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Bohr Hamiltonian for collective low-lying vibrational states of well deformed nuclei
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It is shown that the Bohr Hamiltonian in the intrinsic frame used for the description of the low-lying vibrational
states in the well-deformed nuclei can be presented in two different forms. In the first form the Hamiltonian has
three different mass coefficients but the quadrupole transition operator has a standard form with one parameter
only. The second form of the Hamiltonian can be derived by a transformation from β and γ to the new variables.
In this form the Hamiltonian contains only one mass coefficient but the quadrupole operator takes a different
form with three parameters. It is shown also that this Hamiltonian can describe a situation when a collectivity
of the vibrational states is rather low, but their excitation energies are relatively small, while the E2 transitions
inside the bands are very strong.
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I. INTRODUCTION

The Bohr Hamiltonian [1] being applied to the description
of collective nuclear properties usually has a very simple form
of the kinetic energy term which is determined by one constant
mass coefficient for all three modes of excitation: rotation, β-
and γ -vibrations. A more general form of the kinetic energy
term was introduced in [2,3] and applied in [4–7]. In [2,3]
this kinetic energy term was also transformed into the intrinsic
frame where it was shown that the mass coefficients could
be different for different modes of motion. It is necessary to
note also that in [8] the Grodzins products for the ground, β-,
and γ -bands are presented with different mass coefficients
for different bands, however, without an indication of the
Hamiltonian which gave this result.

For the case when the collective Hamiltonian is written
in terms of the Bohr’s β- and γ -variables earlier we found
that the assumption of a common mass coefficient for three
bands contradicts, in the case of the well-deformed nuclei, the
experimental data on energies and E2 transition probabilities.
Namely, in [9,10] it was shown that significantly different
mass coefficients for rotational and γ -vibrational motion are
needed to explain experimental data on Grodzins products for
the ground and the γ -bands. It was also shown in [10] that in
order to resolve this contradiction it is necessary to consider
the Bohr Hamiltonian not with a constant mass coefficient
but with a mass tensor having also nonzero components with
angular momentum L = 2 and 4. In this case in the limit of the
well-deformed axially symmetric nucleus we obtain different
mass coefficients for rotation (Brot), γ -vibrations (Bγ ), and
β-vibrations (Bβ).

At the same time it is well known that dealing with
a Hamiltonian having a coordinate dependent mass tensor
is very difficult. It is much more practical to perform a
transformation of coordinates in such a way as to obtain the
Hamiltonian with one constant mass coefficient [11]. This is
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done in the present paper for the case of the well-deformed
axially symmetric nuclei. However, as a consequence of
this coordinate transformation the potential energy and the
quadrupole transition operator are changed.

There is another question which we also want to discuss
below. In the phenomenological collective quadrupole model
all dynamical variables, namely the Euler angles and the β-
and γ -shape variables, are considered by definition as the
collective ones, i.e., describing a motion of many nucleons.
At the same time, in RPA calculations performed for the well-
deformed axially symmetric nuclei [12–14], a small number
of components exhaust the structure of the γ -phonon. As a
measure for the collectivity of the quadrupole state we consider
the value of the corresponding E2 transition probability from
the ground state to the vibrational state. In the case of the Bohr
Hamiltonian with a constant mass coefficient the rotational and
vibrational degrees of freedom are not completely decoupled
because the Grodzins products for different rotational bands
are expressed through the same mass coefficient.

We should mention here that the Grodzins products can
be derived separately for the ground, β-, and γ -bands only
in the case of the well-deformed axially symmetric nuclei in
which rotation, β-, and γ -vibrations are decoupled. Indeed,
in these nuclei the amplitudes of the β- and γ -oscillations
around equilibrium values are relatively small. For instance,
the ratio 〈(β − β0)2〉/β2

0 which is equal to the ratio of B(E2)’s:
B(E2; 0+

g.s. → 2+
β )/B(E2; 0+

g.s. → 2+
g.s.) takes the values from

0.014 to less than 0.005 in the well-deformed nuclei, and for
β0 = 0.3 the amplitude of the β-oscillations as a rule is not
larger than 0.03. As a consequence the quadrupole transition
operator can be presented as a sum of three terms. The first
term produces transitions inside the same rotational band only.
The second term excites only the γ -band and the third term
excites only the β-band acting on the ground state band.

