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Density dependence of isospin observables in spinodal decomposition
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Isotopic fluctuations in fragment formation are investigated in a quasianalytical description of the spinodal
decomposition scenario. By exploiting the fluctuation-dissipation relations the covariance matrix of density
fluctuations is derived as a function of the wave vector k for nuclear matter at given values of density, charge
asymmetry, temperature, and the time that the system spends in the instability region. Then density fluctuations
in ordinary space are implemented with a Fourier transform performed in a finite cubic lattice. Inside this box,
domains with different density coexist, from which clusters of nucleons eventually emerge. Within our approach,
the isotopic distributions are determined by the N/Z ratio of the leading unstable isoscalar-like modes and by
isovector-like fluctuations present in the matter undergoing the spinodal decomposition. Hence the average value
of the N/Z ratio of clusters and the width of the relative distribution reflect the properties of the symmetry
energy. By generating a large number of events, these calculations allow a careful investigation of the cluster
isotopic content as a function of the cluster density. A uniform decrease of the average charge asymmetry and
of the width of the isotopic distributions with increasing density is observed. Finally, we remark that the results
essentially refer to the early breakup of the system.
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I. INTRODUCTION

Reactions with charge-asymmetric systems open the pos-
sibility to learn about the properties of the symmetry term
of the nuclear interaction in conditions of density and tem-
perature away from ordinary values. In particular, the study
of multifragmentation mechanisms in neutron-rich systems
should allow us to get information on the behavior of the
symmetry energy in density regions below saturation, where
the nuclear system may undergo a liquid-gas phase transition.
Constraints on the form of the density dependence of the
symmetry energy are important not only for a better knowledge
of the nucleon-nucleon interaction, and hence its extrapolation
to the structure of exotic nuclei [1–3], but also for the study
of the neutron star crust and of supernova explosions, where a
key issue is the clustering of low-density matter [4–7].

The dynamics of first-order phase transitions is often
induced by instabilities against fluctuations of the order
parameter. In dissipative heavy-ion collisions, nuclear matter
may be pushed inside the coexistence region of the nuclear
liquid-gas phase diagram. Then, the observed abundant frag-
ment formation may take place through a rapid amplification
of spinodal instabilities. Experimental results pleading in
favor of such a spinodal decomposition have recently been
reported [8,9]. Spinodal instabilities in charge-asymmetric
systems have been widely investigated from the theoretical
point of view. The most important effect induced by the
charge asymmetry is the so-called isospin distillation in which
fragments (liquid) appear more symmetric with respect to the
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initial matter, and light particles (gas) are more neutron-rich
[10–15]. The amplitude of this effect depends on specific
properties of the isovector part of the nuclear interaction,
namely on the value and the derivative of the symmetry energy
at low density [16]. Moreover, apart from the distillation effect,
which determines the average fragment isotopic composition,
the symmetry energy value also influences the width of the
isotopic distributions. This feature has been recently exploited
in the so-called isoscaling analysis [17], where information on
the symmetry energy behavior is extracted from the study of
the ratio of the isotope yields obtained from two reactions with
different charge asymmetry [18–21].

In this paper we focus on a detailed study of isotopic
properties of nucleon clusters, as obtained within the spin-
odal decomposition scenario. To select this mechanism, we
consider nuclear matter initialized at a given temperature and
at low density, inside a box with periodic boundary conditions,
under the action of a stochastic field self-consistently deter-
mined [22,23]. In this case, the normal modes of the density
fluctuations are plane waves. The instabilities are treated in the
linear approximation (i.e., by retaining only first-order terms in
the stochastic field or in the density fluctuations). This leads to
a quasianalytical description of the growth of instabilities and
the consequent formation of clusters of nucleons, which can be
considered as excited primary fragments. For each considered
system, a large variety of possible outcomes may be obtained,
according to the initial density fluctuation values. In this way
it is possible to collect numerous events with much reduced
computational effort, allowing us to perform a thorough
analysis of the isotopic content of nucleon clusters, the isospin
distillation, and isotopic distributions, in connection with the
ingredients of the effective nuclear interaction employed.
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We would like to stress that our analysis refers essentially
to the early breakup of the system, where excited nucleon
clusters, reflecting the nuclear matter properties, can be
recognized. At this level, shell effects, which influence the
N/Z ratio of real nuclei, are not considered. In particular,
we will discuss the relation between the isotopic properties
and the density of the primary fragments (at the moment of
fragment formation). In fact, in the spinodal decomposition
scenario, domains with different density values, from which
clusters of nucleons eventually emerge, coexist. Clusters of
intermediate mass, which may originate from the vapor phase
or from the liquid phase as well, may have different isotopic
properties, depending on the density value of the domain
where they are formed. For instance, the isospin distillation
mechanism, which is a feature of isoscalar-like oscillations,
becomes more and more effective as the density gets higher in
the domain considered.

