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evolution of shapes with the number of nucleons in various chains of Yb, Hf, W, Os, and Pt isotopes from neutron
number N = 110 up to N = 122. Potential energy curves are analyzed in a search for signatures of oblate-prolate
phase shape transitions, and results from various Skyrme and pairing forces are considered. Comparisons with
results obtained with the Gogny interaction as well as with relativistic mean field calculations are presented. The
role of the γ degree of freedom is also discussed.
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I. INTRODUCTION

The equilibrium shapes that characterize the ground states
of atomic nuclei, as well as the transitional regions where
shape changes occur, have been the subject of a large number
of theoretical and experimental works (for a review, see,
for example, Ref. [1] and references therein). In particular,
the complex interplay between different competing degrees
of freedom, taking place in transitional nuclei, offers the
possibility of testing microscopic descriptions of atomic nuclei
under a wide variety of conditions. In this context, mean
field approximations based on effective interactions with
predictive power all over the nuclear chart, which are a
cornerstone to almost all microscopic approximations to the
nuclear many-body problem, appear as a first theoretical tool
to rely on when looking for fingerprints of nuclear phase shape
transitions.

Today, systematic mean field studies are possible for two
main reasons. First, important advances have been made
in the fitting protocols providing effective nucleon-nucleon
interactions with predictive power all over the nuclear chart.
Popular energy density functionals for calculations along these
lines are the nonrelativistic Gogny [2] and Skyrme [3,4] ones,
as well as different parametrizations of the relativistic mean
field Lagrangian [4,5]. Second, it has also become possible to
recast mean field equations in terms of efficient minimizations
such as successive iteration methods or the so-called gradient
method (see, for example, Refs. [4,6]). The last point is
very important when constrained calculations are performed,
because, in addition to the usual constraints on both neutron
and proton numbers, other external fields could also be added.
A typical situation is that in which both β and γ degrees
of freedom are taken into account. In addition, mean field
approximations are based on product trial wave functions,
used to minimize a given energy density functional. Such
products break several symmetries of the underlying nuclear
Hamiltonian, allowing the use of an enlarged Hilbert space.

Within this space, static correlations associated with collective
modes (e.g., deformation) are incorporated at the cost of a
moderate effort. These are the main reasons why the mean
field framework can be considered as a valuable starting point
for microscopic nuclear structure studies.

In this paper, we use this approach to gain insight into
nuclear shape transitions around 190W. This mass region is
particularly interesting, because it lies below doubly magic
numbers, and small islands of oblate deformations might
be favored energetically. It is also characterized by the
strong competition between oblate and prolate configurations
(i.e., shape coexistence), and special interest has been given
to the case of 190W [7–9]. So far, much data have been
collected, especially on the energy spacing of the lowest lying
states in even-even systems with mass number A = 170–200.
Spectroscopic studies on these nuclei have become possible by
exploiting the decay of K isomers, which is also a well-known
feature characterizing this mass region [10]. This turns into a
significant amount of information on the global behavior of
these nuclei. For example, the excitation energy of the first 2+
state is used to correlate the extent of quadrupole deformation,
and the ratio of the first 4+ to the first 2+(E4+/E2+ ) can be used,
in simple models, to distinguish between an axially symmetric
deformed rotor (E4+/E2+ = 3.33), a spherical vibrational
nucleus (E4+/E2+ = 2.0), and a triaxial rotor (E4+/E2+ =
2.5) [11,12].

The experimental situation [7,8,13] concerning the ratio
E4+/E2+ for even-even isotopes in this region is summarized in
Fig. 1. Clear signatures of shape transitions, which are the main
objective of this paper, are visible from this figure. In the left
panel, we have plotted the ratio E4+/E2+ as a function of Z for
nine isotone chains from N = 106 up to N = 122. As can be
observed, there is a clear tendency toward the prolate rotational
limit (E4+/E2+ = 3.33) in the isotone chains below N = 116
as the number of protons decreases. In the case N = 116, a
change of tendency is also observed between Z = 76 (192Os)
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FIG. 1. (Color online) Experimental ratio of the first 4+ and 2+

energies for various isotone (left) and isotope (right) chains. Dashed
horizontal lines are plotted at 3.33 and 2.5.

and Z = 74(190W), which has been interpreted as a subshell
effect [14]. On the other hand, the heavier N = 116 isotones
192Os and 194Pt, are well-known examples of γ -soft nuclei
[15]; and then it is natural that the γ degree of freedom might
also play an important role in 190W, as can be deduced from
the close value of the E4+/E2+ ratio to the 2.5 limit.