If, by varying some parameters of the Hamiltonian, we
decrease the E2 transition probability for the transition
from the ground state to the β- or γ -vibrational state, i.e.,
decrease the collectivity of the vibrational state in agreement
with the RPA results, we automatically increase the energy
of the vibrational state because the product of the energy and
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the corresponding B(E2) is inversely proportional to the mass
coefficient B. But if we do not want to change the result for the
ground state band we should keep B fixed. For instance, the
moment of inertia is proportional to B. On the other hand in
the RPA calculations performed for the well-deformed axially
symmetric nuclei the description of the vibrational modes is
completely decoupled from the description of the rotational
motion.

Let us consider this in more detail. If the mass coefficient
has the same value for all three bands a collectivity of the β-
and γ -vibrations is fixed in the sense that the products

E(2+
β,γ )B(E2; 0+

gr → 2+
β,γ ) = c · h̄2q2

B
, (1)

where c = 1 for γ -band, c = 0.5 for β-band and q =
3

4π
eZr2

0 A2/3 are fixed by the properties of the ground state
rotational band through the mass coefficient B. It follows from
Eq. (1) that a decrease of B(E2; 0+

gr → 2+
β,γ ) can go only in

parallel with unrestricted increase of E(2+
β,γ ). This is not the

case in RPA calculations where the energies of the 2+
γ and

of the 0+
β states cannot be higher than the energies of the

lowest two-quasiparticle state with a corresponding value of
K . Moreover, when the energy of the β- or γ -phonon is close
to the two-quasiparticle energy a small change in the phonon
energy produces a tremendous change in the B(E2) value. This
argument shows that we need more than one mass parameter.

We have mentioned above that the appearance in the Bohr
Hamiltonian applied to the consideration of the well-deformed
axially symmetric nuclei of three different mass coefficients
means that the mass tensor contains not only the monopole
component but also components with angular momentum
L = 2 and 4. But these last two components are unavoidably
shape-dependent. This has important consequences for transi-
tional nuclei. However, in the present paper we only consider
the consequences of this fact for the well-deformed nuclei,
which were partly discussed above.

II. TWO EQUIVALENT FORMS OF THE BOHR
HAMILTONIAN AND THE CORRESPONDING

QUADRUPOLE OPERATOR

In this section we transform the Bohr Hamiltonian and
the quadrupole operator by changing the dynamical variables,
thus going from a Hamiltonian HI with three different mass
coefficients and the usual Bohr quadrupole operator QI

2µ which
we call the Hamiltonian and the quadrupole operator in the
first form to a Hamiltonian with one common mass coefficient
called the Hamiltonian in the second form HII but with a
transformed quadrupole operator QII

2µ expressed in terms of
the new variables which will depend on Bβ and Bγ . Based
on the transformed Hamiltonian HII we will show in a very
simple way that the Bohr Hamiltonian with different Brot, Bβ ,
and Bγ resolves the contradiction with the results obtained in
the framework of RPA, i.e., describes a situation where the
collectivity of the vibrational states is low. This means that the
E2 reduced transition probabilities from the ground state to
the 2+

γ and the 2+
β states are very small, but their excitation

TABLE I. The average values of the ratio Bγ /Brot

for the rare earth elements. The experimental data are
taken from [27].

Element Bγ /Brot Element Bγ /Brot

152,154Sm 3.82 162−168Er 4.18
156−160Gd 3.66 168−176Yb 6.22
158−164Sm 4.00 174−180Hf 2.97

energies have values typical for the collective states, and the
E2 transitions inside the bands continue to be strong.

