing from the inverted
barrier, hence the name “bounce.” For a system of interacting
fermions, one has to transform TDHF Eqs. (2) to imaginary
time, i.e., formally, t → −iτ . Under this transformation, ψ →
ψ(x,−iτ ) = φ(x, τ ) and ψ∗ → ψ(x,−iτ )∗ = φ(x,−τ )∗ [1,
3]. It follows that density ρ(x, t) = ψ∗(x, t)ψ(x, t) transforms
to ρ(x, τ ) = φ(x,−τ )∗φ(x, τ ). This has important conse-
quences. First, the mean-field equations in imaginary time
[1,3,4]

h̄
∂φk

∂τ
(τ ) = −(ĥ(τ ) − εk)φk(τ )

= h̄2

2m
∇2φk(τ ) − δV

δφ∗
k (−τ )

+ εkφk(τ ), (3)
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are nonlocal in τ , as V as well as ĥ(τ ) = ĥ[φ∗(−τ ), φ(τ )]
depend on both φ(x, τ ) and φ(x,−τ ). Second, density ρ(x, τ ),
generally complex or piecewise negative, does not correspond
to any Slater determinant, unlike in the real-time dynamics.
In analogy with TDHF, Eqs. (3) conserve energy H(τ ) =
H[φ∗(−τ ), φ(τ )], with

H(τ ) =
∫

dx
∑

k

h̄2

2m
∇φ∗

k (−τ )∇φk(τ ) + V[φ∗(−τ ), φ(τ )].

(4)

The above formula means that one obtains H(τ ) replacing
everywhere ψ∗

k (t) by φ∗
k (−τ ) in the usual form of the

energy functional. Since the Hamiltonian is Hermitian, i.e.,
Ĥ+ = Ĥ , it follows that H(−τ ) = H∗(τ ), and the mean-field
Hamiltonian ĥ(τ ), defined by ĥ(τ )φ(τ ) = δH/δφ∗(−τ ), ful-
fills the condition ĥ(−τ ) = ĥ+(τ ). The latter ensures that
Eqs. (3) without the εkφk term conserves the overlaps:
d
dτ

〈φi(−τ ) | φj (τ )〉 = 0. The complete Eqs. (3) still conserves
diagonal overlaps, while giving the exponential time depen-
dence to the off-diagonal ones. However, those overlaps remain
zero for all τ , if they equal zero at some τ . As usual, the saddle
point approximation to the path integral leads to the periodicity
condition for the optimal trajectories. Hence, bounce is a
periodic instanton,

φk(T/2) = φk(−T/2), (5)

and the periodicity is enforced by the εkφk term in Eqs. (3). The
physical context imposes the specific boundary conditions on
bounce. For a description of the decay of a metastable ground
state, the initial (and thus also the final) states have to be chosen
equal to the HF solutions ψHF

k at the metastable minimum,
φk(T/2) = φk(−T/2) = ψHF

k , with total energy Egs, and the
parameters εk must be equal to the HF s.p. energies at this
minimum. The s.p. states φk(τ = 0) form some normal [as
φ∗

k (−τ ) = φ∗
k (τ ) at τ = 0] HF state at energy H = Egs on “the

other side of the barrier.” The periodicity condition together
with the initial condition fix the particular constant values of
the overlaps as

〈φi(−τ ) | φj (τ )〉 = δij . (6)

The decay exponent is given by [1,3]

S = h̄

∫ T/2

−T/2
dτ

∑
k

〈
φk(−τ )

∣∣∣∣∂φk

∂τ
(τ )

〉
. (7)

Bounce penetrates the static barrier, which is impermeable
for real-time solutions at the same energy, practically in a
finite time interval around τ = 0 and becomes infinitely slow
close to the endpoints, so that T extends to infinity [1,3,4].
Equations (3) determine both decay channels and decay
probabilities. No additional assumptions are necessary, as
they form a complete quasiclassical solution to the tunneling
problem within the mean-field theory.

Up to now, solutions of Eqs. (3) have been obtained only
for relatively simple systems [1,3–7]. The task of finding

instantons seems rather hopeless without a special treatment:
to handle nonlocality in τ, one could try to solve Eqs. (3)
together with

− h̄
∂[φk(−τ )]

∂τ
+ (ĥ(−τ ) − εk)φk(−τ ) = 0, (8)

describing instantons evolving backward, obtained from
Eqs. (3) by using the identity (∂τf )(−τ ) = −∂τ (f (−τ )).
However, Eq. (8) describes the inverse diffusion [cf. signs
of time and spatial derivatives in Eqs. (3) and (8)], which
leaves no hope for a stable solution. The problem seems more
difficult than a search for periodic solutions of the real-time
TDHF equations, which is known to be difficult enough. In
the presented form, the instanton approach did not lead to
any comparisons with the existing studies of fission, which
are mostly based either on the generator coordinate method
(GCM) in the Gaussian overlap approximation (GOA) or on
the adiabatic TDHF (ATDHF) method, either in its extreme
cranking or some more refined version.

In this work, we present the instanton method in familiar
terms of the HF or HFB theory. This helps one to grasp the
similarities and differences between this and other methods
and to clarify their interrelations. In particular, the instanton
turns out to be an imaginary-time analog of the self-consistent
TDHF solution in the representation of the time-even and time-
odd components of the density matrix [8]. Both produce the
same inertia in the ATDHF limit, when one includes time-odd
components only to the first order.

Moreover, it turns out that instanton action in Eq. (7) is
the minimum value of the action functional over a properly
constrained set of trial fission trajectories defined in the space
of Slater determinants [9]. Thus, any fission path that satisfies
these constraints provides the upper bound for the decay
exponent. This offers hope for a variational approach to finding
instantons. One may also expect that a good estimate of action
may be easier to find than that of the instanton itself.

The starting point is the realization that Eqs. (3) describe
two different sets of Slater determinants, bra 	(−τ ) built out
of φk(−τ ), and ket 	(τ ) built out of φk(τ ), while energy H is
equal to the off-diagonal energy overlap kernel in the sense of
GCM, that is, 〈	(−τ )|Ĥ |	(τ )〉/〈	(−τ )|	(τ )〉 [9]. It is the
difference between bra and ket that makes barrier tunneling
possible and allows the conservation of energy [Eq. (4)]. The
energy overlap kernel reduces to 〈	(−τ )|Ĥ |	(τ )〉 owing to
the choice of the overlap value 〈	(−τ )|	(τ )〉 = 1 that follows
from 〈φk(−τ )|φl(τ )〉 = δkl . However, the overlap of the
normalized bra and ket, (〈	(−τ )|	(−τ )〉〈	(τ )|	(τ )〉)−1/2, is
smaller than 1. Bounce may be thought of as one of many trial
tunneling paths {φk}, each given as two sets of wave functions,
{φ1k(τ )} and {φ2k(τ )}, defined on the interval [0, T /2], and
related to the variables of Eqs. (3):

φk(τ ) =
{
φ1k(−τ ) for τ < 0,

φ2k(τ ) for τ > 0

}
. (9)

At τ = 0, both 	1 and 	2 are equal to some constrained HF
(CHF) state 	(0) at the outer slope of the barrier with the
constraint −∂τ	(0). Equations (3) and (8), rewritten in terms
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of φ1k(τ ) and φ2k(τ ), are

h̄∂τφ2k + (ĥ(τ ) − εk)φ2k = 0,

−h̄∂τφ1k + (ĥ+(τ ) − εk)φ1k = 0, (10)

with ĥ(τ ) = ĥ[φ1k, φ2k]. It should be clear that one can equally
well use fields restricted to [−T/2, 0].

The paper is organized as follows: The main results for
the HF instanton method are contained in Secs. IV–VII.
These are the variational principle (Sec. IV), the formulation
in terms of coordinates and momenta and comparison with
the cranking method (Sec. V), the introduction of special
variables in the form of the time-even density matrix and the
time-odd Hermitian operator that make plain the adiabatic
limit of the theory (Sec. VI), and the demonstration that
the GCM+GOA action follows from that for instanton after
neglecting the velocity-momentum relations (Sec. VII). In
Sec. VIII, these results are generalized to systems with
pairing. Section III prepares useful formulas for later sections.
Section II introduces some unusual features of the instanton
method. Conclusions are given in Sec. IX.

II. GENERAL OVERVIEW

A few comments on several unusual features of the
instanton equations may be helpful. As the linear combination
of the s.p. wave functions changes their Slater determinant only
up to a factor, one may expect that the instanton equations may
be more general than Eqs. (3), which fixes in a specific way
the lengths and angles among each of the sets {φ1k} and {φ2k}
separately. Such a more general equation will imply a more
general expression for the instanton action than Eq. (7), and
both will be given in the next section.

The nonlocal in time form of the instanton equations follows
directly from the transformation of the standard variational
principle of the TDHF theory, δ

∫ 〈
(t)|ih̄∂t − Ĥ |
(t)〉dt =
0, to imaginary time, δ

∫ 〈	(−τ )|h̄∂τ + Ĥ |	(τ )〉dτ = 0.
Equations (3) and (8), without the periodicity-fixing terms,
have the canonical form in strange variables

h̄
∂φk(τ )

∂τ
= − δH

δφ∗
k (−τ )

,

h̄
∂[φ∗

k (−τ )]

∂τ
= δH

δφk(τ )
, (11)

none of which has a determined time parity. The usual canoni-
cal variables are τ -even coordinates and τ -odd momenta. Such
standard coordinates and momenta may be introduced by a
change of variables with the resulting equations of motion local
in time and canonical in form (Sec. V). It should be stressed
that a local form of the instanton equations does not facilitate
their solution but makes easier their comparison to other
theories of the large amplitude collective motion (LACM).
One possibility is given [3] by φk = √

ρk exp(−χk), with ρk

time-even and χk time-odd. For one real-valued wave function
and potential energy being a functional of density, V[ρ], one
obtains the continuity and “fluid velocity” equations, as for
the density-phase representation of the Schrödinger equation.