In the right panel of Fig. 1, the ratio E4+/E2+ has been
plotted for various isotopes as a function of the neutron
number. As can be seen, the lighter Yb, Hf, W, and Os isotopes
have a ratio that is very close to the rotational limit. On the
other hand, for heavier isotopes, the ratio decreases down to
values close to 2.5, and the tendency is to continue toward the
spherical limit. Finally, the Pt isotopes have ratios that indicate
a pronounced γ -soft character.

From the theoretical point of view, a shape transition from
prolate to oblate as the number of neutrons is increased in this
mass region has been predicted by different models [15–20].
For instance, a pioneer study within the shell correction method
with a deformed Woods-Saxon potential and monopole pairing
interaction has been used [16] to discuss the prolate-oblate
shape change in Os isotopes. It has been found that the
shape change takes place between N = 114 and N = 116,
while similar studies [17] based on total Routhian surface
calculations also suggested this transition to occur at N = 118.
On the other hand, various collective models were tested in
Ref. [15] to describe the E2 properties of the low-lying states
in several rare-earth Os and Pt isotopes. The results indicated
that the data were consistent with the description of these
nuclei as being γ soft. Shape predictions from relativistic and
nonrelativistic studies with angular momentum projection for
Hf, W, and Os isotopes were also compared in Ref. [18]. While
relativistic calculations predicted a majority of prolate shapes,
cycling changes in the sign of the quadrupole parameters were
observed in the case of nonrelativistic calculations. More re-
cently, the shape transition in both Os and Pt isotopes has been
studied within the relativistic mean field (RMF) approximation
using the parametrization NL3, which is perhaps the best
parameter set ever fitted for the RMF Lagrangian, together
with a finite range Brink-Boeker pairing interaction [19] and

also within a nonrelativistic self-consistent axially deformed
Hartree-Fock (HF) framework based on a separable monopole
interaction [20,21].

Nevertheless, and to the best of our knowledge, no system-
atic study of shape transitions in this mass region has been
carried out yet within the framework of Skyrme Hartree-Fock
calculations with pairing correlations, which is at present
one of the state-of-the-art mean field descriptions (see, for
example, Refs. [3,4,22]). Therefore, in this work we study the
ground state shape evolution in five isotopic chains, namely,
Yb, Hf, W, Os, and Pt from N = 110 up to N = 122 in an
attempt to get the first hints of nuclear shape transitions for
these nuclei. In particular, we will first keep axial symmetry
as a self-consistent symmetry [23] and construct potential
energy curves (PECs) as functions of the (axially symmetric)
mass quadrupole moment for the above-mentioned chains
of nuclei. These PECs are obtained from the corresponding
constrained Skyrme Hartree-Fock + BCS calculations, using
the forces Sk3 [24], SLy4 [25], and SLy6 [25] in the particle-
hole channel and different recipes for pairing correlations.
The axially symmetric calculations should be regarded as
a first step and will allow us to disentangle the sensitivity
of our predictions with respect to the method employed to
solve the deformed HF+BCS equations (i.e., discretization
in a Cartesian mesh or expansion into an axially symmetric
harmonic oscillator basis), as well as to the effective Skyrme
and pairing interactions. Additionally, we will compare our
findings with the results obtained with the parametrization
D1S [26] of the Gogny interaction [2]. Let us remark that
the main intention in this work is to obtain the first hints
of shape transitions around the nucleus 190W using effective
forces whose predictive power has already been shown when
describing ground state nuclear properties all over the nuclear
chart. In this context, the set of effective interactions already
mentioned is well suited, and it is very interesting to compare
their predictions.