As is shown in [10] in the case of the well-deformed axially
symmetric nuclei, where K is a good quantum number, the
Bohr Hamiltonian can be written in the following form which
we call in this paper as the form I :

HI = Hrot + HI
γ + HI

β , (2)

where

Hrot = h̄2

6Brotβ
2
0

( �̂L
2
− L̂2

3

)
, (3)

HI
γ = − h̄2

2Bγ β2
0

1

γ

∂

∂γ
γ

∂

∂γ
+ h̄2

2Bγ

L̂2
3

4β2
0γ 2

+ 1

2
Cγ β2

0γ 2, (4)

HI
β = −h̄2

2

(
1

Bβ

∂2

∂β2
+ 2

Bγ

1

β

∂

∂β
+ 2

Bβ

1

β

∂

∂β

)

+ 1

2
Cβ(β − β ′

0)2. (5)

Compared to our previous paper [10] we used a new definition
above of Cγ ((Cγ )old = Cγ β4

0 ). The importance of using three
different mass coefficients is related to the fact that the average
value of Bγ /Brot for rare earth nuclei is 4 (see Table I) and that
the value of Bβ/Brot is even lager (Table II). The ratios of the
mass coefficients shown in Tables I and II have been obtained
from the ratios of the corresponding Grodzins products of the

TABLE II. The experimental values of the ratio
Bβ/Brot for some of the rare earth and actinide
nuclei. The experimental data are taken from [27].

Nucleus E(2+
β (in KeV) Bβ/Brot

154Sm 1178 6.4 ± 1.6
156Gd 1129 11.7 ± 1.1
158Gd 1260 20.2 ± 2.6
158Dy 1086 4.0 ± 1.0
160Dy 1350 9.6 ± 1.2
170Er 960 30.4 ± 3.3
168Yb 1233 4.1 ± 0.5
170Yb 1139 6.9 ± 1.3
172Yb 1466 31.1 ± 1.3
174Hf 900 3.7 ± 1.0
176Hf 1227 6.7 ± 1.3
178Hf 1277 16.2 ± 3.7
230Th 678 6.8 ± 3.1
232Th 774 2.3 ± 1.0
238U 966 17.2 ± 3.0
238Pu 983 17.2 ± 5.3
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transition energies and the corresponding B(E2)’s:

E(2+
i )B(E2; 0+

g.s. → 2+
i ) i = g.s., β, γ. (6)

It is seen from Table II that the experimental errors are large
in some cases. We also mention that there are well known
difficulties in the identification of the β-vibrational states [15–
19]. We have considered the lowest excited 0+ states as β-
vibrational states. The exception is the case of 172Yb where the
second excited 0+ state having a larger B(E2) for the transition
to the ground state has been considered as the β-vibrational
state. It is also necessary to keep in mind that the lowest 0+
excited state in the well-deformed nuclei can be a mixture of
the β-vibrational and the pairing vibrational states and this
decreases the collectivity of this state, i.e., increases the value
of Bβ . Of course in the case of transitional nuclei the collective
potential cannot be taken as above in the form of the harmonic
oscillator centered at the equilibrium values of deformation.
It should be taken in a more complicated form as it follows
from the Strutinsky type calculations or as it is approximated
analytically, e.g., in [20–26].

The difference between β ′
0 and β0 is due to the terms in Hβ

linear in ∂/∂β. However this difference is of the order of the
square of the ratio of the energy of the 2+

1 state to the energy
of the β-vibrational state, i.e., the correction is of the order of
1% and can be neglected.

In the case of the well-deformed nuclei the expression for
the quadrupole transition operator appropriate for HI can be
presented as

QI
2µ = Qrot,2µ + QI

γ,2µ + QI
β,2µ, (7)

where

Qrot,2µ = qβ0D
2
µ0,

QI
γ,2µ = qβ0

1√
2

(
D2

µ2 + D2
µ−2

)
γ, (8)

QI
β,2µ = q(β − β0)D2

µ0.

Let us transform the Hamiltonian and the quadrupole
operator (2)–(8) to the form II by a transformation of the
coordinates. Since in the RPA calculations the frequencies ωγ

and ωβ have an upper limit it is convenient to express Cγ and
Cβ through ωγ and ωβ :

Cγ = Bγ ω2
γ (9)

and

Cβ = Bβω2
β. (10)

Let us introduces dimensionless parameters ηγ and ηβ charac-
terizing the ratios of the mass coefficients:

Bγ = ηγ Brot,
(11)

Bβ = ηβBrot.

