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Dipole-strength distributions in the nuclides 98Mo and 100Mo up to the neutron-separation energies have
been studied in photon-scattering experiments at the bremsstrahlung facility of the Forschungszentrum Dresden-
Rossendorf. To determine the dipole-strength distributions up to the neutron-emission thresholds, statistical
methods were developed for the analysis of the measured spectra. The measured spectra of scattered photons
were corrected for detector response and atomic background by simulations using the code GEANT3. Simulations
of γ -ray cascades were performed to correct the intensities of the transitions to the ground state for feeding
from higher-lying levels and to determine their branching ratios. The photoabsorption cross sections obtained for
98Mo and 100Mo from the present (γ, γ ′) experiments are combined with (γ, n) data from literature, resulting in
a photoabsorption cross section covering the range from 4 to about 15 MeV of interest for network calculations
in nuclear astrophysics. Novel information about the low-energy tail of the giant dipole resonance and its
energy dependence is derived. The photoabsorption cross sections deduced from the present photon-scattering
experiments are compared with existing data from neutron capture and 3He-induced reactions.
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I. INTRODUCTION

Among the collective modes of nuclei the electric dipole
(E1) excitation has the special property that most of its
strength is concentrated in the isovector giant dipole resonance
(GDR). Macroscopically, this strong resonance is described
as a vibration of the charged (proton) matter in the nucleus
against the neutral matter (neutrons) [1–3]. It is a long-standing
question of nuclear physics to specify how much of the
E1 strength is still present at energies far below the GDR
maximum. Theoretically it has been shown [4] that it is
justified to describe the GDR by a Lorentzian also below
the particle emission thresholds. Herewith it is important
that the contribution of particle emission, i.e., the escape
widths, to the total width of the GDR is negligible [5].
Various experimental attempts to determine the low-energy
extension of the GDR for heavier nuclei have led to conflicting
results. Neutron-capture experiments often have indicated an
overshoot of the Lorentzian over the observed E1 strength at
the low-energy tail of the GDR [6]. On the basis of these data
theoretical explanations have been proposed [7] to explain the
differences that include the posit of a strong energy dependence
of the GDR width. Photon-scattering experiments, however,
are in some cases in reasonable agreement with the Lorentzian
extrapolation [8,9]. However, in some nuclei extra strength
[10] with respect to the smooth Lorentzian was found and
denoted as “pygmy dipole resonance” (PDR) [11] in contrast
to the GDR. The PDR has experimentally been studied so far
in spherical nuclides around Z,N = 20, 28, Z = 50, N = 82,
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and in the doubly magic 208Pb. An overview about these studies
is given in Ref. [12]. Theoretical approaches describe the PDR
as caused by an oscillation of excessive neutrons against the
symmetric proton-neutron system (see, e.g., Refs. [13–15]).
New experimental studies of the behavior of the dipole strength
on the tail of the GDR in a wider area of the nuclear chart
accounting for properties like nuclear deformation, etc., are
needed for a deeper understanding of the PDR.

The measurement of the photoabsorption cross section σγ

at energies close to the neutron-separation energy is faced with
the following problems: Below the neutron threshold σγ can be
measured via γ rays emitted after photoexcitation. However,
the increasing density of nuclear states toward the threshold
leads to complex de-excitation patterns that include the de-
excitation not only to the ground state (elastic scattering)
but also to many intermediate states (inelastic scattering).
Hence, the intensities of the transitions to the ground state
drop rapidly toward high excitation energies, whereas many
branching transitions to intermediate states appear in the low-
and medium-energy part of the γ -ray spectrum. Because
the assignment of the several hundred transitions observed
in a spectrum to certain states is practically impossible,
the determination of the dipole-strength distribution at high
energies requires an appropriate method to correct it for the
corresponding branching ratios and possible feeding from
higher-lying states. Above the (γ, n) threshold σγ has been
measured by detecting neutrons following photoabsorption
[16]. Apparently, the absorption cross section closely above
the threshold for neutron emission is small and accurate data
are difficult to obtain for these energies [17].

In this work we present results of photon-scattering ex-
periments in the energy region from 4 MeV to the neutron-
emission thresholds for the molybdenum isotopes with mass
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numbers A = 98 and 100, performed at the superconducting
electron accelerator ELBE of the Forschungszentrum Dresden-
Rossendorf. For the first time photon-scattering spectra are
corrected with respect to branching and feeding transitions by
applying statistical methods. In this way, we obtain informa-
tion about the behavior of the photoabsorption cross section
in the region closely below the neutron-separation energy and,
thus, about the dipole strength on the low-energy tail of the
GDR. We propose a parametrization of the low-energy tail of
the GDR based on spectroscopic properties of the respective
nucleus near its ground state. On this basis an extension of
the knowledge on the form of the GDR from stable to exotic
nuclei seems possible, which is important for astrophysical
applications.

II. EXPERIMENTAL CONSIDERATIONS

A. Photon scattering

In photon scattering from nuclei, an excited level is
populated by resonant absorption of a real photon. The level
can de-excite to the ground state or to some intermediate
levels by γ -ray transitions. The process of photon scattering
is also called nuclear resonance fluorescence (NRF) [18,19].
The probability to excite a level with spin JR from the ground
state with spin J0 is given by the photoabsorption cross section
integral IR over the resonance R:

IR =
∫ ∞

0
σγ (E)dE = 2JR + 1

2J0 + 1

(
πh̄c

ER

)2

�0, (1)

where ER is the energy of the populated level with angular
momentum JR , and �0 is the partial width of the transition to
the ground state. Because of the low-momentum transfer in
photon scattering, mainly levels with spin JR that satisfy the
condition |J0 − 1| � JR � J0 + 1 are excited.

In the case of nonoverlapping resonances, photon scattering
is described to proceed via a compound-nucleus reaction with
uncorrelated channels f characterized by the partial widths
�f . The photon-scattering cross section σγf representing the
process of excitation of a level ER and de-excitation to a level
Ef is expressed as:

σγf (ER) = σγ (ER)
�f

�
, (2)

where all partial widths contribute to the total level width
� = ∑

�f . In integral form, Eq. (2) can be written as:

Is =
∫ ∞

0
σγf (E)dE = 2JR + 1

2J0 + 1

(
πh̄c

ER

)2

�0
�f

�
, (3)

where Is is the scattering cross section integral for the level
R and �f is the partial width for a transition from R to a
level f . The case f = 0 corresponds to elastic scattering, i.e.,
de-excitation to the ground state. The corresponding elastic-
scattering cross section is labeled σγγ . The determination of �0

from Is for a level R excited by absorption of a photon from
the ground state requires the identification of all transitions
de-exciting the level R to calculate the branching ratios �f /�

[cf. Eq. (3)]. The intensity Iγ (Eγ , θ ) of a considered transition

to the ground state at Eγ = ER measured at an angle θ relative
to the incident photon beam is expressed as:

Iγ (Eγ , θ ) = Is(ER)�(ER)ε(Eγ )NatW (θ )
�	

4π
, (4)

where W (θ ) is the angular correlation of this transition, �	

is the solid angle under which the detector views the sample,
�(ER) is the absolute photon flux at ER, ε(Eγ ) is the absolute
full-energy-peak efficiency, and Nat the number of atoms in
the sample.