In a second step, the role played by the γ degree of freedom
will be discussed. The corresponding triaxial calculations
will be based on the code EV8 [22], our main computational
tool in the present work. We will take advantage of its
three-dimensional lattice discretization, which allows us to
treat any quadrupole deformation effect, axial or triaxial,
on the same footing [4,27]. On the other hand, these calcu-
lations are much more involved than the axial ones (about a
factor of 60 much more expensive in computing time) and
therefore have been restricted to a relevant sample of nuclei in
the present study.

The paper can be outlined as follows. In Sec. II, we briefly
describe the main theoretical formalism (Hartree-Fock + BCS)
used to obtain the main ingredients of the present study, i.e., the
PECs and potential energy surfaces (PESs) for the considered
isotopic chains. For more details, the reader is referred to
the corresponding literature. Section III contains our results.
There, we first discuss the sensitivity of the PECs (obtained
in the framework of axially symmetric calculations) to the
effective nucleon-nucleon force and to the treatment of the
pairing correlations; in a second step, the role of triaxiality
(i.e., the γ degree of freedom) will be illustrated for nuclei
of the Yb, Hf, W, Os, and Pt chains with neutron numbers
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N = 114, 116, and 118. Finally, Sec. IV is devoted to the
concluding remarks and work perspectives.

II. THEORETICAL FRAMEWORK

Our microscopic approach is based on a self-consistent
formalism built on a deformed Hartree-Fock mean field, using
Skyrme-type two-body interactions, plus pairing correlations
between like nucleons included in the BCS approximation. As
is well known, the density-dependent HF+BCS approximation
provides a very good description of ground state properties for
both spherical and deformed nuclei [27], and it is at present
one of the possible state-of-the-art mean field descriptions [4].

We have used two methods of solving the deformed
HF+BCS equations. The first method is based on the expan-
sion of the single-particle wave functions into an appropriate
orthogonal basis (the eigenfunctions of an axially symmetric
harmonic oscillator potential), following the procedure based
on the formalism developed in Ref. [3]. The second method,
which is our main choice for the calculations performed in
this study, uses a coordinate space mesh, solving the HF+BCS
equations for Skyrme-type functionals via discretization of the
individual wave functions on a three-dimensional Cartesian
mesh [22]. As a matter of fact, it can be shown that this corre-
sponds to an expansion on the basis of Lagrange polynomials
associated with the selected three-dimensional mesh [28]. One
of the main advantages of the three-dimensional discretization
is that any quadrupole deformation effect, axial or triaxial, can
be taken into account on the same footing [4,27]. As a result,
this second method represents our main computational tool in
the present study and will be used later on when examining
the role played by the γ degree of freedom for the considered
nuclei.

We have mainly considered three different parametrizations
of the effective Skyrme-like interactions in the particle-
hole channel. As the leading choice, we have performed
calculations (both axial and triaxial) with the parametrization
SLy4 [25]. We also show results in some instances (i.e., at the
level of axially symmetric calculations) for the Skyrme forces
Sk3 [24] and SLy6 [25]. They are examples of global effective
Skyrme interactions that have been designed to fit ground state
properties of spherical nuclei and nuclear matter properties.
While Sk3 is the simplest one, involving in particular a linear
dependence on the density, the Lyon force SLy4 represents a
parametrization obtained with a more recent fitting protocol,
and its predictive power has already been shown to be very
reasonable all over the nuclear chart [4]. Calculations have also
been performed with the Skyrme parameter set SLy6, which
includes additionally a two-body center-of-mass correction in
the corresponding energy functional.

As a first step, HF+BCS calculations preserving axial
symmetry have been performed using the Skyrme forces
mentioned above. Our plan is, on the one hand, to use the
axially symmetric calculations to study the sensitivity of our
results to the effective interactions used in the particle-hole
and pairing channels. On the other hand, we will also use them
to obtain, in the framework of our Skyrme HF+BCS study,
first hints of shape transitions around 190W. Obviously, pairing

correlations have also been taken into account, and we have
selected a zero-range density-dependent pairing force [29],

V (r1, r2) = −g(1 − P̂ σ )

(
1 − ρ(r1)