Energy H becomes

H = h̄2

m

∫
dx

[
− ρ(∇χ )2

2
+ (∇ρ)2

8ρ

]
+ V[ρ], (12)

where the minus sign shows the role of χ in the lowering of
energy down to Egs in the barrier region. From the boundary
conditions, symmetries of ρ and χ , and the continuity
equation, one obtains action S = (h̄2/m)

∫
dτdxρ(∇χ )2. For

simple systems, such as the Bose-Einstein condensate of
7Li atoms, this framework allows the exact treatment of the
collapse of the metastable state [7]. However, the density-phase
variables seem unsuitable for fermions because of the spinor
structure and the rearrangement of nodes of s.p. wave functions
along the barrier that makes phases singular. More appropriate
variables are defined in Secs. V and VI.

The other peculiarity of Eqs. (3) is that it may be thought of
as describing a forced motion. The mean field ĥ that causes the
evolution of 	(τ ) depends on 	(−τ ), so one may say that one
state drags the other. More specifically, as climbing the barrier
is impossible without an external drive, the drag is necessary at
the beginning of the motion from the metastable state through
the barrier and at the beginning of the return motion to the
metastable minimum. Action Eq. (7) is given by the integral
of the scalar product between the change in the driven state
and the state that drives it. For motions for which the result
of the dragging is fixed by the instanton boundary conditions,
there must be some minimal dragging that causes this (fixed)
result. Hence, one can expect that there is a minimum principle
that selects instantons. If so, then solving Eqs. (3) and finding
the decay exponent could be done by a minimization of a
functional. The functional is practically given by Eq. (7).
What remains to be done is to learn the necessary additional
constraints that make this action minimal for instantons.

In fission studies, mean-field states are parametrized by
expectation values of observables that provide coordinates
along the barrier, called deformations. Consider as an ex-
ample the quadrupole moment Q̂. For bounce states 	(τ ),
one has two possible labels. Within the imaginary-time
formalism, a natural choice is Q(τ ) = 〈	(−τ )|Q̂|	(τ )〉 =∑

k〈φk(−τ )|Q̂|φk(τ )〉. Since Q̂ is Hermitian, Q(−τ ) =
Q∗(τ ), and Q̇(τ ) = dQ/dτ = ∑

k〈φk(−τ )|[ĥ(τ ), Q̂]|φk(τ )〉,
with Q̇(−τ ) = −Q̇∗(τ ). Thus the real part of Q̇(τ ) fixes τ = 0
as the return (or bounce) point. Another possibility is to
trace the deformation of the normalized state 	(τ ), that is,
q(τ ) = 〈	(τ )|Q̂|	(τ )〉/|	(τ )|2. Generally, q(τ ) �= Q(τ ) and
q(τ ) �= q(−τ ), except for τ = 0 and ±T/2.

Instanton cannot depend solely on a time-even variable like
the real part of Q, as then Eqs. (3) at τ = 0 would require a
static HF solution without constraints which cannot exist on
the barrier slope. One can observe that the derivative q̇(τ = 0)
is equal to 2�∑

k〈[∂τφk(0)]⊥|Q̂|φk(0)〉, where [∂τφk(0)]⊥ is
perpendicular to all φk(0). Considering 	(0) as a stationary HF
state with the constraint −∂τ	(0), one can see that q̇(0), up to
a positive constant, is the scalar product of two constraints: the
one of instanton at τ = 0 [Eqs. (3)] and the other, −Q̂	(0), the
proper quadrupole constraint on the slope where ∂H/∂Q < 0.
Since φk(0) lives on this slope and has the quadrupole moment
Q(0), it must be close to some Q̂-constrained HF state. Hence
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this scalar product and the derivative q̇(0) are very likely
positive. Indeed, it was found positive in the simple model [7].
If so, the return point for the coordinate q(τ ) is at τ > 0,
which means that at τ = 0 the quadrupole moment of the
normalized state 	2 still increases, while that of 	1 (instanton
evolving backward) decreases. Moreover, as calculations show
for simple systems, states φ1k and φ2k with the same q are
different. Thus, neither Q nor q are sufficient as labels for
bounce.

In general, the instanton mean field is not Hermitian. The
condition it satisfies, ĥ(−τ ) = ĥ+(τ ), imposes the following
conditions on the Hermitian and anti-Hermitian parts of its
standard decomposition: ĥ(τ ) = ĥR(τ ) + ĥA(τ ), ĥR(−τ ) =
ĥR(τ ) = ĥ+

R (τ ), and ĥA(−τ ) = −ĥA(τ ) = ĥ+
A(τ ). The anti-

Hermitian mean field ĥA comes from τ -odd components of
densities appearing in energy H, either in the form of the
expectation value of Ĥ or in the form of the energy functional.
In the latter case, as for the Skyrme energy functional, the
generic contribution to ĥA in the tunneling problem comes
from the current density j. In the imaginary-time formalism, it
takes a form j(τ ) = ∑

k[φk(τ )∇φ∗
k (−τ ) − φ∗

k (−τ )∇φk(τ )]/2,
which follows from this part of Eqs. (3) that shows the
continuity of the probability flow. It follows that j(−τ ) =
−j∗(τ ). This differs by the factor (−i) from the conventional
current in the real-time TDHF. As a result, the time-odd
contribution to the TDHF mean field i · j · ∇ becomes −j · ∇
in the imaginary-time formalism. Its anti-Hermitian part is
proportional to the real part of j(τ ), and the latter appears
as soon as the real parts of functions φk(τ ) and φk(−τ )
become different. The time-odd mean field ĥA is the immediate
imaginary-time analog of the Thouless-Valatin potential in
TDHF [10], and we will use this name for it.

III. VARIOUS FORMS OF INSTANTON ACTION AND
EQUATIONS

The value of S that determines the fission probability relies
only on a part of the information contained in the bounce solu-
tion. By using the general identities (∂τf )(−τ ) = −∂τ (f (−τ ))
and

∫ a

−a
dτ [f (τ ) − f (−τ )] = 0 and the constancy of diagonal

overlaps Eq. (6), one can recast Eq. (7) into the following
forms:

S/h̄ = −
∫ T/2

−T/2
dτ

∑
k

〈φk(τ )|∂τ [φk(−τ )]〉

= �
∫ T/2

−T/2
dτ

∑
k

〈φk(−τ )|∂τφk(τ )〉

= 2�
∫ T/2

0
dτ

∑
k

〈φk(−τ )|∂τφk(τ )〉. (13)

The first equality shows that the action for instanton evolving
backward in time, φk(−τ ), equals the minus action for the
instanton. The second equality shows that the instanton action
is a real number; the third one expresses action in terms of
variables φ1k and φ2k defined by Eqs. (10).

Since ∂τ |φk〉 = (∂τ ln |φk|)|φk〉 + v, with v⊥|φk(τ )〉, and
φl(τ ) for all l �= k are perpendicular to φk(−τ ), the integrand

〈φk(−τ )|∂τφk(τ )〉 is the sum of the full derivative plus the
contribution from the component [∂τφk]⊥ of the derivative
∂τφk orthogonal to the subspace spanned by all vectors
{φk(τ )}Nk=1. After integration from −T/2 to T/2, only the latter
contribution is left, that is,

S = h̄

∫ T/2

−T/2
dτ

∑
k

〈
[φk(−τ )]⊥

∣∣∣∣ [∂φk

∂τ
(τ )

]
⊥

〉
, (14)

where [φk(−τ )]⊥ is the component of φk(−τ ) perpendicular
to {φk(τ )}Nk=1. This shows that [φk(−τ )]⊥ are the essential
variables conjugate to φl(τ ), while the components of φk(−τ )
in the subspace {φk(τ )}Nk=1 are completely fixed by the overlap
constraints (6).

As bounce 	(τ ) is a closed cycle in the Hilbert space
[	(−τ ) �= 	(τ ) unlike for a line segment], action S may be
written in a form of the contour integral

S = h̄

∮ ∑
k

〈φk(−τ )|dφk(τ )〉, (15)

which manifests reparametrization invariance of S: it does not
depend at all on the instanton “speed.” As can be seen from
Eq. (15), the only important features are the path traced by
|φk〉 in the vector space of s.p. states and the rule which
associates pairs 〈φk(−τ )| and |φk(τ )〉. Reparametrizations
of imaginary time, τ → θ (τ ), which are both invertible
(dτ/dθ > 0) and consistent with the association rule τ (−θ ) =
−τ (θ ), [τ (−
/2) = −T/2, τ (
/2) = T/2], leave S invari-
ant. However, the reparametrized bounce, φk(θ ) is not a
solution to Eqs. (3). Instead, it solves

h̄
∂φk

∂θ
(θ ) + dτ

dθ
(ĥ(θ ) − εk)φk(θ ) = 0. (16)

One can recover action if bounce is known up to a
τ -dependent invertible linear transformation. Consider states
ψk(τ ) related to bounce φk(τ ) by means of such a transforma-
tion N (τ ):

φk(τ ) =
∑

l

Nlk(τ )ψl(τ ). (17)

Assume N (τ ) = I at τ = ±T/2 and τ = 0. Suppose that the
overlaps 〈ψk(−τ )|ψl(τ )〉 are given by the matrix M(τ ):

Mkl(τ ) = 〈ψk(−τ )|ψl(τ )〉, (18)

so that M(−τ ) = M(τ )+. The condition 〈φk(−τ )|φl(τ )〉 = δkl

means that

N+(−τ )M(τ )N (τ ) = I, (19)

which leads to M−1(τ ) = N (τ )N+(−τ ). Calculate action in
terms of states ψk(τ ). The integrand is∑

ikl

N∗
ki(−τ )〈ψk(−τ )|∂τ [Nli(τ )ψl(τ )]〉

=
∑
kl

M−1
lk (τ )〈ψk(−τ ) | ∂τψl(τ )〉+

∑
il

N−1
il (τ )(∂τNli(τ )).