In our photon-scattering experiments we used bremsstr-
ahlung produced by deceleration of electrons in a thin metallic
foil (radiator) that allows an excitation of many levels in a wide
energy range. If the electron energy is high enough above
a particular level, the experiments with bremsstrahlung lead
to the possibility of the population of a level by a feeding
transition from a higher-lying level. Such feeding increases
the intensity of the transition to the ground state from the
considered resonance R. The intensity of the transition to the
ground state becomes a superposition of the rate of elastic
scattering and the intensity of the transitions feeding level R.
The cross-section integral Is+f deduced for this case can be
expressed in a more general form as:

Is+f =
∫ ∞

0
σγγ (E)dE +

∑
i>R

∫ ∞

0
σγ i(E)

�0

�
dE

= 2JR + 1

2J0 + 1

(
πh̄c

ER

)2
�2

0

�

+
∑
i>R

�(Ei)

�(ER)

2Ji + 1

2J0 + 1

(
πh̄c

Ei

)2

�i
0
�i

R

�i

�0

�
, (5)

where summation over i > R means that the energy Ei of
a level which feeds the considered resonance R is higher
than the energy ER of this resonance. The quantities �i, �i

0,
and �i

R are the total width of the level Ei , the partial width
of the transition to the ground state and the partial width
of the transition to the level R, respectively. Taking into
account the elastic and inelastic photon scattering, the intensity
of the transition to the ground state de-exciting the resonance
R can be obtained from Eq. (4) by substitution of Is with
the expression given in Eq. (5) using a proper expression for
the angular distribution of cascade transitions as discussed
below. It is evident that the correct determination of the
scattering integral from photon-scattering experiments with
bremsstrahlung requires a correction for the intensity of the
feeding transitions and for the branching ratio �0/�.

The measurement of the angular distribution of the scattered
photons γ2 with respect to the incoming photon beam γ1, i.e.,

for the sequence J0
γ1→ JR

γ2→ J0, allows a spin assignment of
the excited states. The angular correlation function W (θ ) of
the scattered photons for the case of multipolarity L � 2 can
be written as:

W (θ ) =
∑
λeven

Bλ(γ1)Aλ(γ2)Pλ(cos θ ), (6)

where the expansion coefficients Aλ and Bλ are frequently
used in the phase convention of Krane and Steffen [20]. The
angular dependence is included by the Legendre polynomials
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Pλ(cos θ ). The ratios of the transition intensity measured at 90◦
over the intensity at 127◦ for the spin sequences of 0 → 1 → 0
and 0 → 2 → 0 have values of 0.73 and 2.28, respectively,
according to Eq. (6). The opening angles of 16◦ and 14◦ of
the detectors at 90◦ and 127◦ change these values to 0.74 and
2.18, respectively. This allows an assignment of the multipole
order of the scattered radiation and the angular momentum of
the excited level ER .

In the general case, one or more intermediate transitions
may occur before the γ -ray of interest is observed. Those
intermediate transitions may lead to a redistribution of the
population of the substates and may be taken into account by
including appropriate coefficients Uλ in Eq. (6). The angular
distribution function has the general form [21]:

W (θ ) =
∑
λ even

Bλ(γ1)Uλ(γ ′
1) · · · Uλ(γ ′

n−1)Aλ(γ2)Pλ(cos θ ),

(7)

where the expansion coefficients Uλ are:

Uλ(γ ) = Uλ(L) + δ2
2Uλ(L′)

1 + δ2
2

, (8)

Uλ(L) = (−1)Ji+Jf +λ+L
√

(2Ji + 1)(2Jf + 1)

{
JiJiλ

Jf Jf L

}
.

(9)

The mixing ratio δ2 for the observed transition γ2 is defined
by the reduced matrix elements to:

δ2 = 〈Jn‖L̂′
2‖Jn−1〉

〈Jn‖L̂2‖Jn−1〉
, (10)

where L′
2 = L2 + 1.

The predicted value for the ratio W (90◦)/W (127◦) for the
last transition of a cascade of spin sequences 0 → 1 → 1 →
0, 0 → 1 → 2 → 0 and 0 → 2 → 1 → 0 is 1.0 and for the
sequence 0 → 2 → 2 → 0 it is 1.14.

B. Dipole strength function

The radiative strength functions characterize the excitation
and de-excitation γ -ray transitions in the nucleus. The strength
function is defined as the mean reduced transition width, see,
e.g., Ref. [11]. In general, two types of strength function are

distinguished: (i) the “downward” strength function
←
f XL (Eγ )

related to deexciting transitions:

←
f XL (Eγ ) = E−(2L+1)

γ

〈
�XL

i (Eγ )
〉

D(ER)
, (11)

and (ii) the “upward” strength function
→
f XL (Eγ ) related to the

excitation of the levels from the ground state, i.e., depending
only on the �0 widths:

→
f XL (Eγ ) = E−(2L+1)

γ

〈
�XL

0 (Eγ )
〉

D(ER)
, (12)

where �XL
i (Eγ ) is the partial width for a transition to level

i(i = 0 is the ground state) of type X, multipolarity L, and en-
ergy Eγ .D is the average spacing of the levels near the excited

resonance ER . In the case of photon scattering, radiation with
multipolarity L > 1 contributes only weakly to the absorption

of photons, such that
→
f XL (Eγ ) = →

f M1 (Eγ )+ →
f E1 (Eγ ) +

E2
γ

→
f M2 (Eγ ) + E2

γ

→
f E2 (Eγ ) + ... ≈ →

f 1 (Eγ ). According to
Eq. (1), the “upward” dipole-strength function can be related
to the average photoabsorption cross section 〈σγ 〉:

→
f 1 (Eγ ) = 2J0 + 1

2JR + 1

〈σγ (ER)〉
(πh̄c)2ER

. (13)

Note that for the excitation ER = Eγ . The dipole-strength

function
→
f 1 (Eγ ) depends on the superposition of the cross

section of the giant dipole E1 resonance and M1 resonances.
It is reasonably well established for many heavy and medium
mass nuclei in the region of the GDR by (γ, n) studies,
which often have covered the region starting directly above the
neutron threshold Sn. The contribution of the M1 excitations
to

→
f 1 (Eγ ) is typically by one order of magnitude smaller than

the E1 contribution and it is frequently not taken into account
[22–24]. From previous experiments information about M1
strengths was obtained from discrete transitions [25] in
reasonable agreement with calculations within a quasiparticle
random-phase approximation (QRPA) in a deformed basis,
which confirm the relative weakness of M1 strength [25].

The “downward” strength function
←
f 1 (Eγ ) below Sn is

derived from the γ rays de-exciting levels populated in
capture of thermal neutrons or in reactions with heavy ions.
Assuming the validity of the Brink-Axel hypothesis [8], which
was tested experimentally for example in a dedicated (γ, p)
study [26], one postulates equivalence of the “downward” and
“upward” strength functions. This allows the determination
of the photoabsorption cross section in an indirect way from
observed γ rays from levels excited otherwise than by the
absorption of photons.

Strength functions have been deduced so far from
(3He,3He′γ ) and (3He,αγ ) reactions in the energy range
between about 1 and 7 MeV [27] and from intensities
of primary transitions from (n, γ ) reactions [28]. Photon-
scattering experiments with tagged photons were performed
for 92Mo and 96Mo in the region of the GDR [29]. In this work
we present a method for a determination of the photoabsorption

cross section and the related strength function
→
f 1 (Eγ ) below

the neutron-separation energy on the basis of photon-scattering
experiments.

C. Simulations of γ -ray cascades

In photon-scattering experiments, a fraction of the observed
γ rays results from transitions to the ground state. The ratio
of the intensities of the transitions to the ground state to that
of branching transitions decreases with increasing excitation
energy because of the large number of intermediate levels
available from the de-excitation of the initial one. The deter-
mination of the branching transitions becomes increasingly
difficult at high (> 4 MeV) energy. Therefore, we apply
statistical methods to estimate the intensities of the branching
transitions relative to the transitions to the ground state [30].