ρc

)
δ(r1 − r2), (1)

as our leading choice in the particle-particle channel. In
Eq. (1), P̂ σ is the spin exchange operator, ρ(r) is the nuclear
density, and ρc = 0.16 fm−3. The strength g of the pairing
force [Eq. (1)] is taken g = 1000 MeV fm3 for both neutrons
and protons, and a smooth cutoff of 5 MeV around the
Fermi level has been introduced [29,30]. Let us mention that
very recently, the parametrization SLy4 has been successfully
applied in combination with the pairing interaction [Eq. (1)]
(with g = 1000 MeV fm3) in systematic studies of correlation
energies from 16O to the superheavies [31] and in global
studies of spectroscopic properties of the first 2+ states in
even-even nuclei [32]. Thus, the predictive power of this
combination of effective interactions has been well established
along the nuclear chart, and this is the main reason for
selecting the combination SLy4 in the particle-hole channel
and the interaction of Eq. (1) (with g = 1000 MeV fm3) in
the pairing channel as the leading choice for the present study.
Calculations with the parametrization SLy6 in the particle-hole
channel and the interaction of Eq. (1) (with g = 1000 MeV
fm3) have also been performed.

In this work, we also consider other recipes for pairing
correlations. For example, a schematic seniority pairing force
with a constant pairing strength G parametrized to reproduce
the phenomenological pairing gaps will also be used. This
treatment is called constant-force approach. One can also
further simplify the pairing treatment by parametrizing the
pairing gaps �p,n directly from experiment, we call this
treatment the constant-gap approach. The pairing strength G

and the pairing gap are related through the gap equation [23]

� = G
∑
k>0

ukvk, (2)

where vk are the occupation amplitudes (u2
k = 1 − v2

k ).
The PECs shown later in this paper (see Sec. III) are

computed microscopically by constrained HF+BCS calcula-
tions [23,33] in which axial symmetry is kept as self-consistent
symmetry [23] during the typical mean field iterative proce-
dure [4].

In a second step, calculations exploring the role played by
the γ degree of freedom have been performed [22] for the Yb,
Hf, W, Os, and Pt chains with neutron numbers N = 114, 116,
and 118. As mentioned before, the triaxial calculations are
more involved than the axial ones, and we have restricted
them to that selected set of nuclei. As in the axially symmetric
calculations, the corresponding energy functional is minimized
under a quadratic constraint that holds the mass quadrupole
moment fixed to a given value (expressed in barns) [22,23]
and the nonlinear HF+BCS equations are solved using the
method of successive iterations [4,22]. In addition to the usual
mean field constraints on both neutron and proton numbers, the
nuclear shape is determined by constraining simultaneously
the pair of values (q1, q2) related with the parameters Q and γ
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through the equations [22]

q1 = Q

(
cos γ − 1√

3
sin γ

)
,

q2 = Q
2√
3

sin γ, (3)

Q =
√

q2
1 + q2

2 + q1q2.

Particular shapes of interest are the prolate ones with γ =
0◦(q1 = Q, q2 = 0) and the oblate ones with γ = 60◦(q1 =
0, q2 = Q), while triaxial shapes lie in between them. Using
chains of triaxial calculations, we have checked the stability
of the minima predicted in the framework of the axially
symmetric calculations (first step in the present study) with
respect to the γ degree of freedom. These calculations will
also be discussed in Sec. III and have been performed with the

parametrization SLy4 plus the pairing interaction of Eq. (1)
(with g = 1000 MeV fm3).

III. DISCUSSION OF RESULTS

In this section, we will discuss the results obtained in our
study. First, we will discuss those obtained with the restriction
to axially symmetric shapes; then, in a second step, we will
illustrate the role played by the γ degree of freedom.

