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Density-induced suppression of the α-particle condensate in nuclear matter and the structure of
α-cluster states in nuclei
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At low densities, with decreasing temperatures, in symmetric nuclear matter α particles are formed, which
eventually give raise to a quantum condensate with four-nucleon α-like correlations (quartetting). Starting with
a model of α matter, where undistorted α particles interact via an effective interaction such as the Ali-Bodmer
potential, the suppression of the condensate fraction at zero temperature with increasing density is considered.
Using a Jastrow-Feenberg approach, it is found that the condensate fraction vanishes near saturation density.
Additionally, the modification of the internal state of the α particle due to medium effects will further reduce
the condensate. In finite systems, an enhancement of the S-state wave function of the center-of-mass orbital of
α-particle motion is considered as the correspondence to the condensate. Wave functions have been constructed
for self-conjugate 4n nuclei that describe the condensate state but are fully antisymmetrized on the nucleonic
level. These condensate-like cluster wave functions have been successfully applied to describe properties of
low-density states near the nα threshold. Comparison with orthogonality condition model calculations in 12C
and 16O shows strong enhancement of the occupation of the S-state center-of-mass orbital of the α particles.
This enhancement is decreasing if the baryon density increases, similar to the density-induced suppression of the
condensate fraction in α matter. The ground states of 12C and 16O show no enhancement at all, thus a quartetting
condensate cannot be formed at saturation densities.
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I. INTRODUCTION

The properties of nuclear matter at very low densities and
low temperatures are dominated by the formation of clusters, in
particular α particles. As a well-known concept, α matter has
been introduced where symmetric nuclear matter is described
by a system of α particles, weakly interacting via effective
α-α potentials fitted to the scattering phase shifts, such as the
Ali-Bodmer interaction potential [1–3].

This concept becomes less valid with increasing density.
First, at finite temperatures other correlations and also single
nucleon states appear so we have a mixture of different
constituents, described in chemical equilibrium by a mass
action law. Second, at higher densities the internal fermionic
structure of the α particles becomes relevant so the four-
nucleon bound state will be modified by medium effects.
A consistent approach can be given by quantum statistical
methods [4]. Using thermodynamic Green functions, the
effects of self-energy and Pauli blocking are included so
the bound states are dissolved when the density exceeds a
critical value. For α particles this critical density, which is also
dependent on temperature, is about ρ0/5, with ρ0 = 0.17 fm−3

as the saturation density [5].
An important phenomenon is the formation of a quantum

condensate with strong four nucleon correlations at low
temperatures [6]. At low densities where α particles are
well-defined weakly interacting constituents of symmetric
nuclear matter, we have Bose-Einstein condensation of α

particles. With increasing density, quartetting occurs with
medium-modified α particles and disappears at a density of
about ρ0/3. Note that quartet condensation has recently also
been considered in the context of cold atom physics [7].

The Bose-Einstein condensation for ideal quantum gases
is a well-known phenomenon. The occupation of single-
particle states is given by the Bose distribution function.
Below a critical temperature Tc, to obey normalization, the
state of lowest energy is macroscopically occupied. This
macroscopically enhanced coherent occupation of the lowest
quantum state is denoted as quantum condensate. As well
known, the fraction of bosons found in the condensate results
for the ideal Bose gas as ncond/n = 1 − (T/Tc)3/2.

However, this simple picture is no longer valid, if interaction
is taken into account. For a recent determination of Tc in the
interacting case, see Ref. [8]. Here, we want to concentrate
on interaction effects at zero temperature. In general, the
condensate fraction is given by the properties of the density
matrix that contains a part that factorizes. According to
Penrose and Onsager [9], the quantum condensate in a
homogeneous interacting boson system at zero temperature
is given by the off-diagonal long-range order in the density
matrix. The nondiagonal density matrix in coordinate repre-
sentation can be decomposed so in the limit |r − r ′| → ∞
follows

lim
|r−r ′|→∞

ρ(r, r ′) = ψ∗
0 (r)ψ0(r ′) + γ (r − r ′). (1)
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The last contribution γ (r) disappears at large distances,
whereas the first contribution determines the condensate
fraction

n0 = 〈�|a†
0a0|�〉

〈�|�〉 (2)

in infinite matter. Exploratory calculation of the condensate
fraction of α matter will be given in the following Sec. II.
In contrast to Ref. [6,8] where the transition temperature Tc

for quartetting was considered, we consider here the zero
temperature case and analyze the ground-state wave function.
It will be shown that due to the interaction, the condensate
fraction is suppressed with increasing density.

An important question is whether such properties of infinite
nuclear matter are of relevance for finite nuclei. As well
known, e.g., pairing obtained in nuclear matter within the
BCS approach is also clearly seen in finite nuclei. Nuclei
with densities near the saturation density are well described
by the quasiparticle picture that leads to the shell model for
finite nuclei. At low densities, a fully developed α cluster
structure similar to α matter is expected. Cluster structures in
finite nuclei have been well established. A density functional
approach is able to include correlations and to bridge between
infinite matter and finite nuclei.