064321-3



G. RUSEV et al. PHYSICAL REVIEW C 77, 064321 (2008)

We developed a Monte Carlo code for the simulation
of γ -ray cascades analogously to the strategy of the code
DICEBOX [31]. The nucleus is modeled by a nuclear realization
consisting of (i) a level scheme including levels with spin
J = 0, 1, and 2 and (ii) an assignment of partial decay widths
for E1,M1, or E2 transition depopulating every level.

The level density is calculated according to the back-shifted
Fermi gas (BSFG) model. The level-density parameter a and
the back-shift energy E1 were taken from the systematics
presented in Ref. [32]. We used parameters for 98Mo of
a = 12.28(17) MeV−1 and E1 = 0.75(6) MeV and for 100Mo
of a = 13.12(19) MeV−1 and E1 = 0.66(6) MeV. Every level
scheme was created for values of the parameters within the
given uncertainties. The densities of levels with positive parity
and with negative parity are assumed to be equal according to
Ref. [33]. The Wigner distribution (see, e.g., Ref. [34]) is used
for the fluctuation of the nearest-neighbor spacings of levels
with the same spin to include the effect of level repulsion.
Optionally in the program, the level density can be calculated
in the constant temperature (CT) approximation.

A priori strength functions for E1,M1, and E2 transitions
are used to calculate the average decay widths of the levels.
The strength function for the E1 transitions is derived from
a parametrization of the giant dipole resonance for triaxially
deformed nuclei as discussed in Sec. IV. It was shown in ex-
periments with polarized photon beams on closed-shell nuclei
that the prominent transitions below the neutron-separation
energy are E1 transitions, see e.g., Refs. [35,36]. The strength
function for M1 transitions was taken from QRPA calculations
in a deformed basis for the stable even-mass Mo isotopes [25].
The QRPA calculations reproduce the scissors mode and the
spin-flip M1 resonance in the Mo isotopes but with a strength
smaller than the measured one. We normalized the calculated
M1 strength to the measured one in the excitation range up
to 4 MeV. Data from two-step cascades following thermal
neutron capture in 162Dy [37,38] show that the scissors mode
and the M1 spin-flip resonance are built not only on the ground
state but also on excited states, including the levels in the
quasicontinuum in accordance with the Brink hypothesis. The
strength function for E2 transitions was taken from a global
parametrization of the E2 isoscalar giant resonance provided
by RIPL-2 [39]. The Porter-Thomas distribution [40] is used
for the fluctuations of the partial decay widths of the levels
around the average obtained from the strength function.

The simulation of the γ -ray cascades starts with the
excitation of a level with spin J = 1 according to the
photoabsorption cross section [cf. Eq. (1)]. The de-excitation
of the level is governed by the branching ratios for decay
to the ground state or to any intermediate level calculated
from the partial decay widths Bf = �f /�. If the decay is not
to the ground state, then the populated intermediate level is
considered an excited level and a new transition is performed
until the ground state is reached. The code provides energy,
spin, and parity of the initial and the final state as well as the
multipole order of the transition. The angular distribution of
the transitions is calculated according to Eq. (7) which includes
the general case of cascade transitions. Because one nuclear
realization does not represent completely the properties of the
nucleus, but is only a sample, the cascade simulations have to

run for many nuclear realizations. The simulations presented
in this article were performed for 1000 nuclear realizations.

We apply the statistical methods also for the low-energy
part of the level scheme instead of using experimentally known
low-lying levels in 98Mo and 100Mo because this would require
the knowledge of the partial decay widths of all transitions
populating these fixed levels. As shown in Sec. III the level
density predicted by the BSFG model at low excitation energy
is consistent with experimental values deduced from our
previous experiments [25]. Taking into account that there is
no excited level below 735 keV in 98Mo and 536 keV in 100Mo
one expects no feeding intensity in the energy range from the
energy Ex of an excited state down to the maximum energy
of an inelastic transition, i.e., Ex minus the energy of the first
excited state. This is not exactly fulfilled in the simulations
described in Sec. III. However, it will be shown that the small
level density used at low excitation energy leads to negligibly
small feeding intensity in that energy range.

III. EXPERIMENTAL RESULTS

The present article reports on photon-scattering experi-
ments for the nuclei 98Mo and 100Mo carried out at the
bremsstrahlung facility at the superconducting electron accel-
erator ELBE of the Forschungszentrum Dresden-Rossendorf.
Bremsstrahlung was produced by electrons hitting a 7µm
(3.4 mg/cm2) thick Nb radiator. A narrow photon beam is
formed by an Al collimator with a length of 2.6 m and an
opening angle of 5 mrad. An absorber made of a 10-cm-long
Al cylinder between the radiator and the collimator attenuates
the intense low-energy part of the bremsstrahlung spectrum.
The photon beam irradiates the target shaped as a disk with
a diameter of 2 cm. For background reduction, the target
was placed in an evacuated polyethylene tube and the photon
beam was absorbed in a well-shielded photon-beam dump
after passing the target. The photons scattered from the target
were registered in four high-purity Ge detectors (HPGe) with
an efficiency of 100% relative to a 3 × 3 in. NaI detector. To
determine the multipole order of the scattered γ rays two of
the detectors were located at 127◦ and the other two at 90◦ with
respect to the photon beam at distances of 32 and 28 cm to the
target, respectively. The low-energy photons are suppressed
by lead absorbers with a thickness of 0.8 and 1.3 cm at the two
given angles, respectively, combined with 0.3-cm-thick copper
absorbers. The HPGe detectors are equipped with 3-cm-thick
escape-suppression shields made of bismuth orthogermanate
(BGO) scintillation detectors. The detector resolution is about
5.0 and 7.9 keV at γ -ray energies of 5 and 9 MeV, respectively.
The electron energy is determined from spectra of protons
measured during the photodisintegration of deuterium when
irradiating a deuterated polyethylene film. This technique and
further details of the bremsstrahlung facility at the ELBE
accelerator are described in Refs. [41,42].

We performed measurements on 98Mo and 100Mo at an
electron energy of Ekin

e = 13.2(1) MeV. Because we will
study the whole chain of stable even-mass Mo isotopes under
identical conditions, this energy was chosen such that it
exceeds the highest neutron-separation energy in the isotopic
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FIG. 1. Spectra of photons scattered from 98Mo and 100Mo at 127◦

relative to the incident beam. The measurements were performed at
identical experimental conditions and an electron-beam energy of
13.2 MeV. Part of the spectra in the range between 6 and 7 MeV are
shown in the insets. The neutron-separation energies are indicated
with vertical arrows. Strongest peaks from the calibration standard
are labeled with 11B.

chain, namely that of 92Mo, Sn = 12.7 MeV, by half an MeV
to provide a high flux up to Sn. Samples of elementary 98Mo
and 100Mo isotopically enriched to 98.55% and 99.27% with
masses of 2952.5(1) mg and 2916.8(1) mg, respectively, were
used as targets and combined with a 339.5(1) mg sample of
11B enriched to 99.52%. Spectra of photons scattered at 127◦
from 98Mo and 100Mo measured for 64 h each are presented in
Fig. 1. To identify and subtract transitions in the neighboring
nuclei produced via (γ, n) reaction additional measurements
at Ekin

e = 8.4(1) MeV and Ekin
e = 7.8(1) MeV were performed

on 98Mo and 100Mo for 114 and 80 h, respectively.
Simulations for the detector response were performed using

the code GEANT3 [43]. The geometry implemented in the
simulations includes all elements of the real experimental
setup like a beam tube, Pb collimators, Pb and Cu absorbers,
HPGe and BGO detectors, and the surrounding passive Pb
shield. Examples of simulated detector-response spectra for
Eγ = 4, 7, and 10 MeV are shown in Fig. 2. A comparison of
the raw spectrum of 100Mo with the spectrum after detector-
response correction is given in Fig. 3. A comparison of the
results for the ratio of the full-energy peak to the single-escape
peak (FE-to-SE ratio) obtained from simulations and from
measurements of the photon-scattering from 11B [44], 16O
[45], and 28Si [46] is shown in the inset in Fig. 3.