As is well known, PECs are sensitive to the effective nuclear
force in both relativistic [34] and nonrelativistic [35,36]
approaches, as well as to pairing correlations [35–37]. Thus,
we begin our discussion on the PECs by considering sample
results in order to study the sensitivity of our predictions to
effective interactions in both the particle-hole and the pairing
channels. In Fig. 2 we consider the PECs obtained in the
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culations with various Skyrme and pairing
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framework of the axially symmetric calculations described
in Sec. II with the Skyrme forces Sk3, SLy4, and SLy6 and
various pairing treatments. Taking as a reference the results
obtained from the most sophisticated method based on the
coordinate space mesh calculation [22] with the forces SLy4
and SLy6 plus a zero-range density-dependent pairing force
with strength g = 1000 MeV fm3, labeled SLy4-ev8 (solid
lines) and SLy6-ev8 (dotted lines) in the figure, one can see
that the results do not differ much when changing the pairing
treatment to a constant-force approach (dashed lines) or when
changing the Skyrme interaction into Sk3 (dash-dotted lines).
It can also be seen that the locations of the oblate and prolate
minima appear at the same deformations, no matter what
the force is. However, the relative energies can be slightly
different, and the spherical energy barriers between the prolate
and oblate minima of the PECs can change by a few MeV,
depending on the force. In general, the energy barriers at zero
deformation are lower with the force Sk3 and the delta pairing
force also makes the barriers somewhat lower. These results
indicate that the topology of the PECs is sensitive to the details
of the calculations, as has already been pointed out in Ref. [37].
Additionally, Fig. 2 clearly shows that at least for some of the
nuclei considered, there is a very strong competition between
different low-lying configurations corresponding to different
intrinsic deformations (i.e., shape coexistence), and therefore
dynamical correlations not explicitly taken into account at the
mean field level (for example, symmetry restoration and/or
configuration mixing) could certainly play a role in the
description of ground state properties in these nuclei.

If one analyzes Fig. 2 in the vertical direction along isotope
chains, one can see a clear evolution from prolate to oblate
shapes for increasing neutron number. This transition takes
place at N = 116 in Yb and Hf isotopes and at N = 116
and N = 118 in W and Os isotopes, and it is a very soft
transition in Pt isotopes. On the other hand, horizontally along
isotone chains and except for the Pt isotopes, the isotones

with N = 122, 120, and 118 are oblate, while those with
N = 114, 112, and 110 are prolate. Isotones with N = 116
are transitional nuclei with oblate and prolate minima at about
the same energy and therefore showing a more pronounced
shape coexistence. It is also worth noticing that the energy
barriers at zero deformation decrease almost linearly with the
number of protons as Z increases in a given isotone chain. The
same reduction is observed in isotope chains as N increases.

The previous results are in qualitative good agreement
with the ones obtained in Ref. [19] using the parametrization
NL3 of the RMF Lagrangian and a pairing force based on
the Brink-Boeker part of the Gogny interaction. The energy
barriers are found to be lower than SLy4, but the location
of the equilibrium deformations does not change much. The
agreement of our results with those in Ref. [20] is also
satisfactory concerning the location of the minima, but the
energy barriers at zero deformation are clearly lower in that
reference. In general, our results are in good agreement with
those obtained in previous studies. However, the nuclides at
which the transitions from one shape to another take place may
change because of the small energy differences between the
oblate and prolate minima in the transitional region.

Figures 3 and 4 show a comparison of the PECs obtained
from the force SLy4 and a zero-range density-dependent
pairing force (referred as SLy4-ev8) with those obtained from
Hartree-Fock-Bogoliubov calculations [38,39] based on the
parametrization D1S of the Gogny interaction [26]. As is well
known, the advantage of the Gogny interaction over other
alternatives is that its finite range allows a fully self-consistent
treatment of pairing correlations with the same interaction that
produces, due to its structure, the proper cutoff for the pairing
matrix elements.

The comparison in Fig. 3 is for the isotone chain N = 116,
while a similar comparison in Fig. 4 is for the isotope chain
Z = 74. Figure 3 also gives the results obtained with the
Skyrme force SLy4 using a simple constant-gap approach
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in the pairing channel with pairing gaps obtained from
the experimental masses of neighboring nuclei [40]. These
figures show again that the location of the minima is rather
stable at practically the same deformations. It should also be
noted that the energy barriers are somewhat lower with the
Gogny interaction and somewhat larger with the constant-gap
approach.