Now it is easy to see from Eqs. (4) and (8) that introducing a
new variable by scaling γ ,

γ̃ = √
ηγ γ, (12)

we obtain for HI
γ and QI

γ,2µ the following expressions:

HI
γ → HII

γ = − h̄2

2Brotβ
2
0

1

γ̃

∂

∂γ̃
γ̃

∂

∂γ̃

+ h̄2

8Brotβ
2
0

L̂2
3

γ̃ 2
+ 1

2
Brotω

2
γ β2

0 γ̃ 2, (13)

QI
γ → QII

γ,2µ = 1√
ηγ

qβ0
1√
2

(
D2

µ2 + D2
µ−2

)
γ̃ . (14)

We see that in terms of the new collective variable, HII
γ does

not contain the factor ηγ but QII
γ,2µ contains this factor. So, the

normalized wave functions depend only on γ̃ but the value of
B(E2; 0+

gr → 2+
γ ) is proportional to 1/ηγ . In other words, we

obtain the γ -vibrational state with the fixed energy equal to
h̄ωγ but with a value of B(E2) to the ground band scaled by
factor 1/ηγ . In the case when Bγ � Brot a transition from the
γ to the ground band is very weak.

The β-vibrational part of the Hamiltonian and of the
quadrupole operator can be considered in an analogous way.
The details are given in Appendix A. The result is the
following: Introducing a new variable

β̃ = √
ηβ(β − β0), (15)

we obtain [see Eqs. (A10) and (A11)]

HI
β → HII

β = − h̄2

2Brot

∂2

∂β̃2
+ 1

2
Brotω

2
ββ̃2, (16)

QI
β,2µ → QII

β,2µ = 1√
ηβ

qβ̃D2
µ0. (17)

We see that, as in the case of γ -vibrations, the Hamiltonian
describing β-vibrations expressed in terms of the new variable
does not depend on Bβ . However, QII

β,2µ is proportional to

η
−1/2
β , and when Bβ becomes very large B(E2; 0+

gr → 2+
β )

becomes very small, describing a situation of low collectivity
of the β-band, although with a fixed energy of the β-vibrational
0+ state.

Summarizing the results derived above we obtain the Bohr
Hamiltonian in the form

HII = Hrot + HII
γ + HII

β , (18)

where HII
γ and HII

β are given by Eqs. (13) and (16). We men-
tion, that Hrot does not change its form under our coordinate
transformation. The Hamiltonian HII contains only one mass
coefficient Brot. However the quadrupole operator expressed
in the same variables becomes more complicated

QII
2µ =

(
Qrot,2µ + q

1√
ηγ

β0
1√
2

(
D2

µ2 + D2
µ−2

)
γ̃

+ q
1√
ηβ

β̃D2
µ0

)
. (19)

and consists of three terms with three independent parameters
each for each term. The situation with two forms of the col-
lective Hamiltonian and the quadrupole operator is illustrated
by Table III.

064317-3



R. V. JOLOS AND P. VON BRENTANO PHYSICAL REVIEW C 77, 064317 (2008)

TABLE III. The number of the parameters in the kinetic energy
part of the Hamiltonian (NH ) and in the quadrupole operator (NQ) for
two different forms of the Hamiltonian and the quadrupole operator.

Operator NH Operator NQ

HI 3 QI
2µ 1

HII 1 QII
2µ 3

III. SUMMARY

We have considered a Hamiltonian and a quadrupole
operator expressed in terms of the Bohr β- and γ -variables and
applied for a description of the collective quadrupole motion
in even-even well-deformed axially symmetric nuclei. This
Hamiltonian has three different mass coefficients for the three
excitation modes. By a scaling of the collective variables we
have transformed the Bohr Hamiltonian in such a way that
instead of the Hamiltonian with the three different mass coef-
ficients we obtain the Hamiltonian with one mass coefficient.
However, as a consequence of this coordinate transformation,
the potential energy and the quadrupole transition operator are
changed. It indicates the possibility that also in a general case
the collective Hamiltonian might be transformed by a suitable
coordinate transformation to the form with the kinetic energy
term having one mass coefficient, however, with modified
potential energy and quadrupole operator. This would be
very useful because it is much more convenient to perform
calculations with this form of the Hamiltonian.