The full-energy-peak efficiency is obtained using the above
detector-response simulations. A comparison of the simu-
lated absolute efficiency with results of measurements with

FIG. 2. (Color online) Simulated detector-response spectra for
108 monoenergetic γ rays with energies of 4 MeV (blue), 7 MeV (red),
and 10 MeV (black) emitted isotropically from the target position.
The simulations were performed for one of the HPGe detectors at
127◦, including the BGO escape-suppression shield, the beam tube,
the Cu and Pb absorbers, and the passive Pb shield and collimator.

calibrated sources 22Na, 60Co, 133Ba, and 137Cs is presented
in Fig. 4. Because not all details of the geometry of the
HPGe crystal and the surrounding elements of the detector
can be exactly defined in GEANT3 the simulated absolute
efficiency differs by a few percentages from the one measured
with the calibrated sources. We adjusted the result of the
simulations to the efficiency deduced from measurements
with the calibrated sources. The relative uncertainty of the
normalization coefficient is 1.8%. To check the shape of the
simulated curve at higher energies, we compare it with the
results for the relative efficiency from a 56Co source in Fig. 4.
For a check at even higher energies above Eγ = 3.5 MeV we
determined the relative efficiency from the intensities of γ

FIG. 3. (Color online) Raw spectrum of photons scattered from
100Mo at 127◦ in the experiment at Ekin

e = 13.2 MeV (upper black)
compared with the result of the correction for detector response (lower
red). A comparison of the measured ratio of the full-energy peak to
the single-escape peak (circles) with results from GEANT3 simulations
(solid line) is shown in the inset.
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FIG. 4. Absolute full-energy-peak efficiency of the two HPGe
detectors placed at 127◦ measured with calibrated sources 22Na,
60Co, 133Ba, and 137Cs (filled circles) and simulated with GEANT3
(solid line). The relative efficiency deduced from a 56Co source (open
triangles) and from the transitions in 11B [44], 12C [44], and 28Si [46]
in photon-scattering experiments (open circles) is compared with the
simulated one.

rays scattered from a combined target 11B−natC−natSi in 15
different photon-scattering experiments at various electron-
beam energies from 9 to 16 MeV. This was done according to
Eq. (4) by using the known scattering cross-section integrals
of the states in 11B, 12C, and 28Si in connection with fluxes
calculated according to Refs. [47,48] (cf. Fig. 5).

Because GEANT3 does not simulate correctly the
bremsstrahlung spectrum in the energy range of our experi-
ments [49] we calculated the spectrum from the approximation
in Refs. [47,48] for a thin radiator and multiplied the result
with the simulated absorption in the Al hardener. The absolute
photon flux was derived from the transitions with known
cross-section integrals in 11B according to Eq. (4). Properties
of the 11B transitions, taken from Ref. [44], are presented in
Table I. The values of the mixing ratio δ were taken from Refs.
[50,51] and used in the phase convention of Krane and Steffen.
The calculated photon flux, normalized to that deduced from
11B, is presented in Fig. 5. The relative uncertainty of the
normalization coefficient is 5%. For the two highest states
feeding from higher levels can be excluded due to their
small energy separation to the particle-emission threshold.
The first two states were corrected for feeding according to

TABLE I. Properties of transitions in 11B taken from Ref. [44].

Ex
a (keV) �0

b (eV) B0
c (%) Is

d (eVb) δe Lf

4444.9(5) 0.56(2) 100 164(6) +0.19(3) M1/E2
5020.3(3) 1.68(6) 85.6(6) 219(8) −0.03(5) M1
7285.5(4) 1.00(7) 87(2) 95(7) 0 E1
8920(2) 4.2(2) 95(1) 286(14) −0.11(4) M1/E2

aLevel energy.
bPartial level width of the ground state.
cBranching ratio of the transition to the ground state.
dCross section integral.
eMixing ratio of the transition to the ground state in the phase
convention of Krane and Steffen.
fMultipolarity of the transition to the ground state.

FIG. 5. Photon flux in the 100Mo experiment at Ekin
e = 13.2 MeV

deduced from the transitions in 11B (data points) compared with the
approximation for the bremsstrahlung spectrum according to Ref. [47,
48] (solid line). The calculated curve is corrected for the absorption
in the Al hardener and normalized to the photon flux deduced from
the 4.445 MeV transition in 11B.

Eq. (5). The good agreement between the photon flux derived
using the simulated efficiency with the calculation for the
bremsstrahlung spectrum is a validity test of the simulations.

A. Dipole strength observed in resolved peaks

The spectra of 98Mo and 100Mo (cf. Fig. 1) are characterized
by fragmented weak de-excitations. The number of transitions
assigned to 98Mo and 100Mo is 485 and 499, respectively.
Transitions that do not belong to the investigated Mo isotopes
were identified by comparison with spectra measured at
electron-beam energy lower than the neutron-separation en-
ergy and the information from literature [52,53]. It was found
that de-excitations in 97Mo and 99Mo populated in 98Mo and
100Mo, respectively, via the (γ, n) reaction are located in the
low-energy part of the spectrum below 4 MeV. The neutrons
produced in the target material are thermalized via elastic and
inelastic scattering in the experimental hall. Peaks due to γ rays
from capture of the thermalized neutrons in the HPGe crystal
or the surrounding materials are also observed in the mea-
sured spectra. Peaks from AGe(n, γ )A+1Ge, 27Al(n, γ )28Al,
28Si(n, γ )29Si, 56Fe(n, γ )57Fe, and 63Cu(n, γ )64Cu reactions
could be clearly identified and easily subtracted as can been
seen by comparison with the corresponding low-energy mea-
surement. A spectrum of neutron-capture induced background
is presented in Fig. 6. The measurement was carried out with
a 244Cm source combined with 13C producing neutrons via the
reaction 13C(α, n)16O. The source was placed in a 10 cm thick
Pb housing far away from the HPGe detectors to suppress
the high-energy γ rays from 16O. The emitted neutrons are
thermalized by scattering in the experimental hall and captured
in the HPGe crystal or in the surrounding materials. The
strongest peaks in the measured γ -ray spectrum in Fig. 6 are
labeled with the respective reaction.

Detection limits were determined from the spectra mea-
sured at 127◦ to prove that a peak can be accepted as a
transition. The limit, corresponding to 2σ , for the smallest
area of a peak P considered as a transition is estimated from
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FIG. 6. Spectrum of γ rays following capture of thermal neutrons.
The spectrum includes all HPGe detectors. The neutrons produced
from 13C(α, n)16O reaction in a combined 244Cm/13C source are
thermalized by scattering in the experimental hall. The γ rays from the
source were suppressed by a 10-cm-thick Pb housing. The strongest
peaks in the spectrum are labeled with the respective reaction.

the background in the spectrum according to the relation [54]:

P = 1.65
√

2B. (14)

B is the integral over the background of a length of 2σ , where
σ is the typical dispersion of a Gaussian fit of the peaks
at the same energy. The normalized cross-section integrals
Is+f /3(πh̄c/Eγ )2 are compared with the detection limits
corresponding to 95% confidence limits (2σ ) in Fig. 7. A

FIG. 7. Comparison of the normalized cross section integrals
Is+f /3(πh̄c/Eγ )2 for observed transitions, not corrected for feeding
and branching transitions, deduced from the experiments on 98Mo
and 100Mo (filled circles) at Ekin

e = 13.2 MeV under the assumption
that all transitions are transitions to the ground state, with the
detection limits (solid lines). The points marked with open circles
are considered being below the detection limits corresponding to
2σ (95% confidence interval).