(20)
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The second term is just TrN−1∂τN = ∂τ (ln det N ). From
Eq. (13) one obtains

S/h̄ = 2�
∫ T/2

0
dτ

∑
kl

M−1
lk (τ )〈ψk(−τ )|∂τψl(τ )〉, (21)

where the omitted residual term, � ∫ T/2
−T/2 dτ∂τ (ln det N (τ )) is

identically zero, and the integration interval may be reduced
to [0, T /2] due to the properties of M(τ ). Expanding either
∂τψk(τ ) or ψk(−τ ) onto ψl(τ ) and a component perpendicular
to all {ψk(τ )}Nk=1, one notices that only the part [∂τψk(τ )]⊥
orthogonal to all ψl(τ ) contributes to the action S/h̄ =
2� ∫ T/2

0 dτ
∑

kl M
−1
lk (τ )〈[ψk(−τ )]⊥|[∂τψl(τ )]⊥〉.

The Slater determinants |
(τ )〉, built out of ψk(τ ), are
related to bounce determinant states |	(τ )〉 by |	(τ )〉 =
det N (τ )|
(τ )〉, so that 〈
(−τ )|
(τ )〉 = det M(τ ) and H =
〈	(−τ )| Ĥ |	(τ )〉 = 〈
(−τ )| Ĥ |
(τ )〉/〈
(−τ )| 
(τ )〉.
Therefore, energy overlap kernel H, like the action, does not
involve N (τ ) alone and may be expressed as [11]

H =
∑

i

〈ψi(−τ )|t̂ |ψ ′
i (τ )〉

+ 1

2

∑
i,j

〈ψi(−τ )ψj (−τ )|v̂|ψ ′
i (τ )ψ ′

j (τ )

−ψ ′
j (τ )ψ ′

i (τ )〉, (22)

where the states ψ ′(τ ) are related to ψ(τ ) via ψ ′
i (τ ) =∑

k M−1
ki (τ )ψk(τ ). The s.p. Hamiltonian ĥ may be expressed

in terms of various densities that do not involve N (τ ) either,
as, for example, ρ(τ ) = ∑

i ψ
∗
i (−τ )ψ ′

i (τ ) = ∑
k |ψk(τ )|2 +∑

kl M
−1
kl (τ )[ψ∗

l (−τ )]⊥ψk(τ ), etc. Equations (3) do involve
N (τ ):

h̄∂τψk + ĥψk +
∑

l

h̄[(∂τN )N−1]lkψl

−
∑

l

[ ∑
m

NlmεmN−1
mk

]
ψl = 0. (23)

But they become independent of it when projected onto a space
orthogonal to all {ψk(τ )}Nk=1:

(h̄∂τψk(τ ) + ĥ(τ )ψk(τ ))⊥ = 0, (24)

and only this part is relevant for action.
When the transformation N (τ ) has the property of a

“generalized unitarity,” i.e., N−1(τ ) = N+(−τ ), the overlaps
of states ψk(−τ ) and ψl(τ ) have canonical form M−1(τ ) =
N (τ )N+(−τ ) = I . Then each of the matrices NεN−1 and
(∂τN )N−1 has a Hermitian component that is τ -even and
an anti-Hermitian component that is τ -odd. For an arbitrary
nonsingular N (τ ), in particular, one that keeps states ψk(τ )
orthonormal, the matrix M(τ ) in general depends on τ and has
no defined τ parity. Conversely, a general form of the instanton
equation

h̄∂τψk(τ ) + ĥ(τ )ψk(τ ) +
∑

l

Elk(τ )ψl(τ ) = 0, (25)

preserves the overlaps in Eq. (6) if E(τ ) has Hermitian τ -even
and anti-Hermitian τ -odd parts. There is a great variety

of possible instanton representations with different overlaps
〈ψk(τ )|ψl(τ )〉 corresponding to different matrices E . The
periodicity condition for instanton imposes integral conditions∫ T/2
−T/2 dτ∂τ (〈ψk(τ )|ψl(τ )〉) = 0, i.e., integral relations between

the matrix elements of ĥR, E, and the overlaps 〈ψk(τ )|ψl(τ )〉∫ T/2

−T/2

(
2〈ψk(τ )|ĥR(τ )|ψl(τ )〉

+
∑
m

[E∗
mk(τ )〈ψm(τ )|ψl(τ )〉 + 〈ψk(τ )|ψm(τ )〉Eml(τ )]

)
= 0. (26)

To ensure orthonormal {ψk} at τ = 0, both sets of integrals,∫ T/2
0 and

∫ 0
−T/2, should be zero. From Eqs. (3), we know

that Ekl = −εkδkl provides one of the possible choices, but
obviously there are many others, among them those with the
diagonal matrix E , i.e., with some τ -dependent s.p. energies
εk(τ ).

For representations with orthonormal s.p. states ψk(τ ),
as for the usual HF determinants, Eq. (6) does not hold,
while the following relations are satisfied: ψk(−τ ) = ∑

i

M∗
ki(τ )ψi(τ ) + [ψk(−τ )]⊥, and 〈[ψk(−τ )]⊥| [ψl(−τ )]⊥〉 =

δkl − (M(τ )M+(τ ))kl . Among them exists a special represen-
tation for which 〈ψk(τ )|∂τψl(τ )〉 = 0, which means that ∂τ as
an operator has only particle-hole (p-h) matrix elements. This
corresponds to the matrix E which fulfills the equality E = −ĥ

on the subspace spanned by {ψk(τ )}Nk=1.

IV. VARIATIONAL PRINCIPLE FOR BOUNCE ACTION

Consider variation of action S treated as a functional on trial
fission paths defined in terms of s.p. states φ1k(τ ) and φ2k(τ )
for 0 < τ < T/2 as in Eq. (9), fulfilling instanton boundary
conditions

δ(S/h̄) =
∑

k

∫ T/2

−T/2
[(〈δφk(−τ )|∂τφk(τ )〉

− 〈∂τ [φk(−τ )]|δφk(τ )〉]

=
∑

k

∫ T/2

0
[〈δφ1k(τ )|∂τφ2k(τ )〉

− 〈∂τφ1k(τ )|δφ2k(τ )〉] + c.c. (27)

If the states φ2k fulfill the first set of Eqs. (10) with φ1k taken
as the bra, then

δS =
∑

k

∫ T/2

0
[〈δφ1k(τ )|εk − ĥ(τ )|φ2k(τ )〉

− 〈h̄∂τφ1k(τ )|δφ2k(τ )〉] + c.c. (28)

If, additionally, energy is kept constant so that variations fulfill

δH =
∑

k

[〈δφ1k(τ )|ĥ(τ )φ2k(τ )〉+〈ĥ(−τ )φ1k(τ )|δφ2k(τ )〉]

= 0, (29)
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then, since 〈φ1k(τ )|φ2k(τ )〉 = 1, variation of S reads

δS =
∑

k

∫ T/2

0
〈(ĥ(−τ ) − εk)φ1k(τ )

− h̄∂τφ1k(τ )|δφ2k(τ )〉 + c.c. (30)

As may be seen from this equation, after the first set of
Eqs. (10) and the condition H = Egs are fulfilled, action S

ceases to be a functional of both φ1k and φ2k and becomes
a functional of φ2k and their time derivatives ∂τφ2k . Through
the s.p. Hamiltonian, the functions φ1k provide the drive for
φ2k that is exactly required to produce ∂τφ2k . As we have
argued in Sec. II, and as follows from the physical meaning
of action, for such a driven motion, S must be positive. Since
δS[φ2k] in Eq. (30) vanishes for φ1k that fulfill the second set
of instanton equations (10), i.e., when φ1k and φ2k together
form the instanton, the instanton action must be a minimum of
S[φ2k]. Thus, for φ2k and φ1k such that both fulfill the instanton
boundary conditions, the overlap condition Eq. (6), the energy
condition H = Egs and φ1k solve the first set of Eqs. (10) for
∂τφ2k; the calculated action provides an upper bound for action
of the optimal (i.e., the one with the smallest action, if there
are a few) instanton. That the last condition is necessary may
be seen from the negative sign of action for bounces evolving
backward in τ , Eq. (13). The assumption that half of the bounce
equations are fulfilled eliminates trial paths with admixtures
of instantons evolving backward, which would leave the sign
of action undecided. (Note that action for instanton evolving
backward attains the maximal among negative values.) This
is in complete analogy to mechanics, where the real motion
(qi, q̇i) minimizes action

∫ ∑
i pidqi under the condition of

constant energy provided that canonical relations q̇i = ∂H/∂pi

are satisfied on each path. The variables introduced in the next
section will make this analogy even closer.

One can use the principle of minimal action for any
representation of a trial path. A simple choice is to take for
ψ2k some orthonormal HF states with the proper boundary
conditions and to look for [ψ1k]⊥ such that 〈ψ2l | [ψ1k]⊥〉 =
0 and ψ1k = ψ2k + [ψ1k]⊥ fulfills Eq. (24) with some τ

reparametrization as in Eq. (16), that is,

(θ̇∂θψ2k + ĥ[ψ1k, ψ2k]ψ2k)⊥ = 0. (31)

In this representation, the overlap conditions are automatically
fulfilled. Leaving τ reparametrization free, one gains a param-
eter θ̇ that allows one to control bounce velocity, i.e., the energy
condition. One can decompose the s.p. mean-field Hamiltonian
as suggested by the formula for density ρ preceding Eq. (23),
ĥ[ψ1k, ψ2k] = ĥ[ψ2k] + �V̂ [[ψ1k]⊥, ψ2k], with V̂ the s.p.
potential, so that the equation for [ψ1k]⊥ becomes

− (θ̇∂θψ2k + ĥ[ψ2k]ψ2k)⊥ = (�V̂ [[ψ1k]⊥, ψ2k]ψ2k)⊥. (32)

For complex wave functions, Eq. (32) should be solved
together with its complex conjugate for both [ψ1k]⊥ and
[ψ∗

1k]⊥. For small [ψ1k]⊥, one could expand the right-hand side
of this equation to linear terms in particle-hole components
[ψ1⊥]ph with respect to {ψ2h}, [ψ1h]⊥ = ∑

p[ψ1⊥]ph|p〉, and
try to solve the system of linear equations with the matrix
∂[�V̂ ψ2h]p/∂[ψ∗

1⊥]p′h′ . This matrix, 〈pp′|v̂|h̃h′〉, where tilde
means antisymmetrization, is the off-diagonal block of the

RPA matrix (with respect to the HF state built of {ψ2h}), which
also appears in the ATDHF, cf. Eqs. (2.25)–(2.29) and (8.24)
in Ref. [8], also Ref. [12]. The solution of Eq. (32) should be
obtained for many velocities θ̇ to find the one that matches
the energy condition. For larger barriers, larger differences
between ψ1k and ψ2k are necessary to lower the energy overlap
kernel H to Egs. Then, the solution to Eq. (31) or (32) beyond
the linear limit does not seem trivial. However, if found by any
means, it provides action S as an upper bound for the decay
exponent.