In the actual disassembly of a nuclear system (in central
nuclear collisions) the vapor phase is generally formed at the
surface of the system, where a greater radial collective flow
is also observed. Hence one could expect a relation between
fragment isotopic observables and kinematical properties [24].
In particular, as we will discuss in the following, clusters
emerging from low-density regions should be more neutron-
rich and with wider isotopic distributions. These features
are peculiar to the spinodal decomposition scenario and to
the occurrence of first-order liquid-gas transitions. Hence, in
addition to the information that can be gained about the low-
density behavior of the symmetry energy, this investigation
should shed some light on the fragmentation mechanism itself.

The paper is organized as follows. In Sec. II we outline
the formalism developed in Refs. [22,23] for infinite nuclear
matter and its implementation in a finite cubic lattice. In
Sec. III we discuss the results of our calculations. Finally,
in Sec. IV a summary and conclusions are given.

II. FORMALISM

In this section we outline the main steps of the general
formalism developed in Refs. [22,23] to evaluate fluctuations
of the one-body density for asymmetric nuclear matter inside
the unstable (spinodal) region of the nuclear matter phase
diagram. In our approach fluctuations of the proton and neutron
densities are induced by a stochastic field that couples with
the constituents of the system. By means of the fluctuation-
dissipation theorem the stochastic field is self-consistently
determined. For nuclear matter in the spinodal region the time
growth of fluctuations is essentially due to the unstable mean
field. Therefore we neglect the effects of nucleon-nucleon
collisions in the time evolution of fluctuations. Collisions
would mainly add a damping to the growth rate of the
fluctuations and should not change the main results of our
calculations, at least at a qualitative level.

The approach of Refs. [22,23] has reference to infinite nu-
clear matter, and thus normal modes are plane waves associated
with wave numbers k. The growth of fluctuations leads to the
formation of high-density domains, which can be associated
with fragments. In Refs. [22,23] the fragment recognition

is based on a procedure that allows one to determine the
probability distribution of the domains containing correlated
density fluctuations. We have then identified the pattern of
correlated domains with the fragmentation pattern. In such a
way, we could make predictions on the distributions of clusters.
This procedure is based on an ansatz that relates the Gaussian
distributions for the different modes of density fluctuations to
the probability distribution of the correlated domains in the
ordinary space.

In the present paper we follow a different strategy. From
the probability distributions of fluctuations in k space, induced
by the stochastic field, we directly generate a certain number
of events characterized by stochastic distributions of density
fluctuations in coordinate space. This is accomplished by
performing a Fourier expansion in a finite cubic lattice of
volume V .

In this way a substantial improvement of the approach of
Refs. [22,23] is obtained. Event-by-event analyses can be
performed. Moreover, one can investigate new features of
the fragmentation process, such as, for instance, the isotopic
content of nucleon clusters as a function of their density.

A. Density fluctuations

The key quantity for the evaluation of the density fluc-
tuations is the density-density response function. In a linear
approximation for the stochastic field, the Fourier transform
of the response function is given by the equation [22,23]

Di,j (k,ω) = D
(0)
i (k,ω)δi,j + �lD

(0)
i (k,ω)Ai,l(k)Dl,j (k,ω),

(1)

where D
(0)
i (k, ω) is the noninteracting particle-hole propagator

and Ai,l(k) is the Fourier transform of the nucleon-nucleon
effective interaction. The subscripts of the various quantities
take the values 1 and 2 for protons and neutrons, respectively.
In this paper we use units such that h̄ = c = kB = 1.

In asymmetric nuclear matter isovector and isoscalar fluctu-
ations are coupled. However, one can still separate oscillations
with neutrons and protons moving in phase (isoscalar-like)
or out of phase (isovector-like) and add the contributions of
the corresponding variances. This can be done because the
time scales of isoscalar-like oscillations and of isovector-like
oscillations are very different for nuclear matter with values
of temperature and density sufficiently close to the borders of
the spinodal region. Indeed, the growth rate of the unstable
isoscalar-like modes, �k , turns out to be much smaller than the
real frequencies, ωiv

k , of isovector-like modes [22,23]. Thus the
two kinds of fluctuations can be considered two independent
stochastic processes. In addition, for the relevant values of the
magnitude of the wave vector k, the inequalities �k/T < 1
and ωiv

k /T > 1 hold.
As a consequence of the linear approximation for the

stochastic field, the probability distribution of density fluc-
tuations, P [δ�i(k, t)], is given by a product of Gaussian
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distributions:

P [δ�i(k, t)]

= N exp

{
− 1

2V

∑
k

∑
i,j

δ�∗
i (k, t)[σ 2(k, t)]−1

i,j δ�j (k, t)

}
,

(2)

where N is a normalization constant. Each single factor
corresponds to a stochastic process for a given wave vector
k [23,25]. The covariance matrix for the isoscalar-like fluctu-
ations,

σ 2
i,j (k, t) = T C is

i,j (k)
1

�k

(e2�kt − 1), (3)

can be evaluated by taking the classical (thermodynamical)
limit ω/T � 1 of the fluctuation-dissipation relation. The
coefficients C is

i,j (k) are the residues, times i, of the response
function at the pole ω = i�k [22].