FIG. 8. Ratio of γ -ray intensities at 90◦ and 127◦ determined from
the experiments at Ekin

e = 13.2 MeV compared with the predicted
values for dipole and quadrupole transitions of 0.74 and 2.18,
respectively. The data shown with filled circles are assumed to be
dipole transitions.

list of the transitions assigned to 98Mo and 100Mo is given in
Ref. [30].

The multipole order of the observed transitions was
obtained by comparing the ratios of the γ -ray intensities
measured at 90◦ and 127◦ with the expected values of 0.74
and 2.22 for dipole and quadrupole radiation, respectively. An
assignment of the multipole order of the transition was made if
one of the expected values was within two standard deviations
of the measured value for the ratio Iγ (Eγ , 90◦)/Iγ (Eγ , 127◦)
and the other expected value was excluded by at least
three standard deviations. If one of the two criteria was
violated, the spin was assigned tentatively. The results for
the ratio Iγ (Eγ , 90◦)/Iγ (Eγ , 127◦) are presented in Fig. 8.
The comparison with the predicted values for dipole and
quadrupole transitions shows that most of the transitions have
dipole character.

The density of the observed peaks is compared with predic-
tions of the BSFG and CT models in Fig. 9. The experimental
level density stays constant, which reflects the limited detector
resolution and the detection limits. The discrepancy to the
level density predicted by the models suggests that there
are many levels de-excited by weak transitions that are not
resolved or not detected. Indeed, the comparison of the
experimental spectrum with a simulated atomic background
discussed in the next section reveals that there are many
weak unresolved transitions that form a continuum in the
experimental spectrum.

The feeding intensities of the low-lying levels in 98Mo and
100Mo can be obtained from a comparison of the cross-section
integrals deduced at different electron-beam energies. Ratios
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FIG. 9. Density of the transitions assigned to 98Mo and 100Mo
(filled circles) compared with the density of levels with J = 1 [25]
(open circles) and the level density calculated according the back-
shifted Fermi gas model (solid lines) and the constant temperature
approximation (dotted lines).

of Is obtained from the measurements at Ekin
e = 13.2 MeV

and at Ekin
e = 3.8 MeV [25] are shown in the top panel

of Fig. 10. Some of these levels are fed with intensities
exceeding the true elastic-scattering cross-section integrals by
factors of more than 10. We performed cascade simulations
to investigate the influence of the feeding on the results for Is

from the experiments at Ekin
e = 13.2 MeV. The photon flux

as taken from Fig. 5 was implemented in the simulations
to obtain the correct feeding intensity from the high-lying
levels. Ratios of the population of given levels due to
photoabsorption and feeding versus the population of these
levels by photoabsorption only were calculated that result in
Is+f /Is . Ratios Is+f /Is averaged over 0.5 MeV are given in
the bottom panel of Fig. 10 for excitation energies up to 8 MeV.
The results of the cascade simulations show that above about
6 MeV the influence of feeding to the cross section integrals
is negligible. This finding is consistent with that found for
88Sr [35]. The calculated ratios Is+f /Is show a general trend
similar to that of the experimental values for individual states,
i.e., they reach values up to about 10 at excitation energies
around 2 MeV and decrease to values of about two close two
4 MeV. However, the ratios for some of the individual states
exceed the average trend. The reason for that may be that
transition probabilities between discrete states are determined
by their structure. Hence, the structure of specific states may
cause stronger feeding by high-lying states than in average.
The simulated values, however, do not contain such effects and
hence do not reproduce individual values for discrete states,
but instead an average behavior for the considered energy
bins.

FIG. 10. (Top panel) Ratio of cross-section integrals for low-lying
J = 1 levels in 98Mo and 100Mo obtained from the experiments at
Ekin

e = 13.2 MeV and at Ekin
e = 3.8 MeV [25]. (Bottom panel) Ratios

averaged over 0.5 MeV of intensities resulting from population of
levels in 98Mo and 100Mo by photoabsorption as well as feeding versus
intensities resulting from the population by photoabsorption only as
obtained from cascade simulations using the photon flux shown in
Fig. 5.

B. Determination of non-nuclear background radiation

The high level density and the Porter-Thomas fluctuations
of the decay widths cause many weak transitions that cannot be
observed as resolved peaks. In addition, every level can decay
to many intermediate levels via weak transitions. Therefore
not all the intensity is carried by observed peaks. Many of the
transitions are so weak that their superposition is observed as
a quasicontinuum. The intensity “hidden” in the continuum
part of the spectrum can be estimated from a comparison
of spectra of γ rays scattered from different isotopes. The
spectra measured at 127◦ in the photon-scattering experiments
on 98Mo and 100Mo at Ekin

e = 13.2 MeV are compared in
Fig. 11(a). The spectra are corrected for the natural back-
ground; for the neutron-induced background by subtraction of
the spectrum shown in Fig. 6 normalized to the area of the peak
at 10.2 MeV, which is not contaminated by peaks of 11B and
98,100Mo; and for the detector response. In addition the spectra
are corrected for the full-energy peak efficiency (cf. Fig. 4),
photon flux (cf. Fig. 5), area density of the target atoms, and
the measuring time. The intensity of the peaks of 11B are
subtracted from the experimental spectra. The two spectra
are characterized by a sudden decrease of intensity at the
neutron-separation energy caused by the starting dominance
of neutron emission. Above Sn the spectrum contains almost
only background from atomic processes, i.e., counts in the
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FIG. 11. (Color online) Comparison of the experimental spectra
(a) from 98Mo (red) and 100Mo (black) measured at Ekin

e = 13.2 MeV
corrected for the full-energy peak efficiency, the photon flux �γ , the
area density of the target nt , and the measuring time, with a simulation
for the atomic background (blue). The intensities of the peaks from
11B and neutron-capture induced background are subtracted from the
experimental spectra. (b) Dipole strength in 98Mo deduced from the
resolved peaks (open circles), from subtraction of the background
taken from the 100Mo spectrum (red triangle at 8.5 MeV), and from
the quasicontinuum (filled circles) after subtraction of the simulated
background.

spectrum that do not result from de-excitations of nuclear
levels. Note that the atomic background depends on the amount
of the target material. Therefore the experiments on 98Mo
and 100Mo were carried out for nearly identical targets with a
difference in mass of only about 1%. According to the different
neutron-separation energies in 98Mo (Sn = 8.64 MeV) and
100Mo (Sn = 8.29 MeV) one finds a range between 8.3 and
8.6 MeV in the spectrum of 98Mo for which the atomic
background can be taken from the spectrum of 100Mo. The
residuum above the spectrum of 100Mo represents the intensity
of the γ rays in 98Mo. The intensity in the considered
energy range is compared with the intensity deduced from
the identified peaks in Fig. 11(b). The ratio of the strength
deduced from the experimental spectrum after subtraction of
the atomic background to the strength of the resolved peaks at
Eγ = 8.5 MeV is about 3, which means that only about 30%
of the strength is located in identified peaks.