The quadrupole moments of the charge distributions of
these nuclei can be compared with the available experimental
information. This is done in Fig. 5 for our five isotopic
chains as a function of the neutron number. Our theoretical
results obtained from SLy4 are shown by thin solid lines,
one connecting the prolate minima and the other joining the
oblate ones. Thick lines connect the quadrupole moments
corresponding to the ground states of the nuclei. We also
show by dashed lines the quadrupole moments of the ground

states obtained from RMF calculations [41] (parametrization
NL3) and the BCS formalism with constant pairing gaps.
Dotted lines correspond to Gogny-D1S calculations [39].
Experimental data (full circles) are taken from the most
updated compilation of available data on static nuclear
electric quadrupole moments [42], transforming the laboratory
quadrupole moments corresponding to the first 2+ excitations
into intrinsic ones by using Qintr = −3.5 Qlab. We also
show the experimental intrinsic quadrupole moments derived
from the experimental values of B(E2) strengths [43]. In this
case, the sign cannot be extracted and therefore we show by
open circles in Fig. 5 both possibilities of signs. Actually, the
B(E2) strengths are converted into quadrupole moments [43]
under the assumption of a well-defined axial rotor behavior that
in our case can be identified with values of the E4+/E2+ ratio
close to 3.33. It is worth noticing that in Ref. [15] a complete set
of E2 matrix elements involving the low-lying excited states
in 186,188,190,192Os and 194Pt was measured. This includes not
only the B(E2) values but also the relative signs between
the transitional E2 matrix elements and the static quadrupole
moments. In particular, it was shown that the 〈Q2〉 centroids
are nearly spin independent, suggesting that the E2 properties
are correlated and that the collective motion is rotation-like.
The general trend of the data in Ref. [15] is consistent with the
description in terms of γ -soft type collective models through a
prolate to oblate shape transition. It would be very interesting
in the future to include dynamical correlations beyond the
static mean field picture used in this work and compare the
results with those data.

As can be observed from Fig. 5, there is a nice agreement
between our SLy4 results and the experimental ones, including
the sign (full circles). At the same time, RMF calculations fail
to describe the sign of 192,194Pt isotopes, while calculations
with the Gogny interaction fail to describe the quadrupole
moment of 192Os. Nevertheless, one should notice that in the
transitional region, this discrepancy is not very significant,
because the energies corresponding to the two deformations
are practically the same and small details of the calculation
may change the relative energy difference between the oblate
and prolate shapes.

Finally, we show in Table I the moments of inertia
calculated microscopically within the cranking model, as well
as the moments of inertia from various macroscopic models,

TABLE I. Ratio E4+/E2+ and moments of inertia I (MeV −1)
obtained from the first experimental 2+ energy (Iexp), from a cranking
calculation with SLy4 (ISLy4) and Gogny (IGogny), as well as from
macroscopic descriptions of the nucleus as an irrotational flow (Ii.f.)
and a rigid rotor (Ir.r.). Only nuclei with E4+/E2+ > 3 are considered.

E4+/E2+ Iexp ISLy4 IGogny Ii.f. Ir.r.

182Hf 3.29 30.7 31.8 31.5 5.0 87.9
184Hf 3.26 27.9 33.6 35.0 4.8 89.4
184W 3.27 27.0 30.0 27.6 4.3 89.0
186W 3.23 24.5 32.0 32.5 4.1 90.4
188W 3.09 21.0 33.0 23.3 3.2 91.3
186Os 3.16 21.9 29.2 26.8 3.8 90.2
188Os 3.08 19.4 31.6 23.5 3.6 91.6
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namely, the rigid rotor (Ir.r.) and the irrotational flow (Ii.f.)
models. The expressions used to calculate the moments of
inertia can be found in Refs. [23,44]:

Icranking = 2
∑

k,k′>0

|〈k|Jx |k′〉|2
Ek + Ek′

(ukvk′ − uk′vk)2, (4)

Ir.r. = 2

5
mAR2

0

(
1 +

√
5

16π
β

)
, (5)

Ii.f. = 3

5
ρ0R

5
0β

2. (6)

In these expressions, β is the quadrupole deformation defined
in terms of the mass quadrupole moment Q and the mean-
square radius of the mass distribution 〈r2〉,

β =
√

π

5

Q

A〈r2〉 . (7)

We compare our results with the experimental moments of
inertia extracted from the first 2+ excitations under the as-
sumption that they correspond to rotors with E2+ = 3/I [23].
Thus, we quote only those nuclei with ratios E4+/E2+ close
to the value 3.33. As expected, the rigid rotor and irrotational
flow models predict, respectively, upper and lower limits to the
phenomenological moment of inertia. The cranking moments
of inertia, calculated either with SLy4 or Gogny forces, are
much closer to experiment.