Since the time scale of the isovector-like fluctuations is
much shorter than that of the growth of the unstable modes,
for the covariance matrix of the isovector-like fluctuations we
can take its asymptotic value for t → ∞, with nuclear matter
at given values of density, temperature, and asymmetry,

σ 2
i,j (k) = C iv

i,j (k), (4)

where C iv
i,j (k) represent the residues of the response function at

the real pole ωiv
k . This equation has been obtained by exploiting

the fluctuation-dissipation theorem, now in the limit ω/T � 1
[22].

It should be noticed that, in the low-temperature limit, the
isovector fluctuation amplitude is essentially different from the
value expected at the thermodynamical limit, ω � T , where
the fluctuation variance is proportional to the temperature and
inversely related to the value of the symmetry energy [26].

With the aim to preserve a simple formalism, which, to
some extent, allows us to perform calculations analytically,
we have evaluated the response function of Eq. (1) within
a semiclassical approximation (Vlasov equation). However,
this approximation cannot be extended to values of k � kF (kF

being the neutron or proton Fermi momentum). We cure this
shortcoming with an ad hoc specific recipe. We calculate
poles and residues of the response function within the Vlasov
approximation for k <∼ 1.1kM , where kM is defined by �k>kM

<

0. With the physical parameters used in this work kM is
about the neutron Fermi momentum. For k � 1.1kM we take
for the total variance of density fluctuation distributions its
value for k → ∞, σ 2

i,j (k, t) = δi,j �i [27], with �i being the
density of i species nucleons. This recipe is suggested by two
circumstances. First, for kM < k < 1.1kM the variance, which
relaxes toward its asymptotic value since �k < 0, remains
appreciably larger than its limit �i for k → ∞. Second,
the latter is approached already for values of k slightly
larger than 1.1kM , as can be shown by explicit calculations
including quantum effects. The inaccurate evaluation of the
response function in the interval 1.1kM < k <∼ 1.3kM should
not introduce sizable effects, since the values of the variance
in this interval are about one order of magnitude smaller than
that of the most unstable mode.

B. Details of the interaction

In the present paper we adopt the same schematic Skyrme-
like effective interaction as in Ref. [22]:

Ai,j (k) = A(k) + Si,j (k). (5)

For the symmetric term A(k) we use the finite-range effective
interaction introduced in Ref. [28]:

A(k) =
[
A

1

�eq
+ (σ + 1)

B

�σ+1
eq

�σ

]
e−c2 k2/2, (6)

where � = �1 + �2 is the uniform mean value of the total den-
sity of nucleons, �eq = 0.16˜fm−3 is the density of symmetric
nuclear matter at saturation, and

A = −356.8 MeV, B = 303.9 MeV, σ = 1
6 .

The width of the Gaussian in Eq. (6) has been chosen to
reproduce the surface energy term as prescribed in Ref. [29].

The isospin-dependent part, Si,j (k), contains three different
terms:

Si,j (k) = ∂2Esym

∂�i∂�j

+ τiτjDk2 + 1 + τi

2
VC(k)δi,j , (7)

with τ1 = 1 and τ2 = −1. Here Esym represents the potential
part of the symmetry-energy density. For the coefficient of
the isovector surface term we use the value D = 40 MeV fm5

[30]. Moreover, we include the Coulomb interaction VC(k)
according to the approach of Ref. [31]. A mean-field exchange
contribution

V ex
C = −1

3

(
3

π

)1/3

e2�
−2/3
1

is also added to the bare Coulomb force.
To stress the effects of the asymmetry of the nuclear

medium, we will present results obtained with two different
parametrizations of the symmetry energy: one with a stronger
density dependence (“superstiff” asymmetry term) and the
other with a weaker density dependence (“soft” asymmetry
term). In both cases the density dependence of the potential
part of the symmetry-energy density can be expressed by