Considering Fig. 9, it is visible that the density of the
identified peaks in 98Mo at 8.5 MeV is about 1% of the density
of levels with spin J = 1 predicted by the BSFG model. It is
rather surprising that such a small number of levels can carry
about 30% of the dipole strength. Note that the transitions
close to the neutron-separation energy are transitions to the
ground state because the contribution of branching transitions
with an energy Eγ ≈ 8.5 MeV de-exciting levels above Sn

FIG. 12. Ratio of the accumulated elastic-scattering integrals of
the k levels with J = 1 and with the largest Is in 98Mo to the
superposition of the elastic-scattering integrals for all N levels with
J = 1 in the scheme of 98Mo up to the neutron-separation energy. The
ratio is plotted versus the fraction k/N of the number of considered
levels to the total number of levels with J = 1. The dependence
obtained from the created nuclear realizations of 98Mo (solid line)
is in good agreement with the value derived for observed peaks (cf.
Figs. 9 and 11).

is negligible. To investigate whether such a small fraction of
resolved peaks may be responsible for a large intensity we
analyzed the partial widths assigned to the levels of 98Mo in
the cascade simulations. The elastic-scattering cross-section
integrals for all levels with spin J = 1 and energy 8.3 MeV
�Ex � 8.6 MeV were calculated according to Eq. (3) and
the levels were counted starting with the largest Is . The
ratio R = ∑k

i=1 I i
s /

∑N
i=1 I i

s of the summed elastic-scattering
cross-section integrals of the first strongest levels k to the
summed elastic-scattering cross-section integrals of all J = 1
levels in the considered energy range is presented in Fig. 12
versus the ratio k/N . It is evident that about 30% of the
intensity is carried by about 1% of the most intense γ -ray
transitions only.

It is important to extend the estimate of the atomic
background in the measured spectrum to lower energies to
determine the total strength in the nucleus. For that purpose we
performed GEANT3 simulations of the non-nuclear processes in
the target leading to background in the measured spectra. The
bremsstrahlung produced in the target by the electrons from
Compton scattering and by the electrons and the positrons
from the pair creation processes is responsible for the atomic
background extending to high energies. As mentioned above,
GEANT3 does not reproduce correctly the bremsstrahlung
spectrum for energies below 20 MeV. Therefore we exchanged
the routine for the calculation of the bremsstrahlung spectrum
with one based on the approximation given in Ref. [55].

The simulated atomic background is compared with the
spectra of 98Mo and 100Mo in Fig. 11(a). The comparison
of simulated quantities with measured ones in Figs. 3 and 4
and the comparison of a simulated with a measured spectrum
for 12C given in Ref. [35] show a good agreement and prove
that the simulations of the atomic background are correct.
Coherent scattering of photons from the nucleus like nuclear
Thomson scattering and Delbrück scattering is not included
in GEANT. However, their contribution to the background is
negligible [56–58]. The distribution of the intensity of 98Mo
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and 100Mo is obtained from a subtraction of the simulated
atomic background from the experimental spectra and the
uncertainty of this distribution is taken as the square root of
the sum of the counts in a considered bin of the experimental
spectrum and of the spectrum of the atomic background.
The obtained intensity distribution forms a quasicontinuum
that contains the intensity of the resolved peaks and the
continuum intensity of overlapping weak transitions. The
apparent strength in the quasicontinuum is compared with
the strength of the resolved peaks in Fig. 11(b). The com-
parison shows that in the range from 4 MeV to Sn only 20 to
50% of the strength is located in the peaks.

C. Dipole strength deduced from a quasi-continuous spectrum

The quasicontinuum resulting from the subtraction of the
atomic background from the experimental spectrum contains
the transitions to the ground state (elastic scattering) and in
addition, transitions to lower-lying excited states (branching
transitions by inelastic scattering) as well as transitions from
such states to the ground state (cascade transitions) that cannot
be distinguished in our experiments. The first step of the
analysis of the quasi-continuum is an estimate of branching
and cascade transitions. Cascade simulations were performed
by the Monte Carlo procedure described above. Spectra of
γ -ray cascades were created for energy bins with a width of
� = 100 keV. Examples of spectra de-exciting levels from
Ex = 8.2 to 8.3 MeV in 100Mo are given in the top part of
Fig. 13 for three nuclear realizations. As discussed in Sec. II C
the maximum energy of an inelastic transition is Ex − 536 keV
in 100Mo, which is not exactly fulfilled by using a continuous
level density instead of the known discrete levels at low
energy. However, as can be seen in Fig. 13, the intensity of
inelastic transitions in the range from Ex − 536 keV to Ex

is negligible due to the small level density at low energy (cf.
Fig. 9). Starting from the high-energy end of an experimental
spectrum, which contains transitions to the ground state only,
the simulated intensities of the transitions to the ground state
were normalized to the experimental ones in the considered
bin and the intensity distribution of the branching transitions
was subtracted from the experimental spectrum. Applying this
procedure step-by-step for each energy bin moving toward
the low-energy end of the spectrum one obtains an intensity
distribution that contains transitions to the ground state only.
The correction for the branching and cascade transitions is
performed for every nuclear realization and a mean distribution
of the transitions to the ground state is calculated. This
distribution, which is related to the elastic-scattering cross
section σγγ , is compared with the uncorrected quasicontinuum
and the distribution resulting from the resolved peaks in the
lower part of Fig. 13. As can be seen, the distribution of
the ground-state transitions comes close to the distribution of
resolved peaks at low energy, whereas it is dominated by the
continuum part close to the neutron-separation energy, where
the level density is high.

The distribution of the branching ratios B0 for 100Mo shown
in Fig. 14 is simultaneously deduced from the simulations of
the γ -ray cascades. The branching ratios B0 are calculated as

FIG. 13. (Top) Simulated spectra of γ -rays de-exciting levels
in 100Mo in the bin from 8.2 to 8.3 MeV for three nuclear
realizations. The level scheme of each nuclear realization was built
randomly starting from the ground state. (Bottom) Intensity of the
quasicontinuum in 100Mo (filled circles) and the remaining intensity
distribution of transitions to the ground state after removing the
intensities of inelastic transitions (open circles). For comparison, the
intensity distribution of the resolved peaks in energy bins of 200 keV
is shown with filled triangles. The intensities were corrected for the
photon flux �γ and the area density of the target nuclei nt .

the ratio of the summed intensity
∑

� I
g.s.
γ of the transitions

to the ground state of the levels in a � = 100 keV bin to the
summed intensity

∑
� I all

γ of all transitions de-exciting these
levels. According to Eqs. (1), (2) we obtain the relation:

B0 =
∑

� I
g.s
γ∑

� I all
γ

=
∑

i in� �i
0B

i
0∑

i in� �i
0

. (15)

It can be seen that the values of B0 for 100Mo are some
60% at low excitation energy where the levels do not have

FIG. 14. Distribution of the mean branching ratios B0 deduced
from the cascade simulations for 100Mo averaged over 1000 nuclear
realizations. The hatched area shows the 1σ -variation of the mean
due to fluctuations of the level spacings and widths.
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many possibilities to de-excite to even lower-lying levels.
Toward high energy, however, the values of B0 drop to about
20%, which shows that high-lying levels de-excite via many
different branches to lower-lying states. Because of the low
level density there is a large scattering of the values of B0 at
energies lower that 4 MeV that makes them useless. Dividing
the intensities of the transitions to the ground state, which are
proportional to the elastic-scattering cross sections σγγ , by the
corresponding branching ratios B0 (see Fig. 14), we obtain the
absorption cross sections σγ = σγγ /B0. The photoabsorption
cross sections were obtained by averaging over the values of
1000 nuclear realizations.