V. INSTANTONS IN COORDINATE-MOMENTUM
VARIABLES

There are natural choices of instanton variables that corre-
spond to time-even coordinates and time-odd momenta. One
possibility is given [9] by φk(τ ) = ϕk(τ ) − ξk(τ ), φk(−τ ) =
ϕk(τ ) + ξk(τ ). It follows that ϕk(−τ ) = ϕk(τ ) and ξk(−τ ) =
−ξk(τ ). Because of the boundary conditions, ϕk(±T/2) =
ψHF

k , ϕk(0) = φk(0), and ξk(±T/2) = ξk(0) = 0. Thus, ϕk

are average tunneling states (coordinates) which may be
parametrized by some deformation Q(τ ) (or its real part,
cf. Sec. II), so that ∂τϕk = Q̇∂Qϕk . The τ -odd components
ξk must be proportional to the τ -odd derivative Q̇(τ ), i.e., the
collective velocity. These two sets of states fulfill the system
of equations

h̄
∂

∂τ

(
ϕk

ξk

)
=

( −ĥA , ĥR − εk

ĥR − εk , −ĥA

)(
ϕk

ξk

)
, (33)

where we have used decomposition ĥ(τ ) = ĥR + ĥA. These
equations may be obtained either by decomposing Eqs. (3)
or by deriving equations of motion from the functional∫

dτ 〈	(−τ )|h̄∂τ + Ĥ |	(τ )〉 expressed by ϕk and ξk . In the
latter case, one has to remember that ϕk(−τ ) and ξk(−τ ) no
longer exist as independent variables. The canonical form of
Eqs. (33), without the periodicity-fixing terms, is

h̄
∂ϕk(τ )

∂τ
= − δH

δξ ∗
k (τ )

,

h̄
∂ξk(τ )

∂τ
= δH

δϕ∗
k (τ )

, (34)

with canonical pairs (ϕk, ξ
∗
k ) and (ϕ∗

k , ξk). Densities may
be expressed in terms of ϕk and ξk , for example, one has
ρ(x) = ∑

k[|ϕk(x)|2 − |ξk(x)|2 − 2i�(ϕ∗
k (x)ξk(x))], etc. The

conserved overlaps in terms of the amplitudes ϕk and ξk read

〈ϕk|ϕl〉 − 〈ξk|ξl〉 = δkl,

〈ϕk|ξl〉 − 〈ξk|ϕl〉 = 0. (35)

The first set of Eqs. (33) is consistent with ξk being
proportional to the collective velocity Q̇(τ ). In particular, ĥA

contains ξk in odd orders; for example, the anti-Hermitian
component of the part (−j · ∇) of the Skyrme-type s.p. mean
field is proportional to a piece −[(ξ ∗

i ∇ϕi − ϕ∗
i ∇ξi)/2 + c.c.]

of the current density j. The adiabatic limit corresponds to
small Q̇ and thus small |ξk|.
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It may be seen that the instanton dependence on Q̇ allows
one to satisfy the bounce condition at τ = 0. As ξk = Q̇ξ̄k

with ξ̄k τ -even, the time derivative in the second set of
Eqs. (33), Q̈ξ̄k + Q̇2∂Qξ̄k reduces to Q̈ξ̄k at τ = 0, where Q̇ =
0 (we assume real Q). Then ĥA(0) = 0, so from the first set of
Eqs. (33), ξ̄k(0) = (

ĥ(0) − εk

)−1
∂Qϕk(0). Substituting this

into the second set, we obtain the bounce condition at τ = 0

Q̈
∂ϕk

∂Q
(0) = (ĥ(0) − εk)2ϕk(0), (36)

where Q̈ = 1
2dQ̇2/dQ is negative at τ = 0, and Q̇2 is

determined as a function of Q by the energy condition
H[ϕk(Q), Q̇ξ̄k(Q)] = Egs. The exact Eq. (36) follows from
the combined Eqs. (33) and therefore should not be imposed
on trial paths in a variational search for instantons.

Because of the symmetry properties of the amplitudes, the
action reads

S/h̄ = 2�
∫ T/2

−T/2
dτ

∑
k

〈
ξk

∣∣∣∣∂ϕk

∂τ

〉
. (37)

In this expression, one immediately recognizes the familiar
form

∫
pidqi . The first set of Eqs. (33) are the velocity-

momentum relations that should be fulfilled on trial trajectories
in a search for bounce as a minimum of the action functional.
Solving formally for momenta ξk and substituting into the
action, one obtains

S = 2h̄
∫ T/2

−T/2
dτ

∑
k

〈
h̄

∂ϕk

∂τ
+ ĥA(τ )ϕk

∣∣∣∣ 1

ĥR(τ ) − εk

∣∣∣∣∂ϕk

∂τ

〉
.

(38)

Let us compare this formula with a standard treatment of
the spontaneous fission, in which one uses a family of static
HF states, each constrained to have a prescribed quadrupole
moment q, with values of q covering the barrier region. In such
a study, one has to assume some form of the mass parameter
M(q) that allows one to express collective kinetic energy as
1
2M(q)q̇2 and action as

∫
M(q)q̇dq, with the implicitly un-

derstood energy conservation V (q) − Egs = 1
2M(q)q̇2. In the

cranking approximation, M(q) = 2h̄2 ∑
k〈∂ψk/∂q|(ĥad(q) −

ek(q))−1|∂ψk/∂q〉, with the adiabatic mean-field Hamiltonian
ĥad and its eigenenergies ek depending on q. After introducing
a reparametrization q(t) in terms of some “time” variable t to
have the correspondence with Eq. (38), action in the cranking
approximation can be written as

Scrank = 2h̄2
∫ T/2

−T/2
dt

∑
k

〈
∂ψk

∂t

∣∣∣∣ 1

ĥad(t) − ek(t)

∣∣∣∣∂ψk

∂t

〉
. (39)

One can see that Eq. (38), after neglecting the Thouless-
Valatin term, is deceptively similar to the cranking expression.
(The Thouless-Valatin term changes cranking masses by less
than 20% [13].) However, a closer look reveals important
differences: the constants εk in the denominator in Eq. (38)
are the s.p. energies at the metastable HF minimum, not the
adiabatic eigenenergies ek(q(t)); the states ϕk , generally not
orthonormal, are not equal to the adiabatic s.p. eigenstates
ψk(q(t)); and the self-consistent s.p. Hamiltonian in the instan-
ton method depends on τ -odd amplitudes, ĥ = ĥ[ϕk, ξk], and

this requires an iterative solution of the velocity-momentum
relations.

As follows from Sec. III, εk could be replaced in the
instanton Eqs. (10) and (33) by some τ -dependent quantities
ε̃k(τ ). Such a change results from scaling the s.p. bounce states
via φk(τ ) = φ′

k(τ ) exp[
∫ τ

0 (εk − ε̃k(τ ′))dτ ′h̄], with τ -even ε̃k .
This is a particular linear transformation of the type in
Eq. (17) which preserves the canonical overlaps [Eq. (6)]
and the periodicity, if the conditions

∫ T/2
0 dτ�εk(τ )/h̄ = 0

are satisfied with �εk = εk − ε̃k(τ ). After such transforma-
tion, ξk = cosh(y)ξ ′

k − sinh(y)ϕ′
k with y(τ ) = ∫ τ

0 dτ ′�εk/h̄,
so both ξ ′

k and y have to be of the order Q̇ to keep ξk ∼ Q̇ for
smallQ̇. This requires that the average �εk be of the order Q̇2,
so only a mild deformation dependence of adiabatic energies
is compatible with bounce properties.

A trial fission path is adiabatic if {ϕk} differ only a little from
orthonormal eigenstates of ĥR with energies ε̃k(τ ) obtained
by such a rescaling, and the velocity-momentum relations
produce small ξk . Then ĥR[ϕk] may be considered the adiabatic
mean field, and the cranking amplitudes ξk solve the second
set of Eq. (35). This suggests (and will be shown by a different
method in the next section) that in the adiabatic limit, Scrank

provides an upper bound of Eq. (38) with the neglected
Thouless-Valatin term.

Otherwise, when the larger ξk are required, the self-
consistency and conditions in Eq. (35) induce a large difference
between the contents of the cranking and instanton-motivated
forms of action. For ξk not small, the enforcement of the
velocity-momentum conditions together with Eq. (35) seems
difficult. The same difficulty remains in the action minimiza-
tion within this representation: since the properties of solutions
to Eqs. (33) are not ensured for trial paths, the conditions for
overlaps of Eq. (35) should be imposed on them independently
of other necessary conditions.