Esym(�1, �2) = S(�)(�2 − �1)2, (8)

with

S(�) = 2d

�2
eq

�

1 + �/�eq
, (9)

where d = 19 MeV [32], for the “superstiff” case, and

S(�) = d1 − d2�, (10)

where d1 = 240.9 MeV fm3 and d2 = 819.1 MeV fm6 [33],
for the “soft” case. It should be noticed that S(�) is nothing
but the potential part of the symmetry-energy coefficient di-
vided by �, S(�) = C

pot
sym(�)/�. The inclusion of the Coulomb

interaction gives rise to an overall decrease of the growth rate
of density fluctuations with a corresponding contraction of the
instability region in the (�, T ) phase diagram [31,34].
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C. Isospin effects

Proton and neutron densities oscillate in phase and out
of phase, respectively, in the isoscalar-like fluctuations and
in the isovector-like fluctuations, although with different
amplitudes in general. The ratio between amplitudes is given
by σ 2

1,1(k)/σ 2
1,2(k) = ±

√
[σ 2

1,1(k)/σ 2
2,2(k)], with + for the

isoscalar-like case and − for the isovector-like case. This
relation follows from the relevant property

det
∣∣C is,iv

i,j (k)
∣∣ = 0 (11)

of the residues. Hence, for asymmetric matter, even in unstable
isoscalar-like oscillations that lead to phase separation, protons
and neutrons move with different amplitude. In particular one
observes that the ratio between proton and neutron fluctuations
is larger than the Z/N ratio of the original matter, leading to a
more symmetric liquid phase, the so-called isospin distillation
effect [10–15]. The ratio between the proton and neutron
density fluctuations is mostly determined by the isoscalar-like
fluctuations. This is simply related to the fact that, during
the spinodal decomposition, the isoscalar-like fluctuations are
much larger than the isovector-like ones. Thus, this ratio, for
a given value of k, can be put as

δ�1(k)

δ�2(k)
�

√
C is

1,1(k)

C is
2,2(k)

, (12)

where the ratio of the residues at the imaginary pole, i�k , of
Di,j (k, ω) is given by

C is
1,1(k)

C is
2,2(k)

= D
(0)
1 (k, i�k)

[
1 − D

(0)
2 (k, i�k)A2,2(k)

]
D

(0)
2 (k, i�k)

[
1 − D

(0)
1 (k, ω)A1,1(k)

] . (13)

The noninteracting particle-hole propagator, in the semiclas-
sical approximation, is expressed by [22]

D
(0)
i (k, i�k) � − ∂�i

∂µ̃i

+ 1

2π
m2F (βµ̃i)

�k

k
,

where the effective chemical potential µ̃i of neutrons or
protons is measured with respect to the uniform mean field
Ui(�1, �2) of the unperturbed initial state, and F (βµ̃i) is the
function

F (βµ̃i) = 1

e−βµ̃i + 1
,

with β = 1/T being the inverse temperature. For the physical
parameters considered in the present paper the second term in
the expression of D

(0)
i (k, i�k) can be neglected at a satisfying

approximation, then Eq. (13) becomes

C is
1,1(k)

C is
2,2(k)

=
∂µ̃2

∂�2
+ A2,2(k)

∂µ̃1

∂�1
+ A1,1(k)

=
∂2f

∂�2
2

+ A2,2(k)

∂2f

∂�2
1

+ A1,1(k)

, (14)

where f = f (�, �3), with �3 = �2 − �1, is the sum of the
kinetic and entropy terms of the free-energy density (i.e., f

represents the free-energy density of a noninteracting two-
component Fermi gas with effective chemical potentials µ̃i).

For a qualitative analysis we can neglect the Coulomb
interaction. For small asymmetry values, we can limit our-
selves to consider only the first-order term in the expansion of
Eq. (14) in powers of the asymmetry α = �3/�. In this case
the ratio of residues is given by

C is
1,1(k)

C is
2,2(k)

� 1 + 1

B(k)

[
4

∂

∂�

∂2f (�, �3)

∂�2
3

|�3=0 + 8
∂S(�)

∂�

]
�α,

(15)

where B(k) represents the sum of the part of the interaction of
Eq. (5) common to both species of nucleons and of the second
derivatives of the free-energy density f (�, �3):

B(k) = A(k) + 2S(�) + Dk2 + ∂2f (ρ, �3)

∂�2
3

|�3=0 + ∂2f (ρ, 0)

∂ρ2
.

Equation (15) shows that for the isospin distillation effect
the derivative of the coefficient of the symmetry energy with
respect to the total density plays a crucial role.

With the parameters of the interactions considered here, we
get, for systems moderately inside the spinodal region, a larger
distillation effect with the “superstiff” interaction. However, it
should be remarked that the derivative of S(�) depends on the
density. Actually at rather low densities distillation effects are
expected to be stronger with the “soft" parametrization [35].