The photoabsorption cross sections σγ determined in this
way are plotted in Fig. 15. They are compared with (γ, n)
cross sections [59]. The (γ, n) data were multiplied with
a factor of 0.86 according to the findings in Ref. [60].
To show the effect of the reconstruction of the dipole-
strength distributions we compare the results for σγ with the
uncorrected quasicontinuum. The deduced σγ are compared
with results from 98Mo(n, γ )99Mo experiments [6] applying
Eq. (13). The photoabsorption cross section from experiments
with bremsstrahlung at Ekin

e = 3.8 MeV [25] was calculated
for groups of five levels according to Eqs. (12) and (13).
Although statistical quantities cannot be derived for a few
levels we present the results for σγ from the low-lying levels
in Fig. 15.

FIG. 15. (Color online) Comparison of the absorption cross
section determined from our photon-scattering experiments after
correction for feeding and for branching ratios B0 (filled circles)
with those deduced for the (γ, n) reaction [59] (open circles). Open
diamonds depict the photoabsorption cross sections from experiments
with bremsstrahlung at Ekin

e = 3.8 MeV. The dipole strength in the
neighboring odd-mass 99Mo obtained from (n, γ ) experiments [6] is
shown as a filled red triangle at 5.5 MeV. The cross section deduced
from the intensity of the quasicontinuum without any correction is
given with open triangles.

In the following we discuss the influence of the two most
important ingredients of the γ -ray cascade simulations, the
strength function for E1 transitions and the level density, on
the results of the analysis. To perform the cascade simulations
correctly it is important to achieve a consistency between
the input strength function and the deduced photoabsorption
cross section at energies below Sn. To test the influence of
the strength function for E1 transitions on the procedure for
the reconstruction we performed simulations for various input
strength functions. Examples of the analysis of the 100Mo
experiment with various strength functions, a superposition
of three Lorentzian curves with energy-dependent widths
[�(Ex) ∼ (Ex)δ] for δ = 1 as described below and a constant
strength function are presented in Fig. 16 in comparison with
a parametrization of the GDR by Lorentzians with constant
widths (δ = 0). The usage of a constant strength function
leads to intense branching transitions and thus to subtraction
of large intensity of the quasicontinuum and an under-estimate
of the photoabsorption cross section below 6 MeV. The small
branching ratios B0 for transitions from high-lying levels to the
ground state of high energy lead to an under-estimate between
6 MeV and Sn. In contrast, the usage of a rapidly increasing
strength function based on Lorentzians with δ = 1 leads to

FIG. 16. Analysis of the results of the photon-scattering exper-
iment on 100Mo at Ekin

e = 13.2 MeV (filled circles) with strength
functions (solid lines) from a superposition of three Lorentzian
curves with an energy-dependent width (δ = 1, upper panel), with a
constant width of (δ = 0, middle panel), and with a constant strength
function (bottom panel) included in the simulations of γ -cascades (cf.
Sec. IV). The level density was calculated according to the back-
shifted Fermi gas model for all cases. The (γ, n) cross sections, taken
from Ref. [59], are depicted with open circles.
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strong transitions to the ground state and to large ratios B0

close to Sn. Practically, the E1 strength becomes small below
7 MeV and has no strong influence on the reconstruction. The
comparison in Fig. 16 shows that the superposition of three
Lorentzian curves with constant widths (cf. Sec. IV) gives the
best description of the photoabsorption cross section of all
presented models at energies above about 5 MeV.

The simulated spectra of γ -ray cascades from levels located
at high excitation energies depend strongly also on the model
for the level density. The probability for the de-excitation to
an intermediate level is related to the number of the levels
below the excited one. The two considered models for the
level density shown in Fig. 9, the BSFG model and the constant
temperature model, predict different densities for the levels in
the range around about half of the neutron-separation energy
(cf. Fig. 9). This influences the results for the branching ratios
B0 from the γ -ray cascade simulations. We favor the BSFG
results because of the convincing agreement of the trend of
the data versus the region above the threshold where σγ is
known [59] as can be seen in Fig. 17. Recent results for the level
density in 98Mo from 3He induced experiments [61] support
the usage of the BSFG model.

D. Comparison with existing data

The dipole-strength function for 98Mo deduced from the
present photon-scattering experiment at Ekin

e = 13.2 MeV is
compared with those obtained from (3He,3He′γ ) experiments
and (γ, n) experiments in Fig. 18. In addition the strength in

FIG. 17. Analysis of the 100Mo experiment at Ekin
e = 13.2 MeV

(filled circles) with level density calculated according to the BSFG
model (upper panel) and to the constant-temperature (CT) model (bot-
tom panel) used in the simulations of γ -ray cascades. A Lorentzian-
like strength function (solid line) was used in all simulations. The
(γ, n) cross sections taken from Ref. [59] are depicted with open
circles.

FIG. 18. (Color online) Comparison of the dipole-strength func-
tion for 98Mo deduced from the present photon-scattering experiment
(black filled circles), from (3He,3He′γ ) experiments [27] (green open
triangles), from (n, γ ) experiments [6] (red filled triangle at 5.5 MeV),
and from (γ, n) experiments [59] (blue open circles). The strength of
levels below 4 MeV as taken from Ref. [25] is shown with a filled
black diamond at 3.5 MeV.

99Mo deduced from (n, γ ) experiments [6] and the strength
deduced from our previous photon-scattering experiment at
experiment Ekin

e = 4 MeV [25] are given.
Although the present photon-scattering data agree with the

value of the (n, γ ) experiment, one observes a disagreement
to the data obtained from experiments using the (3He,3He′γ )
reaction [27], especially for the energy dependence of the
dipole strength: the slope of the strength versus the energy
is nearly by a factor of 2 larger for the results of Ref. [27]
than for ours. These data were derived from particle−γ

coincidences following inelastic scattering of 3He by even-
mass Mo targets and by (3He,αγ ) reactions on odd-mass
Mo isotopes. These reactions do not deliver an absolute
scale for the electromagnetic strength. Therefore, the needed
information has to be inferred from (n, γ ) data. Differences
exist also in the reaction mechanisms. Photons excite mainly
J = 1 states, whereas 3He ions transfer also higher angular
momentum. Due to the large wavelength of the photons their
absorption excites the nucleus as a whole and leads to a
compound nucleus similarly to the absorption of low-energy
neutrons. Consequently one expects an agreement of data
obtained by these two methods, which is indeed observed as
can be seen in Fig. 15.

IV. PARAMETRIZATION OF THE GDR FOR
TRIAXIAL NUCLEI

The chain of stable molybdenum isotopes provides a good
example for a study of the dipole strength distributions at
the onset of deformation. Because a rigid deformation in the
ground state was observed in the heavier 104Mo and 106Mo
isotopes [62] and the lightest 92Mo is a closed-shell nucleus,
the intermediate isotopes 98Mo and 100Mo are expected to
show characteristics of transitional nuclei. The shapes of 98Mo
[63] and 96,100Mo [64] were recently investigated by means
of Coulomb-excitation experiments. It was found that the
quadrupole deformations of 98Mo and 100Mo are β2 = 0.19(5)
and β2 = 0.24(5), respectively. The experimentally deduced
shapes of the considered Mo isotopes are soft where the
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triaxiality parameter γ for 98Mo is 32◦ [63]. Therefore, the
properties of the investigated Mo isotopes are influenced by
the quadrupole deformation and the triaxial shape.