VI. ADIABATIC LIMIT OF THE INSTANTON METHOD

A framework analogous to that of the ATDHF theory may
be obtained by defining other variables. One can observe that
because of the overlap conditions in Eq. (6), a linear transfor-
mation that maps each φk(τ ) into φk(−τ ) may be completed
to a positive Hermitian operator. Denoting the square root of
this operator at each τ as exp(Ŝ(τ )), with Ŝ(τ ) Hermitian, we
have exp(2Ŝ(τ ))φk(τ ) = φk(−τ ) for all τ and k. Substituting
−τ for τ in this relation and comparing both, we infer that
Ŝ(−τ ) = −Ŝ(τ ). Then, exp(Ŝ(τ ))φk(τ ) = exp(Ŝ(−τ ))φk(−τ )
for all τ and k. This means that the above-defined vectors,
which we will call ψ0k(τ ), are time-even and orthonormal.
Thus we have

φk(τ ) = exp(−Ŝ(τ ))ψ0k(τ ),

φk(−τ ) = exp(Ŝ(τ ))ψ0k(τ ), (40)

with ψ0k(τ ) some τ -even orthonormal states and Ŝ(τ ) a
τ -odd operator. The relation of these new variables to those
from the previous section is given by ϕk = cosh(Ŝ)ψ0k and
ξk = sinh(Ŝ)ψ0k . The condition Ŝ+ = Ŝ ensures the constant
overlaps of Eq. (6). The bounce boundary conditions in terms
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of the new coordinates read ψ0k(±T/2) = ψHF
k , ψ0k(0) =

φk(0) and Ŝ(±T/2) = Ŝ(0) = 0. The states ψ0k define a τ -even
density matrix analogous to the ρ0 of the ATDHF theory [12].
However, the object e−Ŝρ0e

Ŝ does not define any density
matrix, contrary to eiχ̂ρ0e

−iχ̂ of the ATDHF. The τ -odd
matrix Ŝ must be proportional to Q̇(τ ). It introduces time-odd
components to the s.p. wave functions, and its smallness
is equivalent to the adiabaticity condition. The instanton
equations may be written as

h̄(eŜ(∂τ e
−Ŝ)ψ0k + ∂τψ0k) + eŜ(ĥ(τ ) − εk)e−Ŝψ0k = 0.

(41)

Using expansions (with any operator O)

eŜOe−Ŝ = O + [Ŝ,O] + 1

2!
[Ŝ, [Ŝ,O]]

+ 1

3!
[Ŝ, [Ŝ, [Ŝ,O]]] + · · · ,

eŜ(∂τ e
−Ŝ) = −

(
∂τ Ŝ + 1

2!
[Ŝ, ∂τ Ŝ] + 1

3!
[Ŝ, [Ŝ, ∂τ Ŝ]] + · · ·

)
,

(42)

one can split Eq. (41) into τ -even and τ -odd parts. The
equations so obtained are exact when the full expansion is
kept. Since ĥ = ĥ[eŜψk0, e

−Ŝψk0], ĥR(τ ) contains all even and
ĥA(τ ) all odd orders of Ŝ. The approximation valid to the nth
order in Ŝ consists in keeping the appropriate number of terms
in both ĥR and ĥA in each term of the equations.

In the adiabatic limit, one expects that the time derivative
introduces one order of smallness; so, for example, ∂τ Ŝ is of
the order of Ŝ2. Then, up to the terms of the second order in Ŝ

the equations read(
ĥR − εk − h̄∂τ Ŝ + 1

2
[Ŝ, [Ŝ, ĥ0]] + [Ŝ, ĥA]

)
ψ0k = 0,

h̄∂τψ0k + (
[Ŝ, ĥ0] + ĥA

)
ψ0k = 0, (43)

with the first order ĥA, and ĥR of the order zero, equal to ĥ0 =
ĥ[ψ0k], except for the first term of the first equation, where
the second order ĥR should be used. In the time-odd equation,
the lacking terms start at the order three and would include
− h̄

2 [Ŝ, ∂τ Ŝ]ψ0k , etc. As discussed in the previous section, the
difference between constants εk and the adiabatic energies
εk(τ ), which may be understood as the expectation values
〈ψ0k|ĥ0|ψ0k〉, resides in the diagonal part of ∂τ Ŝ, generically
of the order Q̇2. Clearly, not every static HF path is a proper
candidate for τ -even bounce components ψ0k , even if bounce
is adiabatic (i.e. Ŝ is small).

In terms of ψ0k and Ŝ, action is given by

S/h̄ = �
∫ T/2

−T/2

∑
k

〈ψ0k|eŜ(∂τ e
−Ŝ)|ψ0k〉, (44)

as the part of the integrand involving ∂τψ0k is identically zero
because of the normalization of ψ0k .

The approximation analogous to the ATDHF involves
solving the second Eq. (43) up to the first order in Ŝ. With
a given Hamiltonian, energy up to the second order in Ŝ reads
H0 + 1

2 〈
0|[Ŝ, [Ŝ, Ĥ ]]|
0〉, withH0 = 〈
0|Ĥ |
0〉. The term

quadratic in Ŝ is negative and equal to Tr(ρ0[Ŝ, [Ŝ, ĥ0] +
ĥA])/2, with ĥ0 = ĥ[ρ0] and ĥA linear in Ŝ. The latter operator
is defined through its matrix elements between arbitrary states
|α〉 and |β〉 as

〈α|ĥA|β〉 =
∑

k

(〈α(Ŝψ0k)|v̂|β̃ψ0k〉

− 〈αψ0k|v̂| ˜β(Ŝψ0k)〉), (45)

with the tilde denoting antisymmetrization. Up to
the second order in Ŝ, action is given by S/h̄ =
−� ∫ T/2

−T/2

∑
k〈ψ0k|∂τ Ŝ|ψ0k〉, which may be expressed as

S/h̄ = 2�
∫ T/2

−T/2

∑
k

〈ψ0k|Ŝ|∂τψ0k〉. (46)

The lacking terms start at the order four, as the con-
tribution of the order three, with the time-odd integrand
−Tr(ρ0[Ŝ, ∂τ Ŝ])/2, vanishes. After using the second Eq. (43),
action in the adiabatic limit reads

S = −
∫ T/2

−T/2
dτ

∑
k

(〈ψ0k|Ŝ(ĥA + [Ŝ, ĥ0])|ψ0k〉 + c.c.)

= −
∫ T/2

−T/2
dτ

∑
k

〈ψ0k|[Ŝ, ĥA + [Ŝ, ĥ0]]|ψ0k〉, (47)

and hence is equal to the integral of −〈
0|[Ŝ, [Ŝ, Ĥ ]]|
0〉 =
−2(H − H0).

If one has an energy functional instead of a Hamiltonian,
one still obtains action (47). The integrand may be shown equal
to −2(H[ϕk, ξk] − H[ψ0k]), with ϕk = (1 + Ŝ2/2)ψ0k and
ξk = Ŝψ0k . One calculates δH = H[ψ0k + δϕk, ξk + δξk] −
H[ψ0k, ξk] for δϕk = Ŝ2ψ0k/2, ξk = Ŝψ0k and δξk smaller
than ξk , to the second order in Ŝ by using Eqs. (33) and (34)
obtaining

δH =
∑

k

(〈δξk|ĥA(τ )|ϕk〉 − 〈δξk|ĥ0(τ )|ξk〉

+ 〈δϕk|ĥ0(τ )|ϕk〉 + c.c.). (48)

Then one deduces δ(
∑

k〈ξk|ĥA|ϕk〉+ c.c.) = 2(
∑

k〈δξk|ĥA|
ϕk〉 + c.c.) and δ〈ξk|ĥR|ξk〉 = (〈δξk|ĥ0|ξk〉 + c.c) at the sec-
ond order in Ŝ. Thus, either with the Hamiltonian or the density
functional, one obtains the same form of the positive integrand,
which, when presented as Q̇2× mass, defines a positive mass
for tunneling.

In ATDHF, the linear response limit of the time-odd
equation, i.e., the counterpart of the second Eq. (43),
is h̄∂τψ0k + (iĥ1 + [χ̂ , ĥ0])ψ0k = 0, with ĥ0 = ĥ[ψ0k], ĥ1 =
iTr2(ṽ[χ̂ , ρ0]), ṽ is the antisymmetrized interaction, and Tr2

indicates the trace over the coordinates of the second particle.
However, ĥ1 = −iĥA(χ̂), so that the τ -odd equation for the
instanton operator Ŝ is a copy of the ATDHF equation,
with Ŝ = χ̂ . Thus, in the adiabatic limit, instanton action
defines the ATDHF mass h̄Tr(Ŝρ̇0)/Q̇2. In both cases, only
the particle-hole components of Ŝ are determined.

The first Eq. (43) provides the adiabaticity condition for a
trial path, as in ATDHF [8,12], but with a different sign by
∂τ Ŝ. It is worth emphasizing, though, that this condition was
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practically never checked in calculations of ATDHF masses.
Thus, up to now, decay probabilities were calculated without
knowing whether a chosen fission path is compatible with
this equation. As far as the action is concerned, the difference
between the real- and imaginary-time dynamics, i.e., between
oscillations and tunneling, appears in the next order.

A search for instanton in the adiabatic limit would consist
in looking for the minimum of action calculated with the
ATDHF mass over trial paths that should fulfill the adiabaticity
condition. It is well known that near the s.p. level crossing at
the Fermi surface, an extremely small velocity is needed to
keep the occupation of the lower level. Since in ATDHF, Q̇

must be also adjusted to keep the bulk energy H constant,
it may fail to fulfill two requirements simultaneously in the
vicinity of the crossing. Thus, the proper ATDHF fission path
should avoid such crossings. Fission paths that break many
symmetries, along which crossings are avoided by a strong
interaction between levels, could provide one remedy for this
problem (as suggested by the calculations reported in Ref. [3]).
The other would be to solve Eq. (43) for instanton to the higher
order in Ŝ, which would modify the mean field ĥR and avoid
crossings present for the initial ĥ0. Finally, a partial remedy is
given by pairing.

VII. BOUNCE ACTION VS. GCM INERTIA

The use of the variational principle for instantons depends
on the ability to impose the velocity-momentum conditions.
These conditions are crucial, because without them action for
a trial path may be lower than that for bounce. Below, we
show that the GCM formula for a collective mass that restricts
generating states to τ -even Slater determinants respects only
the energy condition and hence is incompatible with the
instanton method.