The symmetry energy also plays an important role in
determining isovector fluctuations, δ�3. These lead to fluc-
tuations in the (N − Z) content of a given density domain of
mass A = N + Z. For finite values of the asymmetry α, it is
generally not easy to single out from the isospin-dependent
interaction, Si,j (k), a term that can play a conclusive role
in determining the widths of isotopic distributions. Only for
α = 0 and, in addition, by neglecting the Coulomb interaction,
are isovector and isoscalar fluctuations decoupled. In this case
the fluctuations δ�3 are only due to the isovector modes, and
the residues at the real pole ωiv

k are solely determined by the
coefficient S(�) in the expression of the symmetry energy of
Eq. (8). For finite values of α, terms containing derivatives
of S(�) contribute to the magnitude of the residues C iv

i,j (k) as
well. Generally speaking, one can expect that the strength of
the isovector pole increases with the coefficient S(�). Hence, in
the limit considered here, ω/T � 1, isovector fluctuations be-
come larger when the symmetry energy coefficient increases.
It should be noticed that also for α 	= 0 the contributions to
δ�3 of the isoscalar-like modes still tend to cancel out.

D. Cluster recognition

We consider a finite cubic lattice of volume V . We assume
that the density vanishes at the surface of the box. The
number of nucleons is then fixed and in the box the liquid
and vapor phases coexist. Moreover, finite size effects can
be taken into account in this way. However, it should be
remarked that the condition of vanishing density at the border
of the box imposes some symmetries to the problem. In
fact, in this case the number of independent oscillations is
reduced by 23. Accordingly, the imposed symmetries also
reduce fluctuation variances. This is not so important in
the isoscalar-like case, since these modes are unstable and
fluctuations are amplified anyway. In contrast, isovector-like
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fluctuations remain quenched (by a factor of 8). However, this
does not affect our conclusions about the relative comparison
of the results obtained with the different parametrizations of
the symmetry energy.

To extract the spatial density δ�i(r), we perform a Fourier
expansion of the fluctuations δ�i(k). The Fourier components
contain the product of three sine functions:

φk(r) =
(

2

L

)3

sin(k1x) sin(k2y) sin(k3z), (16)

with ki = 2π ni/L and x = nxb, y = nyb, z = nzb (where ni

and nx,y,z take positive integer values), where L and b are
the lengths of the sides of the box and of the primitive cell,
respectively. The coefficients of the functions φk(r) in the
Fourier expansion are linear combinations of the isoscalar-
like and isovector-like Fourier coefficients δ�i(k, t), given
by stochastic processes with the probability distribution of
Eq. (2) and the ratio of proton to neutron amplitudes given by
σ 2

1,1(k)/σ 2
1,2(k).

The size of the box will be chosen so that the box contains
a number of nucleons of the same order of magnitude as in
actual heavy-ion collision experiments. The adopted size of the
primitive cell, Vcell, is such that at least one nucleon of both
species is present in the cell on average. Clusters of nucleons
are associated with high-density domains and will be formed
by means of a coalescence algorithm, solely based on the
density of neighboring cells. Adjacent cells with a value of the
density above (liquid) or below (vapor) the average density are
collected together. Then, we obtain domains of higher density
surrounded by domains of lower density. In this way we can
investigate separately the properties of the liquid phase and of
the vapor phase. Moreover, we can build observables starting
from event-by-event cluster distributions.

III. RESULTS

In this section we present and discuss statistical distribu-
tions of the clusters obtained by using the coalescence recipe
outlined in the previous section. In particular we focus on the
isospin content of the clusters coming from both the liquid
phase and the vapor phase. The values chosen for the average
density, � = 0.4�eq, and temperature, T = 4.5 MeV, are in
the range expected for the multifragmentation process [9,13].
For the time that the system spends in the instability region, we
have chosen a value of t = 80 fm/c. This value is compatible
with that obtained within the stochastic mean-field approach
of Ref. [35]. Moreover, in this short time interval the growth
of fluctuations is still limited so that a linear approximation
can be considered as reasonable. For the side of the cubic
lattice containing the nuclear system, we have adopted the
value L = 21 fm, and the side of the primitive cell has a length
of 3 fm. With the chosen value of density the box contains
�370 nucleons.

We have performed calculations for the two parametriza-
tions of the symmetry energy introduced earlier and for two
values of the global asymmetry, α0 = 0.1, 0.2. We have run
4 × 103 events for each case. With the chosen values of the
parameters the average numbers of nucleons in the liquid phase
and in the vapor phase are �270 and �100, respectively.
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FIG. 1. (Color online) Charge distributions for clusters belonging
to the high-density phase for two values of the global asymmetry α0,
calculated with the “soft” asymmetry term, circles (α0 = 0.1) and
triangles (α0 = 0.2), and the “superstiff” asymmetry term, squares
(α0 = 0.1) and crosses (α0 = 0.2).