Let us now turn to the second part of our discussion, i.e.,
the role played by the γ degree of freedom in the considered
nuclei. That triaxiality could certainly play a role for nuclei in
this region of the nuclear chart becomes already clear if one
keeps in mind that the heavier N = 116 isotones 192Os and
194Pt are known to be γ -soft nuclei [15]. The same applies
to 190W from its E4+/E2+ ratio approaching the limit of 2.5
(see Fig. 1). Therefore, to confirm the reliability of the shape
transitions predicted in the framework of the axially symmetric
calculations discussed above, we carried out calculations
constraining the Q-γ degrees of freedom (instead of the β

deformation parameter, we use the Q quadrupole moment)
along the lines described in Sec. II. The calculations in Figs. 6
and 7 have been performed with the parametrization SLy4 in
the particle-hole channel plus the pairing interaction [Eq. (1)]
with g = 1000 MeV fm3.

In Fig. 6, the contour plot for the PES of the nucleus 190W
is presented. From this figure, we immediately realize that the
nucleus 190W has a triaxial ground state whose coordinates
in the Q-γ plane are (Q, γ ) = (14 b, 25◦). The figure shows
a soft behavior on the γ degree of freedom with a very
shallow triaxial minimum, which lies less than 0.5 (1.3) MeV
below the prolate (oblate) minimum. To gain a better insight
into the role of triaxiality in this mass region, we performed
similar calculations for other Yb, Hf, W, Os, and Pt nuclei
with neutron numbers N = 114, 116, and 118. The results
of these calculations are summarized in Fig. 7, which plots
the HF+BCS energy as a function of the triaxial deformation
parameter γ (in degrees) for the Q values at which the energy
minima are obtained in the axial case. In general, we can
see that the oblate and prolate minima are connected in the
γ variable with smooth functions exhibiting in some cases

5
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Q (b)
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10
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FIG. 6. (Color online) Contour plot of the PES of 190W in a β-γ
plane-like representation. Instead of the β deformation parameter, we
used the total mass quadrupole moment Q [see Eq. (3)] in units of
barns. γ is in degrees. The contour lines correspond to the following
scheme: from εmin + 0.25 MeV to εmin + 2.0 MeV alternating dotted
and dashed contours are plotted every 0.25 MeV (the contour
εmin + 0.25 MeV is plotted in blue, the contours εmin + 0.50 MeV
and εmin + 0.75 MeV are plotted in green; those corresponding to εmin

+ 1.00 MeV and εmin + 1.25 MeV are plotted in red; the rest in
black); from εmin + 2.50 MeV to εmin + 4.50 MeV the contour lines
are plotted every 0.50 MeV as full lines; from εmin + 5.00 MeV
to εmin + 10.00 MeV the contour lines are plotted again every
0.50 MeV as dashed lines; finally from εmin + 11.00 MeV to
εmin + 20.00 MeV contour lines are depicted every 1.00 MeV as
full lines. Calculations have been performed with the parametrization
SLy4 of the Skyrme force in the particle-hole channel plus a
zero range and density-dependent pairing interaction with strength
g = 1000 MeV fm3.