Consider a family of orthonormal states labeled by the
quadrupole moments q1(τ ) and q2(τ ), τ > 0, and calcu-
late action Eq. (21). Through the barrier, q2(τ ) must be
different from q1(τ ) to make the energy overlap kernel
〈
(q1(τ ))|Ĥ |
(q2(τ ))〉/〈
(q1(τ ))|
(q2(τ ))〉 equal to Egs. If
we suppose that 
 depends solely on q and not on q̇, as
in many GCM studies, the matrix M(τ ) becomes a function
of q1 and q2, the integrand in Eq. (21) becomes equal to
Tr(M(q1, q2)−1(∂M(q1, q2))/∂q2), and

S = 2h̄�
∫ q(T/2)

q(0)
dq2

∂ ln det M(q1, q2)

∂q2
. (49)

From this equation, one can deduce a connection between
the signs of S and q2 − q1: Eqs. (3) and (10) tell us that
the deformation q1 of the state 
(q1) drags deformation q2

of 
(q2), thus q2 lags behind q1 on the way from behind
the barrier to the metastable minimum, i.e., q2(τ ) > q1(τ ).
Therefore, increasing q2 while keeping q1 fixed increases
separation between q1 and q2, and thus decreases the overlap
det M(q1, q2). Hence, the integrand in Eq. (49) is negative,
as is the differential dq2 [as q(0) > q(T/2)], so action S is
positive.

In the above reasoning, we used the property of the bounce
equation. While using the variational principle, one might
exchange the states 
1 and 
2, and then, by the previous
reasoning, a negative action would follow. One might try to
take |S| for action in such a case, and there are cases in which
this way of proceeding defines a minimum. At the same time,
it is clear that some additional conditions are necessary in the
variational formulation.

One can expand the integrand in Eq. (49) with respect to
the quadrupole moment difference s = q2(τ ) − q1(τ ) around
the midpoint q̄ = (q1 + q2)/2. When one assumes the GOA,
ln det M(q1, q2) ≈ −γ (q̄)s2/2, and then disregards quadratic
and higher order terms in s, one obtains

S ≈ −2h̄
∫ q(T/2)

q(0)
dq2 γ (q̄)(q2 − q1), (50)

where, as discussed above, q2 > q1(q2), and γ (q̄) =∑
k〈∂qψk|∂qψk〉 − ∑

kl〈∂qψk|ψl〉〈ψl |∂qψk〉. The integration
variable dq2 = dq̄ + ds/2 may be changed to dq̄, as the
integral s ds = d(s2)/2 between the endpoints with s = 0
vanishes. The difference of the quadrupole moments may be
calculated from the constraint on the energy overlap kernel:
Egs = H[q2, q1] ≈ H[q̄, q̄] − s2(Hxy − Hxx)/4, where we
have used the symbolic notation for derivatives of H,
e.g., Hxx = ∂2

xH(x, y)|x=y=q̄ , etc., and conditions Hx =
Hy,Hxx = Hyy holding for time-even H (cf. Ref. [14], where
the discussion of those is given). Since the diagonal value
of the energy overlap is just “potential energy” V (q̄) in the
standard approach, we obtain

S ≈ 2h̄
∫ q(0)

q(T/2)
dq̄

√
2(V (q̄) − Egs)

(
2γ (q̄)2

Hxy − Hxx

)
, (51)

where the quantity in the second parenthesis under the square
root sign is the GCM+GOA mass (cf. Ref. [14]).

Since additional constraints can only increase the minimum
of a functional, the GCM mass must produce smaller action,
and thus smaller decay exponent, than that of instanton. Any
other action obtained with additional constraints will also
produce a larger decay exponent. As the ATDHF respects the
velocity-momentum conditions to the same order to which it
is exact, it will produce larger S than the GCM. The results
of calculations seem to support this, see, e.g., Refs. [15,16].
On the other hand, it is known that by introducing velocities
(or momenta) as additional generating coordinates, one can
show the equivalence of such a more general GCM and the
ATDHF [8,17].

VIII. INCLUSION OF PAIRING IN THE INSTANTON
METHOD

It is well known that the pairing interaction should be
taken into account if realistic estimates for fission probabilities
are to be found. In fact, it is pairing that gives the main
contribution to the mass parameters, as it couples s.p. levels of
different symmetries when they cross at the Fermi level. At the
same time, it produces the gap in the quasiparticle spectrum
which makes the collective motion more adiabatic. The proper
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self-consistent formalism to include pairing in the instanton
approach is the HFB theory, in which the Slater determinants
are replaced by the quasiparticle vacua, the many-particle
states of undetermined particle number, annihilated by a set of
operators

αi =
∑

µ

(A∗
µiaµ + B∗

µia
+
µ ), (52)

where operators a+
µ refer to some fixed s.p. basis. We give

here elements of the instanton method for systems with
pairing. These include the imaginary-time version of the
TDHFB equations, the counterpart of the formula Eq. (21)
for action in terms of familiar HFB states, equations in
coordinate-momentum variables [analogous to Eqs. (33)], and
the formulation in terms of a time-even generalized density
matrix and a time-odd Hermitian operator that leads naturally
to the adiabatic limit.

For our purpose, it is helpful to notice that the above
customary definition implies that the HFB vacuum |
〉 ∼
exp( 1

2

∑
µν Zµνa

+
µ a+

ν )|0〉, with Z = B∗A∗−1, depends on ma-
trices A∗ and B∗, while 〈
|, the corresponding bra, depends
on A and B.

A. Imaginary-time TDHFB equations

The TDHFB theory is built on the condition of unitarity
of the time-dependent Bogoliubov transformation and the
variational principle. The HFB transformation for imaginary
time, t → −iτ , becomes(

α+(τ )

α(−τ )

)
=

(
AT (τ ), BT (τ )

B+(−τ ), A+(−τ )

)(
a+

a

)
, (53)

where A(t) and B(t) became functions of τ , while their
complex conjugate A∗(t) and B∗(t) became functions of
−τ . The unitarity of the HFB transformation in the real-
time formalism translates to the following condition in the
imaginary-time version:(

AT (τ ), BT (τ )

B+(−τ ), A+(−τ )

)−1

=
(

A∗(−τ ), B(τ )

B∗(−τ ), A(τ )

)
. (54)

This equation means that fermionic anticommutation rela-
tions for operators a+

µ , aν transfer to {αi(−τ ), αj (−τ )} =
{α+

i (τ ), α+
j (τ )} = 0, and {αi(−τ ), α+

j (τ )} = δij (and vice
versa). Denoting N (τ ) as the imaginary-time HFB transfor-
mation in Eq. (53), its properties may be concisely written
as N−1(τ ) = N+(−τ ) = σxN T (τ )σx , using the Pauli matrix
notation for the block matrix. Written as separate conditions,
these are eight matrix equations that reduce to four independent
relations in which τ may be both positive or negative:

A+(−τ )A(τ ) + B+(−τ )B(τ ) = I,

AT (τ )B(τ ) + BT (τ )A(τ ) = 0,

A∗(−τ )AT (τ ) + B(τ )B+(−τ ) = I,

A∗(τ )BT (−τ ) + B(−τ )A+(τ ) = 0. (55)

The first of those differs from the usual HFB condition as
it forces anticommutation between annihilation and creation
operators of two different sets of τ and −τ . This means

that the usual relations {αi(τ ), α+
j (τ )} = δij are not ensured.

However, as shown below, new operators related to α(±τ ) may
be defined, fulfilling the usual conditions.

The variational principle that gives the TDHFB equa-
tions, transformed to imaginary time t → −iτ , becomes
δ
∫

dτ 〈	(τ )|h̄∂/∂τ + Ĥ |	(−τ )〉 = 0. Calculating the vari-
ations δ/δA∗

µi(−τ ) and δ/δB∗
µi(−τ ), one has to use, as

in the real-time case, the transformation conditions in
Eq. (55) and account for the resulting redundancy of the
variables A and B. The term with the time derivative that
defines action becomes

S/h̄ =
∫

dτ 〈	(τ )|∂τ	(−τ )〉

= 1

2

∫
dτTr[∂τA

+(−τ )A(τ ) + ∂τB
+(−τ )B(τ )]

= −1

2

∫
dτTr[A+(−τ )∂τA(τ ) + B+(−τ )∂τB(τ )].

(56)

The matrix element of the Hamiltonian 〈	(τ )|Ĥ |	(−τ )〉 is
expressed by the contractions

〈	(τ )|a+
ν aµ|	(−τ )〉 = ρµν(τ ) = (

B∗(−τ )BT (τ )
)
µν

,

〈	(τ )|aνaµ|	(−τ )〉 = κµν(τ ) = (
B∗(−τ )AT (τ )

)
µν

,

〈	(τ )|a+
ν a+

µ |	(−τ )〉 = κ̃µν(τ ) = (
A∗(−τ )BT (τ )

)
µν

,

(57)

which, due to conditions (55), have the following properties
when regarded as matrices:

ρ(−τ ) = ρ+(τ ),

κT (τ ) = −κ(τ ),

κ̃(τ ) = κ+(−τ ). (58)

Using those and proceeding as in the case of TDHFB, we arrive
at the imaginary-time TDHFB equations written symbolically
(where only the second index of the amplitudes is explicit):

h̄∂τ

(
Ak(τ )

Bk(τ )

)
+

(
t̂ + �̂(τ ), �̂(τ )

−�̂∗(−τ ), −(t̂ + �̂(−τ ))∗

)(
Ak(τ )

Bk(τ )

)
= Ek

(
Ak(τ )

Bk(τ )

)
, (59)

where, for a given Hamiltonian, the self-consistent potential
�µν(τ ) = ∑

γ δ(vµγνδ − vµγ δν)ρδγ (τ ) and the pairing poten-

tial �µν(τ ) = ∑
γ δ vµνγ δκγ δ(τ ) have the properties �̂(−τ ) =

�̂+(τ ) and �̂T (τ ) = −�̂(τ ). The same properties hold for the
mean fields with additional rearrangement terms that follow
from a density functional. These ensure the property ĥ(−τ ) =
ĥ+(τ ) of the mean-field Hamiltonian ĥ(τ ) = t̂ + �̂(τ ), and the
same property, ĥ(−τ ) = ĥ+(τ ) of the total HFB mean-field
Hamiltonian ĥ(τ ) given by the matrix in Eqs. (59). As a result
of this, Eqs. (59) conserves both energy and all relations in
Eq. (55). The terms with constants Ek on the right-hand side
fix the periodicity of solutions, and these constants are equal to
the quasiparticle energies at the metastable HFB ground state.
The bounce solution to Eqs. (59) has to be periodic and provide
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a path connecting the HFB ground state |
gs〉 with some HFB
state |	(τ = 0)〉 at the same energy beyond the barrier.