A. Charge distributions

To assess the validity of our approach, we have evaluated the
distribution of the cluster yield. In Fig. 1 we present the charge
distribution of clusters belonging to the liquid phase, calculated
for two values of the global asymmetry (α0 = 0.1, 0.2) and for
the two parametrizations of the symmetry energy considered.
One can see that the four curves displayed in the figure are
rather similar. This is expected from the fact that isoscalar-like
modes and related variances, which determine the density
growth and the appearance of fragments, do not depend much
on the behavior of the symmetry energy, nor on the global
asymmetry of the matter considered. Moreover, the obtained
charge distribution is similar to the results of full stochas-
tic mean-field simulations [9,13] of heavy-ion collisions at
�30 MeV/A, where similar conditions of temperature and den-
sity inside the spinodal region are encountered. This indicates
that fragment size is essentially determined by the properties
of the most unstable normal modes, as derived in the linear
approximation. The beating of these modes leads to the rather
wide charge distribution. The charge distribution of Fig. 1 com-
pares rather well also with the experimental results of Ref. [9],
where fragmentation of systems of similar size is investigated.

Another observable of experimental interest is the distri-
bution of the heaviest cluster obtained in each event. The
study of this observable requires, of course, an event-by-event
analysis. The results are shown in Fig. 2. Also in this case we
observe that the four curves corresponding to different charge
asymmetries and to different parametrizations of the symmetry
energy look quite similar. Moreover, our results are similar to
the predictions of full simulations and to experimental data [9].

B. Isotopic properties

From Figs. 3 and 4 we can appreciate the isospin distillation
process occurring in the spinodal decomposition of asymmet-
ric nuclear systems. The average ratio N/Z is plotted as a func-
tion of Z for the correlated density domains of the liquid phase
(see Fig. 3) and of the vapor phase (see Fig. 4). One can nicely
see that the ratio N/Z is smaller than the initial global value
for the liquid, whereas the opposite holds for the vapor phase.
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FIG. 2. (Color online) Distributions of the heaviest cluster for
two values of the global asymmetry α0. Symbols are the same as in
Fig. 1.
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FIG. 3. (Color online) Average ratio N/Z as a function of Z for
clusters belonging to the high-density (liquid) phase, calculated with
the “soft” asymmetry term (circles and triangles) and the “superstiff”
asymmetry term (squares and crosses). (Bottom) Global asymmetry
α0 = 0.1. (Top) α0 = 0.2. The solid horizontal line is the global ratio
N/Z for α0 = 0.1 and the dashed horizontal line is the global ratio
N/Z for α0 = 0.2.
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FIG. 4. (Color online) The same as in Fig. 3 but for clusters
belonging to the low-density (vapor) phase.

We notice that this effect is present also for the two coexisting
phases at thermodynamical equilibrium, as shown in Refs.
[14,26]. Moreover, we observe a slight decrease of the ratio
N/Z with Z. This trend is essentially related to the fact that
lighter clusters originate from lower density domains where, as
discussed in the following (see Sec. III C), isospin distillation
is less effective. We notice that this behavior, which is in
agreement with the results of previous calculations based on
dynamical models [14,36], is not observed in statistical model
calculations, which exhibit an opposite trend [37,38]. Hence,
this property of the ratio N/Z with respect to the cluster charge
allows us to disentangle the predictions of different models.

In particular, Figs. 3 and 4 show that isospin distillation
increases with increasing global asymmetry and is larger when
the “superstiff” asymmetry term is used with respect to the
“soft” case. These features are explained by Eq. (15). Indeed,
the induced asymmetry is proportional to the global asymmetry
α0 and, at the considered density, the derivative ∂S(�)/∂�

has nearly the same magnitude but opposite sign for the two
used parametrizations of the symmetry energy (positive for the
“superstiff” case and negative for the “soft” case).

Now we turn our attention to the probability distribution of
the asymmetry parameter for the domains belonging to the two
phases. In Figs. 5 and 6 we report the probability of finding a
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0
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)
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FIG. 5. (Color online) Average distribution of asymmetry α for
clusters belonging to the high-density (liquid) phase, calculated with
the “soft” asymmetry term (circles and triangles) and the “superstiff”
asymmetry term (squares and crosses). (a) Global asymmetry α0 =
0.1. (b) α0 = 0.2.
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FIG. 6. (Color online) The same as in Fig. 5 but for clusters
belonging to the low-density (vapor) phase.