shallow local minima or low peaks. The barriers found are of
the order of a few hundred keV, much lower than the typical
spherical barriers in the β variable, which can reach values
up to 20 MeV, depending on the example (see Fig. 2). For
the Yb and Hf isotopes, we can see a transition from prolate
(N = 114) to oblate (N = 118) shapes, passing through a
γ -soft isotope (N = 116), which shows smooth peaks and
valleys. We also observe that in these two isotopes, one of the
axial minima, oblate in N = 114 and N = 116 and prolate
in N = 118, is indeed a saddle point, unstable in the γ

direction. For W isotopes, we can see that the axial prolate
and oblate minima are again connected through soft curves in
the γ direction, allowing for triaxial minima; this is especially
clear in the N = 118 isotone. The oblate minima in β become
saddle points when the γ degree of freedom is considered. The
same happens for the N = 116 and N = 118 prolate minima.
Finally, Os (Pt) isotopes are examples of very soft prolate
(oblate) nuclei with axial minima separated by about 1 MeV
and connected through extremely shallow triaxial minima.
Again, the oblate minima become saddle points, and this is also
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FIG. 7. HF+BCS energy of N = 114, 116, and 118 isotones plotted as a function of the triaxial deformation parameter γ (degrees) for the
Q values at which the energy minima are obtained in the axial case.

the case for the prolate ones, with the exception of 190Os. It is
worth noticing once more that the axial minima are separated
by spherical energy barriers ranging between 5 and 10 MeV.
The general trend seems to be quite clear: whenever there is
a minimum which is much deeper than the other (2 MeV or
more), the lower lying minimum remains a minimum when
the γ degree of freedom is included. On the other hand, the
higher lying minimum becomes a saddle point. When the two
minima lie at a depth not differing by more than a couple of
MeV, it is likely that a triaxial minimum develops, and the
prolate and oblate minima become saddle points. The latter
is not a theorem but represents a very likely situation that
obviously is prone to exceptions.

IV. CONCLUSIONS

With the aim of obtaining first hints on nuclear phase shape
transitions around 190W within the self-consistent Skyrme
HF+BCS scheme, we have considered in the present work
the PECs of five isotopic chains, namely, Yb, Hf, W, Os,
and Pt for 106 � N � 122. Our study has been based on
different Skyrme-like energy functionals plus different recipes
for pairing correlations, and comparisons have been made
with results obtained using the Hartree-Fock-Bogoliubov
approximation based on the Gogny interaction.

From the analysis of our results, we conclude that at
least in the mass region studied, the PECs are not sensitive

to the method employed to solve the HF+BCS equations
(three-dimensional Cartesian lattice or deformed harmonic
oscillator basis). We also conclude that the qualitative behavior
of the energy profiles remains unchanged against changes
in the Skyrme and pairing interactions in the sense that the
deformations at which the energy minima occur are rather
stable. This agrees well with results obtained with other
nonrelativistic approximations including those involving the
Gogny force, as well as with results obtained within the RMF.
However, the spherical energy barriers between the minima
are found to be sensitive to the details of the calculations.

As already mentioned, our main intention in this study has
been to obtain first hints of nuclear phase shape transitions in
the region under discussion. In this context, we find signatures
for a transition from prolate to oblate shapes as the number
of neutrons increases from N = 110 up to N = 122 in Yb,
Hf, W, and Os isotopes. The lighter isotopes of these nuclei
exhibit a rotational behavior that changes gradually toward
γ soft as the number of neutrons increases. The transition
is found to happen at N = 116–118, where the energies of
prolate and oblate shapes are nearly degenerate. In the case of
Pt, the isotopes considered do not show a rotor behavior, and
a prolate shape in the lighter isotopes is not clearly developed
yet. Let us also mention that our results agree qualitatively with
previous predictions of shape transitions in this mass region.

The role played by triaxiality in the description of ground
state properties for nuclei in this mass region has been
investigated by calculating β-γ energy contour plots, and in
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particular, the energy behavior with the γ variable for fixed
values of β corresponding to the axial minima. The analysis
of our results shows that the axial prolate and oblate minima,
which are well separated by high spherical barriers in the β

degree of freedom, are linked very softly in the γ degree of
freedom.

Finally, a long list of tasks remains to be undertaken in the
near future, and this work can be viewed as a starting point
for a more ambitious project. In particular, it will be worth
determining the extent to which the results discussed above
might be modified by including dynamical correlations beyond
the static mean field picture. This is particularly interesting if

one notes that at least for some of the considered nuclei, shape
coexistence is clearly visible, and therefore it is important
to check the role played by symmetry restoration and/or
configuration mixing.
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