B. Variational principle

As in the HF case, one can deduce the minimum
principle for action under conditions of constant
energy and a fulfilled Eqs. (59) for 0 < τ < T/2. The
redundancy of variables A,B complicates the Hamilton
equations, but the following relations hold: −2δH =∑

k(〈δWk (−τ ) | ĥ (τ ) |Wk(τ ) 〉 + 〈Wk(−τ ) | ĥ(τ )|δWk(τ )〉)
and −2δS = h̄(

∑
k(〈δWk(−τ )|∂τWk(τ )〉 − 〈∂τ [Wk(−τ )]

|δWk(τ )〉), with Wk denoting the vector composed of
(Ak,Bk). Since taking a formal variation of S + H with
respect to δW∗

k and δWk leads to the correct equations
[Eqs. (59)], the arguments of Sec. IV can be repeated, and
one obtains the same constraints that specify bounce as the
minimum of action [note that 〈Wk(−τ )|Wl(τ )〉 = δkl].

The first equation in Eq. (55) means that 〈	(τ )|	(−τ )〉 =
1. Since these two HFB states are different, the imaginary-time
HFB transformation determined by the matrices A(±τ ) and
B(±τ ) cannot be unitary. However, it may be related to a
normal unitary HFB transformation given by some matrices
U (τ ), V (τ ) via some invertible, though nonunitary matrices
C(τ ). Let us suppose a relation

α+
i (τ ) =

∑
j

Cji(τ )β+
j (τ ), (60)

with quasiparticle creation operators β+
i (τ ) related via some

U (τ ) and V (τ ) matrices to a+
µ , aµ, namely [cf Eq. (53)],(

α+(τ )

α(−τ )

)
=

(
(U (τ )C(τ ))T , (V (τ )C(τ ))T

(V (−τ )C(−τ ))+, (U (−τ )C(−τ ))+

)(
a+

a

)
. (61)

It follows that U (τ ), V (τ ) define the same Z(τ ) as
A(τ ) and B(τ ) do and that U (τ )+U (τ ) + V (τ )+V (τ ) =
C+−1(τ )(A+(τ )A(τ ) + B+(τ )B(τ ))C−1(τ ). If one chooses
C(τ ) that transforms the Hermitian matrix A+(τ )A(τ ) +
B+(τ )B(τ ) to the unit matrix, then U (τ ) and V (τ ) become
matrices of a standard HFB transformation. Now, the first
equation of Eq. (55) means that

(U (−τ )+U (τ ) + V (−τ )+V (τ ))−1 = C(τ )C(−τ )+, (62)

while three other follow from this and from the HFB
properties of matrices U (τ ), V (τ ), and U (−τ ), V (−τ ).
The second equation in Eq. (55) is just the condi-
tion of the antisymmetry of Z(τ ); the third and fourth
equations, equivalent to (I + Z+(τ )Z(−τ ))−1 + Z+(τ )(I +
Z(−τ )Z+(τ ))−1Z(−τ ) = I and the antisymmetry of matrices
Z(τ )+(I + Z(−τ )Z+(τ ))−1 and (I + Z(−τ )Z+(τ ))−1Z(−τ ),
follow from the previous two.

Using the same reasoning as the one leading to
Eq. (21), instanton action (56) can be expressed in terms of
the normalized HFB states |
(τ )〉, defined by U (τ ) and V (τ ),

using relation (62), as

S/h̄ = −1

2
�

∫ T/2

−T/2
dτTr[(U+(−τ )U (τ )

+V +(−τ )V (τ ))−1(U+(−τ )∂τU (τ )

+V +(−τ )∂τV (τ ))], (63)

where we have omitted the integral of ∂τ ln det C(τ ) between
the endpoints, as it is purely imaginary.

The contractions in Eq. (58) can be expressed through
U (±τ ), V (±τ ) and the corresponding HFB states 
(±τ ) in
the following way:

ρµν = (V ∗(−τ )(Ũ (τ )T )−1V T (τ ))µν

= 〈
(τ )|a+
ν aµ|
(−τ )〉

〈
(τ )|
(−τ )〉 ,

κµν = (V ∗(−τ )(Ũ (τ )T )−1UT (τ ))µν

= 〈
(τ )|aνaµ|
(−τ )〉
〈
(τ )|
(−τ )〉 ,

κ̃µν = (U ∗(−τ )(Ũ (τ )T )−1V T (τ ))µν

= 〈
(τ )|a+
ν a+

µ |
(−τ )〉
〈
(τ )|
(−τ )〉 , (64)

where the matrix Ũ (τ ) = U+(−τ )U (τ ) + V +(−τ )V (τ ) is
related to the overlap of standard HFB states via
〈
(τ )|
(−τ )〉 = [det Ũ (τ )]1/2 (see Ref. [14]).

Now, one can treat Eq. (63) as a functional on trial fission
paths 
(τ ), defined by two families of HFB states 
1(τ ) and

2(τ ) for 0 < τ < T/2


(τ ) =
{


1(−τ ) for τ < 0,


2(τ ) for τ > 0,

}
(65)

smoothly connecting some HFB state 	(0) beyond the barrier
at energy Egs to the metastable ground state 
gs, and fulfilling
the condition of constant energy overlap and Eqs. (59) for

2(τ ), that is (h̄∂τ + ĥ(τ ))Wi(τ ) ⊥ σxW∗

j (τ ) for all i, j ,
where Wk(τ ) = (U2k(τ ), V2k(τ )) correspond to quasiparticle
states occupied in 
2(τ ). Taking Ũ (τ ) = U+

1 (τ )U2(τ ) +
V +

1 (τ )V2(τ ) for τ > 0, and having Ũ (τ ) = Ũ+(−τ ) for τ < 0,
one can calculate action as

S/h̄ = −�
∫ T/2

0
dτTr[Ũ−1(τ )(U+

1 (τ )∂τU2(τ )

+V +
1 (τ )∂τV2(τ ))]. (66)

The minimization of this action over fission paths that fulfill
constraints should reproduce the bounce action. Its value for
a trial path that satisfies constraints is an upper bound for the
bounce decay exponent.

C. Coordinate and momentum variables

The coordinate-momentum variables may be introduced
in a similar way as in Sec. V. Decomposing ampli-
tudes into τ -even and τ -odd components, A(τ ) = A+(τ ) −
A−(τ ), A(−τ ) = A+(τ ) + A−(τ ), B(τ ) = B+(τ ) − B−(τ ),
and B(−τ ) = B+(τ ) + B−(τ ), with A+ and B+ matching

gs at τ = ±T/2 and 	(0) at τ = 0, and A− = B− = 0 at
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τ = 0,±T/2, one obtains the system of equations (with only
the second index of the amplitudes made explicit)

h̄∂τ


A+k

B+k

A−k

B−k



=


−ĥA, −�̂−, ĥR − Ek, �̂+
−�̂∗

−, −ĥ∗
A, −�̂∗

+, −ĥ∗
R − Ek

ĥR − Ek, �̂+, −ĥA, −�̂−
−�̂∗

+, −ĥ∗
R − Ek, −�̂∗

−, −ĥ∗
A



×


A+k

B+k

A−k

B−k

 , (67)

with the mean fields ĥ = ĥR + ĥA and �̂ = �̂+ + �̂−, with
�̂+(−τ ) = �̂+(τ ) and �̂−(−τ ) = −�̂−(τ ). In a similar way
as for Eqs. (33), the first two equations in Eqs. (67) connect
velocities ∂τA+k, ∂τB+k with momenta A−k and B−k , showing
that they all, together with the τ -odd mean-field potentials
ĥA and �̂−, are proportional to the collective velocity Q̇.
In the coordinate-momentum representation, these are the
constraints that must be imposed on trial fission paths to
ensure that bounce provides the minimum of the action
functional. The relations in Eq. (55) written in terms of new
amplitudes become eight relations that may be combined
to four τ -even and four τ -odd equations, e.g., the first in
Eq. (55) leads to A+

+A+ − A+
−A− + B+

+B+ − B+
−B− = I and

A+
−A+ − A+

+A− + B+
−B+ − B+

+B− = 0, etc.
Let us call the diagonal and off-diagonal submatrices of

the matrix in Eqs. (67) −ĥA and ĥR . From symmetries and
definitions it is clear that ĥR(τ ) is Hermitian and time-even
and ĥA(τ ) is anti-Hermitian and time-odd. In imaginary-time
TDHFB, the operator ĥA is the generalization of the Thouless-
Valatin mean field ĥA of the ATDHF.

Denote the vector built of A+k and B+k as 
k and the one
built of A−k and B−k as �k , i.e., Wk(τ ) = 
k(τ ) − �k(τ ).
Then Eqs. (67) take the form

h̄∂τ
k = −ĥA
k + (ĥR − Ek)�k,
(68)

h̄∂τ�k = (ĥR − Ek)
k − ĥA�k.

The variation of energy written in terms of 
k and �k reads

2δH =
∑

k

(〈δ
k|ĥA�k〉 − 〈δ
k|ĥR
k〉 − 〈δ�k|ĥA
k〉

+ 〈δ�k|ĥR�k〉 + c.c.). (69)

The three last terms, together with their complex conjugate,
contribute at the second order in τ -odd components, assuming
�k and δ�k being of the first, and δ
k of the second order of
smallness. Owing to the τ parity of the amplitudes, and after
integrating by parts, the action reads

S/h̄ = −2�
∫ T/2

0
dτTr[A+

−(τ )∂τA+(τ ) + B+
− (τ )∂τB+(τ )].

(70)

This can be expressed as S = −h̄� ∫ T/2
−T/2 dτ

∑
k〈�k|∂τ
k〉,

i.e., it is imaginary-time TDHFB action in the form
∫

pi dqi .
Substituting �k from the first Eq. (68), one can obtain the
cranking-like expression for action as in Sec. V.