cluster with asymmetry α = (N − Z)/(N + Z) for the liquid
and vapor phases, respectively. The distribution is averaged
over intermediate mass clusters (5 < N + Z < 50) for the
high-density phase and over light clusters (3 < N + Z < 15)
for the low-density phase. The shift of the maximum toward
the left (right) for the liquid (vapor) phase in the “superstiff”
case with respect to the “soft” case is due to the more effective
distillation power of the “superstiff” interaction, as already
seen. In addition we observe that distributions are wider in
the “soft” case. This effect can be related to the fact that
at the considered density the coefficient S(�) of Eq. (8)
is larger in the “soft" case with respect to the “superstiff"
case, leading to a larger value of the residues in Eq. (4).
Moreover, the distributions are generally broader for the vapor
phase. In the following, we will show that this feature can
be easily explained on the basis of the relative contributions
of isoscalar-like and isovector-like oscillations, at least within
our linear treatment of fluctuations. Moreover, we observe that
the asymmetry distributions become narrower with increasing
global asymmetry for both phases. This was observed also
in Ref. [26], within a thermodynamical study of spinodal
decomposition. A final remark on this topic is in order. As
already seen for the distillation effect, the behavior of the
width of the isotopic distributions, in connection with the
parametrization adopted for the symmetry energy, depends
on the density value of the matter undergoing spinodal
decomposition. With the present approach the widths are
slightly smaller in the “superstiff” case than in the “soft”

case, whereas in Ref. [22] we have observed an opposite
tendency. In fact, with the choice of parameters of Ref. [22], the
nuclear matter explored a region of higher instability (lower
density) with respect to the present calculations. Then, the
ratio between the amplitudes of the isoscalar-like fluctuations
(which also contribute to the isotopic variance, owing to the
dependence of the distillation effect, δ�2/δ�1, on the wave
number k) and of the isovector-like fluctuations was larger than
here. Furthermore, the weighting procedure of the different
fluctuation modes in Ref. [22] could likely underestimate the
isovector-like fluctuations.

C. Density dependence of the distillation effect

Now we show that the amplitude of the isospin distillation
effect, as well as the variances of the isotopic distributions,
is related to the value of the density reached in the different
domains associated with nucleon clusters.

Because of the beating of the several unstable modes,
clusters with a given charge are not associated with a fixed
density domain but may come from domains of different
volume having different density (i.e., the cluster density �

may fluctuate). We will show that this effect influences the
cluster isotopic properties.

As far as the distillation effect is concerned, we notice that
the N/Z ratio of a cluster can be written as

N/Z = (
�0

2 + δ�2
)/(

�0
1 + δ�1

)
,

where �0
2 and �0

1 are, respectively, the neutron and proton
densities of the initial matter and δ�2 and δ�1 are the
corresponding fluctuation values in the domain considered.
After some algebra one obtains

N/Z = (N/Z)0 − [(N/Z)0 − δ�2/δ�1]δ�1/�
0
1

1 + δ�1/�
0
1

,

where (N/Z)0 = �0
2/�

0
1. We notice that, because of the

distillation effect, δ�2/δ�1 < (N/Z)0. From this expression,
one can see that the ratio N/Z of a given cluster decreases
when the density � of the domain increases [i.e., when δ�1

and δ�2 are larger]. In fact, higher densities are associated
with larger isoscalar-like fluctuations and thus with a larger
distillation. In contrast, clusters in the vapor phase, having
density lower than the initial one (δ� < 0), show a larger
value of the ratio N/Z. Moreover, the deviation of the ratio
N/Z with respect to the initial value (N/Z)0 increases as the
ratio δ�2/δ�1 gets smaller (i.e., for parametrizations of the
symmetry energy that lead to a larger distillation effect). In
Fig. 7 we show the N/Z ratio, averaged over all charges, as a
function of the cluster density. The decreasing trend is clear,
especially for the more neutron rich system, where one can
also better appreciate the different effect of the two equations
of state employed in the calculations.

For the variance of the isotopic distributions, we also expect
a decreasing behavior with density. In fact isovector-like
fluctuations, which are mainly responsible of the isotopic
variance, in our linear approach are implemented according
to the properties (density, asymmetry, and temperature) of
the initial matter. Then, nucleon clusters with higher density
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FIG. 7. (Color online) Average ratio N/Z as a function of the
cluster density for two values of the global asymmetry α0, calculated
with the “soft” asymmetry term, circles (α0 = 0.1) and triangles
(α0 = 0.2), and the “superstiff” asymmetry term, squares (α0 = 0.1)
and crosses (α0 = 0.2)

should have narrower isotopic distributions owing to the
larger contribution of the isoscalar-like modes with respect
to isovector-like fluctuations.