For the case when Bβ and Bγ are much larger than Brot,
which is the case for the rare earth nuclei, we have shown that
the eigensolutions of the Schrödinger equation contain three
independent bands with fixed excitation energies and very
weak E2 transitions between the bands. This was achieved by
transforming the Hamiltonian to the new collective variables
which differ from the previous ones by the scaling factors.
This property that enables us to vary B(E2) via Bβ and Bγ

also gives an intuitive feeling for the mass parameters. At this
point it becomes obvious that using only one mass coefficient
is a significant approximation which is not realized in the
experiment. It shows also that the Bohr Hamiltonian with the
three different mass coefficients applied to the well-deformed
axially symmetric nuclei can describe a situation where β- and
γ -bands are connected to the ground band by very weak E2
transitions, in accordance with the RPA results, but where at the
same time the excitation energies are smaller than the pairing
gap while E2 transitions inside the bands are strong. As we
have seen above this situation is described by the Hamiltonian
and the quadrupole operator in the form II which is, in fact,
more suitable for a description of the situation with strong
intraband and weak interband transitions.
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APPENDIX A

The Schrödinger equation for the β-dependent part of the
total wave function is

Hβψ(β) = Eβψ(β). (A1)

Let us introduce a new function ψ̃(β) which is determined as

ψ(β) = βaψ̃(β), (A2)

where the parameter a is determined so as to cancel in Hβ

terms proportional to 1
β

∂
∂β

a = −(
1 + η−1

γ

)
ηβ. (A3)

We obtain

H̃βψ̃(β) = Eβψ̃(β), (A4)

where

H̃β = − h̄2

2Brot

1

ηβ

∂2

∂β2
+ V (β) (A5)

and

V (β) = h̄2

2Brot

(
1

ηγ

+ 1

) (
ηβ

ηγ

+ ηβ − 1

)
1

β2

+ 1

2
Brotω

2
βηβ(β − β ′

0)2. (A6)

Let us approximate V (β) by an oscillator potential. This is
justified for the well-deformed nuclei whose potential energy
has a sufficiently deep minimum at the equilibrium value of
deformation. If we neglect a constant term which produces an
equal shift of all energies we obtain

V (β) ≈ 1

2

(
1 + 3

β0 − β ′
0

β0

)
Brotω

2
βηβ(β − β0)2, (A7)

where

β0 = β ′
0 + β0

(
h̄2/Brotβ

2
0

h̄ωβ

)2 (
1 + 1

ηγ

)

×
(

1 + 1

ηγ

− 1

ηβ

)
. (A8)

The second term in the last expression is two orders of
magnitude smaller than the first one and can be neglected.
Introducing a new variable

β̃ = √
ηβ(β − β0), (A9)

we obtain for H̃β and Q
β

2µ

H̃β = − h̄2

2Brot

∂2

∂β̃2
+ 1

2
Brotω

2
ββ̃2, (A10)

Q
β

2µ = 1√
ηβ

qβ̃D2
µ0. (A11)
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APPENDIX B

For completeness we present below the formulas for the
energies and the B(E2)’s:

E(2+
gr ) = h̄2

Brotβ
2
0

, (B1)

E(0+
β ) = h̄

√
Cβ

Bβ

, (B2)

E(2+
γ ) = h̄

√
Cγ

Bγ

, (B3)

B(E2; 0+
gr → 2+

gr ) = q2β2
0 , (B4)

where

q = 3

4π
eZr2

0 A2/3. (B5)

B(E2; 0+
gr → 2+

β ) = 1

2
q2 h̄√

BβCβ

, (B6)

B(E2; 0+
gr → 2+

γ ) = q2 h̄√
Bγ Cγ

, (B7)

B(E2; 2+
γ → 2+

gr ) = 10

7
B(E2; 2+

γ → 0+
gr ). (B8)

An additional factor 1/2 in Eq. (B6) compared to Eqs. (B4)
and (B7) takes into account the fact that from five quadrupole
degrees of freedom one is related to β-vibrations but two are
related to γ -vibrations and two to rotation [8].
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