D. Adiabatic expansion and limit

The above formulas are a copy of those in Secs. V and VI,
up to the common factor (−1/2) appearing in the expressions
for S and δH. Hence, after showing that the operator that
maps amplitudes at τ onto those at −τ is Hermitian, one could
represent HFB bounce in terms of τ -even amplitudes and a
τ -odd Hermitian operator Ŝ, as in Sec. VI, and repeat the whole
reasoning on the adiabatic limit of the instanton method. (To
emphasize the analogy, we keep the same notation for the time-
odd operator as in HF, although it acts in the enlarged space.)

The argument goes as follows: The HFB transfor-
mation from operators (α+(τ ), α(−τ )) to (α+(−τ ), α(τ ))
is N (−τ )N−1(τ ) = N (−τ )N+(−τ ) [cf. Eq. (54)], indeed
Hermitian and positive. Calling this transformation
exp(2S(τ )), with S(τ ) Hermitian, and considering its
inverse, we have S(−τ ) = −S(τ ). Then, we find that
exp(S(τ ))N (τ ) = exp(S(−τ ))N (−τ ); calling this τ -even
transformation N̄ (τ ), we have N̄−1(τ ) = N̄+(τ ), so N̄ (τ ) is
a regular HFB transformation. Denoting its amplitudes u and
v, we have(

AT (τ ), BT (τ )

B+(−τ ), A+(−τ )

)
= exp(−S(τ ))

(
uT (τ ), vT (τ )

v+(τ ), u+(τ )

)
.

(71)

The properties of N (τ ) and N̄ (τ ) imply σxST (τ )σx =
−S(τ ). As we need a relation between amplitudes and
these form columns of the matrices N T (τ ) and N̄ T (τ ), we
notice that N T (τ ) = [N̄ T (τ ) exp(−ST (τ ))(N̄ T )−1(τ )]N̄ T (τ )
and that the matrix N̄ T (τ ) exp(−ST )(τ ))(N̄ T )−1(τ ) is
Hermitian owing to the HFB property of N̄ (τ ). Moreover, due
to this property, one has N T (τ ) = exp(−Ŝ(τ ))N̄ T (τ ) with the
Hermitian, τ -odd Ŝ(τ ) = N̄ T (τ )ST (τ )N̄ ∗(τ ). It follows from
the properties of N and S that σxŜ

T (τ )σx = −Ŝ(τ ). Thus

Ŝ =
(

ŝ, r̂

−r̂∗, −ŝ∗

)
, (72)

with ŝ+ = ŝ, and r̂T = −r̂ . With this Ŝ(τ ), we have the
expected relations(

Ak(−τ )

Bk(−τ )

)
= exp (Ŝ(τ ))

(
uk(τ )

vk(τ )

)
;

(73)(
Ak(τ )

Bk(τ )

)
= exp (−Ŝ(τ ))

(
uk(τ )

vk(τ )

)
,

where only the second index of the amplitudes is shown. With
these, all the results of Sec. VI can be repeated for imaginary-
time TDHFB. In particular, the integrand of the action integral
S, which in terms of the amplitudes W0k = (uk, vk) and the
operator Ŝ reads − h̄

2

∑
k(〈∂τW0k|Ŝ|W0k〉 + c.c.), is equal to

−2(H − H0) at the second order in Ŝ, hence it is positive.
Equations (59) take exactly the form of Eq. (41) of the
imaginary-time TDHF, with obvious replacements of W0k for
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ψ0k and ĥ for ĥ. They reduce to the form of Eq. (43) at the
second order in Ŝ.

The TDHFB equations may be also formulated in terms of
the generalized density matrix. The counterpart of the HFB
density matrix in the imaginary-time formalism is(

ρ(τ ), κ(τ )

−κ∗(−τ ), I − ρ∗(−τ )

)
=

(
B∗(−τ )

A∗(−τ )

)
(BT (τ ), AT (τ ))

= [σx exp (Ŝ∗(τ ))σx]R0(τ )[σx exp(−ŜT (τ ))σx], (74)

with R0(τ ) the HFB density matrix corresponding to N̄ (τ ).
Owing to the property of Ŝ, it is equal to e−Ŝ(τ )R0(τ )eŜ(τ ).
This non-Hermitian quantity, call it R̃, apart from not being a
HFB density matrix, is an analog (note that R̃2 = R̃) of the
density matrix in the ATDHFB theory [18], R = eiχ̂R0e

−iχ̂ .
In terms of it, Eqs. (59) reads h̄∂τ R̃ + [ĥ, R̃] = 0. The τ -odd
part of this equation, linear in Ŝ, obtained by expanding R̃ =
R0 − [Ŝ,R0] + · · · and discarding the second-order quantity
[ĥ0,R0], is

h̄∂τR0 + [[Ŝ, ĥ0] + ĥA,R0] = 0, (75)

which is an alternative form of the second Eq. (43) in terms
of R0 and Ŝ. Its solution is identical to the ATDHFB solution,
Ŝ = χ̂ . This follows directly from the structure of the building
blocks of the Thouless-Valatin mean field ĥA. One has ĥA =
Tr(ṽρ1) and �−αβ = ∑

γ δ vαβγ δκ1γ δ , with ρ1 = −[ŝ, ρ0] +
r̂κ∗

0 − κ0r̂
∗, κ1 = ρ0r̂ + r̂(ρ∗

0 − 1) − ŝκ0 − κ0ŝ
∗. Since, in

ATDHFB, R1 = i[χ̂ ,R0], one has ĥA = iĥ1, where ĥ1 is the
ATDHFB time-odd mean field for χ̂ = Ŝ. Thus, the adiabatic
TDHFB instanton method produces mass given by mass
×Q̇2 = h̄

2 Tr(Ṙ0Ŝ), equal to the ATDHFB mass, cf. Ref. [19].
In the zero pairing limit this mass reduces to the ATDHF value
h̄Tr(ρ̇0ŝ)/Q̇2.

A reasoning similar to the one presented in Sec. VII shows
that within the GCM approach, a use of some τ -even pairing
variable (for example, the pairing gap) as a generator coordi-
nate, without fulfilling the velocity-momentum relations, will
lead to a smaller decay exponent than that for bounce.

IX. CONCLUSIONS

We have presented the instanton method for nuclear fission
in various representations. This has allowed us to make some
comparisons with other methods commonly used in fission
studies. We have also sketched the imaginary-time version of
the TDHFB theory, which allows us to include pairing.

There are many similarities between the instantons de-
scribing quantum tunneling and the periodic TDHF solutions.
Both appear as a result of the quasiclassical approximation,
find a natural formulation in terms of time-even coordinates
and time-odd momenta, and reduce to the same time-odd
ATDHF equation in the lowest order in momenta. The
ATDHF equation for a path, in particular, the smallness
of [ĥ0, ρ0], is usually not checked for static paths con-
structed by means of the CHF. When the velocity-momentum

equations require large momenta, the chosen path is far from
instanton.

The main difference between the two methods is that in
quantum tunneling there is no single HF state or density
matrix, but one deals with two different states, bra and ket.
This happens to be the very reason for the existence of the
minimum principle: it defines the minimal driving of one state
by the other, necessary for tunneling. Instanton action turns out
to be a minimum of the action functional when the constraints
of constant energy and velocity-momentum relations are
imposed on trial fission paths. Action calculated for any such
path would provide an upper bound for the decay exponent.
We argue that the ATDHF (ATDHFB) mass respects those
constraints, while the GCM+GOA mass does not. The main
practical problem is how to construct trial paths fulfilling the
constraints.

The need for two Slater determinants for instanton leads to
another important difference between the mean-field studies
of oscillations and quantum tunneling: the instanton method
relies on the off-diagonal matrix elements of the Hamiltonian,
which are beyond the usual scope of the mean-field theory.
To use instantons in practice, one has to define various
off-diagonal matrix elements of the commonly used effective
interactions. These include the density-dependent term of the
Skyrme-like force (for its possible definitions, see Ref. [20])
and the Coulomb-exchange interaction.

When comparing the instanton method to theories of large
amplitude collective motion (LACM) one has to recognize
that the aims of the latter are much wider than those of
the former [17,21]. In LACM, equations for the collective
path or action are a source of formulas for potential and
inertia tensor of an effective Hamiltonian in a restricted set
of deformation coordinates and conjugate momenta. Often
the next step consists in the requantization. The supposed
universality of the so-conceived effective theory for LACM
underlies the whole procedure. On the contrary, instanton
should be found once for a studied decay. No interpretation of
the integrand in the action formula as mass × Q̇2 is necessary.
It could be even dangerous, as in some representations of
instanton these integrands are piecewise negative. Only the
value of the integral has physical significance, and this does
not depend on the representation.

Of course, one could extract collective inertia from action
represented with a positive integrand, but the positivity is
obvious only in the adiabatic limit. In a general case, the
action in Eq. (38) contains momenta ξk to all even orders,
and the higher order terms become naturally more important
for higher barriers. Hence one expects that mass also depends
on the barrier height, or energy, when tunneling from excited
states is considered. A small energy dependence of mass is seen
even for the highly collective Bose-Einstein condensate [7].

For pairing gaps of ∼1 MeV and for not too high fission
barriers, the adiabatic approximation may be satisfactory
for many fission paths. Then it may appear that the most
important in the search for instanton is the exploration of
a sufficiently rich family of paths, preferably with as few
preserved symmetries as possible, while ATDHFB action
(including Thouless-Valatin terms) is a sufficient estimate of
the instanton action.
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Even if this is true, fission of odd-Z or odd-N nuclei will
require much more effort to understand, within the instanton
method, a dramatic significance of the odd fermion and of
the specific mean fields induced by it that break time-reversal
invariance.

It is clear that the method considered here is applicable
to quantum tunneling in any fermion system, provided it has
a meaningful mean-field description. Extensions to include
thermal effects and decay from excited states seem also
straightforward. The real progress of the method will depend
on practical solutions.
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