According to the hydrodynamical model the GDR is
represented as a vibration of the proton system against the
neutron system. The GDR may be reproduced by a Lorentzian
curve. For nuclei with stable deformation in the ground state,
the GDR is considered as a superposition of independent
vibrations along every principal axis of the nucleus such that
the strength conserves. The integrated photoabsorption cross
section is given by the Thomas-Reiche-Kuhn dipole-sum rule∫

σγ (Ex)dEx = 60ZN/A mb MeV [65]. For the triaxially
deformed nuclei the GDR splits into three peaks with energies
inversely proportional to the length of the semiaxis. According
to Ref. [66] the energies of the maxima Ei(i = 0, 1, 2) of each
peak are given by:

Ei = E0 exp

[
−

√
5

4π
β2 cos

(
γ − 2

3
πi

) ]
, (16)

where E0 is the GDR energy of a spherical nucleus. The Hill-
Wheeler parameters β2 and γ used in Eq. (16) were taken from
Ref. [25].

A stable deformation of the ground state results in a
rotational motion with an energy of about two orders of
magnitude smaller than E0. Thus, the GDR vibration is
decoupled from rotation. Low-spin excitations like surface
vibrations may differ from the GDR energy E0 by a factor
of 10 such that in spite of a quasiadiabatic approximation
the coupling of the two motions leads to satellites of the
GDR appearing at higher energies. The number of observable
satellites depends on the strength of the low-energy vibration,
but in any case they will not change the low-energy slope of
the GDR.

We attempt to parametrize the low-energy tail of the GDR
by a Lorentzian. As was shown theoretically [4] a description
of the photoabsorption cross section by a Lorentzian is
appropriate albeit the total width � of a GDR in a heavy
nucleus is dominated by spreading [59,67] and not by escape,
i.e., direct decay. Considering the wide range of excitation
energy spanned by the combined data, a test of a Lorentzian
with energy-dependent total width �(Ex) is indicated:

σγ (Ex) = 2C × STRK

3π

3∑
i=1

E2
x�(Ex)(

E2
i − E2

x

)2 + E2
x�(Ex)2

. (17)

The parameter C measures the conformance of the integrated
E1 strength with the Thomas-Reiche-Kuhn sum rule. We use
the parametrization �(Ex) = �S × (Ex/Ei)δ of the energy
dependence of the width [66], with δ as a parameter to be
defined by a fit to the combined data.

The coupling of the particle-hole states constituting the
main component of the GDR to more complicated configura-
tions results in a Lorentzian shape [4] with a width determined
by the size of this coupling, which acts like a damping. From
fits to GDR of different peak energy (in nuclei with different
mass number A) a proportionality between damping width and
energy was found [5] but also a dependence of damping width
on the excitation energy stronger than linear was reported
[66,68]. Because of their limited range and accuracy, data

FIG. 19. (Color online) Comparison of determined photoabsorp-
tion cross section from the photon-scattering experiments on 98Mo
and 100Mo at Ekin

e = 13.2 MeV (filled circles) and the measured cross
section for (γ, n) reaction [59] (open circles) with the parametrization
of the GDR (red solid line) for δ = 1 [see Eq. (17)]. The GDR is
represented as a superposition of three Lorentzians corresponding to
the triaxial shape of the nuclei (dotted lines). The photoabsorption
cross section deduced from the levels below 4 MeV [25] is shown
with open diamonds. The cross section for 99Mo calculated from the
strength function deduced from (n, γ ) measurements [6] is depicted
with a filled red triangle at 5.5 MeV.

within single nuclei did not allow a precise determination of the
energy dependence of the damping width. A parametrization of
the GDR including energy dependence of the damping width,
i.e. δ = 1, is shown in Fig. 19. The most accurate (n, γ ) data
published so far [69] indicate a rather weak increase of the E1
strength with the excitation energy in 108Ag.

From the slopes below the resonance energy we obtain
δ = 0.0(4), i.e., no energy dependence of the width within the
uncertainty. In accordance to our findings in the neighboring
nucleus 88Sr [35] and to the systematics of the GDR widths [68]
we use �S = 4 MeV. For the parameter C we find values
of 0.92(13), 0.90(13) from fits of (γ, n) data of 98Mo and
98,100Mo, respectively. The results of the parametrization are
presented in Fig. 20. One observes some extra strength with
respect to the parametrization of the GDR by a Lorentzian
in the energy range from about 4 to about 8 MeV. This extra
strength amounts to about 0.3% of the Thomas-Reiche-Kuhn
sum rule.

By using the proposed separation of the two reasons for
the widening of the GDR (deformation and spreading), we
obtain an expression of use also when no GDR data are
available, which is of importance for nuclei far off stability
entering nucleosynthesis calculations. Without much influence
on the off-resonance cross section the GDR energy can then
be taken from systematics [70] in combination with C = 1
and with calculated deformation parameters [25], resulting in
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FIG. 20. (Color online) The same as described in the caption to
Fig. 19 but for parameter δ = 0.

predictions for the dipole strength from about 5 MeV up to the
neutron-separation energies.

V. SUMMARY

The response of 98Mo and 100Mo to dipole radiation was in-
vestigated at the bremsstrahlung facility at the superconducting
linear electron accelerator ELBE of the Forschungszentrum
Dresden-Rossendorf. The photon-scattering experiments were
carried out at an electron-beam energy higher than the neutron-
separation energies of the Mo isotopes that allowed us to study
the dipole strength close to the threshold for the (γ, n) reaction
at a high photon flux. The number of transitions assigned to
98Mo and 100Mo is 485 and 499, respectively, the main part of
them being dipole transitions.

Because of the Porter-Thomas fluctuations of the level
widths most of the levels do not appear as resolved peaks
in the experimental spectra. Instead, weakly populated levels
produce a quasicontinuum of overlapping peaks due to the
high level density above 5 MeV and the finite resolution of
the detectors. A comparison of the spectra of 98Mo and 100Mo
shows that close to the neutron-separation energy of 98Mo
the strength in the quasicontinuum is two times higher than

the strength in the peaks. GEANT3 simulations were applied
to determine the background due to atomic processes in the
measured spectra and thus to extract the quasicontinuum. The
continuum contains the elastic transitions to the ground state
as well as the inelastic transitions to low-lying levels as well as
the cascade transitions subsequently de-excitating these levels.

A Monte Carlo code for simulations of γ -ray cascades
was developed that allows us (i) to deconvolute the intensity
distribution of the transitions to the ground state from the
quasicontinuum and thus to determine the cross section for
elastic scattering and (ii) to calculate the branching ratios for
transitions to the ground state and to obtain the photoabsorp-
tion cross section. Because the obtained photoabsorption cross
sections for 98Mo and 100Mo match the measured cross sections
for the (γ, n) reaction this method allows us to determine
the tail of the GDR below the neutron-separation energy. To
test the results of the simulations experimentally, in particular
the calculated branching ratios, we plan an experiment with
a monoenergetic photon beam at the HIγ S facility of Duke
University.

We parametrized the GDR as a superposition of three
Lorentzian curves with maxima depending on the stable
ground-state deformations along the three principal axes of
a triaxially deformed nucleus. The experimental data are
compatible with Lorentzians of an energy-independent width.

Note added in proof. A possible difference between the
absolute scale for the dipole strength of 96Mo, as published in
a recent paper by Krtička et al. in Phys. Rev. C 77, 054319
(2008), and the scale for the 98,100Mo isotopes according to the
present article needs further investigation. It is to be noted that
the normalization of the dipole strength used by Krtička et al.
relied on a correct reproduction of the average radiation width
of several s-wave resonances in the system 95Mo+n, whereas
in the present work the dipole strength is delivered in absolute
units directly by the method itself.
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