The probability distribution for the isovector density
fluctuations δ�3 in a given domain of volume V can be
approximatively expressed as

P ≈ exp
(−δ�2

3

/
2σ 2

iv

)
, (17)

where the variance σ 2
iv can be evaluated by starting from the

value of σ 2
i,j (k) of Eq. (4) and is inversely proportional to the

volume V, σ 2
iv = g(�, T )/V , where g(�, T ) is a function that

depends on the initial conditions of the matter undergoing spin-
odal decomposition and on the parameters on the interaction
adopted [16]. Then, for a cluster of volume V , the distribution
P (N − Z) can be written as

P (N − Z) ≈ exp{−[N − Z − (N0 − Z0)]2/[2Vg(�, T )]}.
(18)

Hence, the variance of the isotopic distribution should be
proportional to V . This is confirmed by our calculations,
as shown in Fig. 8, where we plot the variance of the
(N − Z) distribution, averaged over all clusters with volume
V = NV Vcell, as a function of NV . From Fig. 8 one can also
see that, especially in the case of the “superstiff” interaction,
the variance is smaller for the neutron richer system (compare
squares and crosses). Moreover, for a given volume, variances
are larger in the “soft” case.

If we now consider clusters with a given mass A, we can
easily realize that the isotopic distributions will depend on the
cluster density, being broader for clusters with lower density
(i.e., greater volume). Hence clusters that originate from higher
density domains are expected to have an average N/Z ratio
that is smaller than the value corresponding to the initial matter
and, at the same time, are expected to show narrower isotopic
distributions.

0 5 10 15
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0.2
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0.6

0.8

1

σ2 (N
-Z

)

FIG. 8. (Color online) Average variance of the (N − Z) distribu-
tion for clusters of volume V = NV Vcell as a function of the number
of the elementary cells NV calculated for two values of the global
asymmetry α0. Symbols are the same as in Fig. 7.

IV. CONCLUSIONS

In this paper we have considered a piece of asymmetric
nuclear matter contained in a cubic box with impenetrable
walls. The values of density and temperature of the system are
inside the spinodal instability region of the phase diagram. We
have mainly focused our attention on the isotopic distributions
of clusters coming from the breakup of the system.

In our approach the density fluctuations are considered
within a linear approximation, and so our results refer to
nuclear matter being not deeply inside the unstable spinodal
region. Such a physical situation can occur in central collisions
of heavy ions at moderate energy (�30 MeV/A). Moreover,
we remark that our investigation concerns the distributions just
after the early breakup of the nuclear system.

It has been found that, at the considered values of density
and asymmetry, the global features of the disassembly, the
isospin distillation effect included, are essentially determined
by the unstable isoscalar-like fluctuations of the density,
whereas the widths of the isotopic distributions are mostly
affected by the isovector-like oscillations.

Within the model developed it is possible to recognize
clusters originating from domains having different density
values. Discerning clusters with density lower or higher than
the initial density, we have observed a clear occurrence
of the isospin distillation effect: Low-density clusters are
more neutron-rich than the initial system; correspondingly the
opposite happens for higher density clusters. As a general
trend the average value of the N/Z ratio decreases with
increasing cluster density. This effect is enhanced for more
charge-asymmetric systems. Moreover, it has been found
that the isotopic distributions of clusters belonging to the
low-density phase are broader than those of clusters belonging
to the high-density phase. Hence larger distillation effects
are associated with narrower isotopic distributions, at least
within our linear treatment of fluctuations. This feature, if
it survives the secondary decay of primary fragments, could
be qualitatively checked in experiments by comparing the
isotopic distributions of light clusters, which should emerge
from the low-density phase, and intermediate mass fragments,
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most likely associated with higher density regions. However,
at the present level of investigation, a careful comparison with
experiments would require a reconstruction of the properties of
the primary fragments, based on actual experimental data [39].

To stress the sensitivity of the results to the isovector part
of the nuclear interaction, we have presented calculations
obtained with two different parametrizations of the symmetry
energy. For the values of charge-asymmetry considered, we
have seen that isospin effects are essentially related to the
values of the coefficient of the symmetry energy and of

its derivative with respect to the density. In particular, the
former quantity mainly determines the width of the isotopic
distributions, whereas the latter quantity plays a crucial
role for determining the strength of the isospin distillation.
However, it should be remarked that the symmetry energy
properties depend on the density reached by the system during
the decomposition process. Therefore the effectiveness of a
given parametrization of the symmetry energy for the isospin
distillation depends on the actual path followed by the nuclear
system in the density-temperature phase diagram.
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and H. H. Wolter, Nucl. Phys. A703, 603 (2002).
[36] T. X. Liu et al., Phys. Rev. C 69, 014603 (2004).
[37] A. S. Botvina and I. N. Mishustin, Phys. Rev. C 63, 061601(R)

(2001).
[38] A. B. Larionov, A. S. Botvina, M. Colonna, and M. Di Toro,

Nucl. Phys. A658, 375 (1999).
[39] S. Hudan et al., Phys. Rev. C 67, 064613 (2003).

064606-9