An interesting aspect of finite nuclei is the enhancement
of the occupation of single α-particle states similar to Bose-
Einstein condensation in α-particle matter or condensation
of bosonic atoms in traps. Recently, gaslike states have
been investigated in self-conjugate 4n nuclei [10], where
the α-particles in low-density excited nuclei move nearly
freely in S states, contained only by the Coulomb barrier.
The Tohsaki-Horiuchi-Schuck-Röpke (THSR) ansatz for the
wave function given below in Sec. III, which is similar to
the condensate state in infinite matter, has been shown to be
appropriate in describing low-density isomers. In particular,
8Be and the Hoyle state of 12C are well described with this
THSR wave function. Investigation of states near the four α

threshold in 16O is in progress [11,12]. Predictions for 20Ne
were given in Ref. [13].

In Sec. III, we will explain how the suppression of the
condensate fraction, calculated for infinite nuclear matter,
is also seen in the low-density isomers of self-conjugate
4n nuclei, in particular for n = 3 (12C). First results for
n = 4 (16O) are also given. General conclusions are drawn in
Sec. IV.

II. SUPPRESSION OF CONDENSATE FRACTION IN
α MATTER AT ZERO TEMPERATURE

The theory of Penrose and Onsager [9] was first applied to
a system with hard core repulsion. Depending on the filling
factor, the suppression of the condensate was calculated. In
particular, for liquid 4He with a filling factor of 28% at normal
conditions, the condensate fraction is reduced to ≈8%, in
good agreement with experimental observations. To give an
estimation for α matter, with an “excluded volume” of about
20 fm3 [14], such a filling factor of 28% would arise at ≈ρ0/3

so a substantial reduction of the condensate fraction already
below saturation densities is expected for α matter.

Within a more systematic approach, we follow the work
of Clark et al. [15,16]. We calculate the reduction of the
condensate fraction as function of the baryon density within
a variational calculation performed to lowest order in the
density. A uniform Bose gas of α particles, interacting via
the potential Vα(r), is considered. As is well known from
thermodynamics, the constraint of a homogeneous density
may be in conflict with a stable, inhomogeneous ground-
state solution so the homogeneous solution may describe a
metastable state. Furthermore, we disregard any change of the
internal structure of the α particles at increasing density. In
particular, the dissolution of the α particle as a four-nucleon
bound state because of the Pauli blocking is not taken into
account.

The simplest form of a trial wave function incorporating the
strong spatial correlations implied by the interaction potential
is the familiar Jastrow choice, ψ(r1, . . . , rA) = ∏

i<j f (|r i −
rj |). Within our exploratory calculation we consider the lowest
approximation with respect to the density to show the tendency
of condensate suppression due to the interaction. The so-called
normalization or unitarity condition, see Refs. [15,16], gives
for the variational function the constraint

4πρα

∫ ∞

0
[f 2(r) − 1]r2dr = −1, (3)

ρα = ρ/4 being the density of α particles.
In the low-density limit, the binding energy per α particle

is given by

E[f ] = 2πρα

∫ ∞

0

{
h̄2

4M

[
∂f (r)

∂r

]2

+ Vα(r)f 2(r)

}
r2dr,

(4)

with M being the nucleon mass. The condensate fraction is
calculated according to

n0 = exp

{
−4πρα

∫ ∞

0
[f (r) − 1]2r2dr

}
. (5)

Note that these approximations [15] only hold in the low-
density limit. At higher densities, the pair correlation function
has to be evaluated. A more advanced approach based on a
hypernetted-chain (HNC) calculation has been given by Clark,
Ristig, and others; see Refs. [15–17].

For the evaluation of the condensate fraction (5) we use the
Ali-Bodmer α-α interaction potential [2]

Vα(r) = 457e−(0.7r/fm)2
MeV − 130e−(0.475r/fm)2

MeV. (6)

According to Johnson and Clark [15] we choose the variational
function as

f (r) = (1 − e−ar )(1 + be−ar + ce−2ar ). (7)

After determining the parameters a, b, c from the minimum
of energy [18], the condensate fraction can be evaluated; see
Fig. 1. Note that this variational function (7) is a simple choice.
Alternative choices for the Jastrow correlation function f (r)
such as the Pandharipande-Bethe choice have been discussed
in Ref. [15], which give a more adequate description of
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FIG. 1. Reduction of condensate fraction in α matter with
increasing baryon density (ρ0 denotes the saturation density). Full
line shows variational calculation performed to lowest order in the
density; crosses show HNC calculations by Johnson and Clark [15];
stars show the Hoyle state (see Sec. III).

correlations. It is intended to perform those more complicated
calculations in the future. We, however, expect that the general
trend will not be qualitatively changed.

In Fig. 1, the full line represents the result for the condensate
fraction as function of the baryonic density according to the
variational calculation performed to lowest order in the density.
In the zero-density limit this fraction is expected to go to 1.
Due to the chosen Jastrow wave function, we have a reduction
of the condensate fraction with increasing density, but not
the disapparence of the condensate at any finite density. This,
however, is an artifact of the boson approximation for the α

particles. In reality the α particles dissolve at high density.
Calculations performed by Johnson and Clark [15] using a
HNC calculation for the pair distribution function are given
by crosses, showing a stronger suppression of the condensate
fraction near the saturation density.

As found from the calculation of the critical temperature
for the formation of a quartetting condensate [6], we expect
that near the saturation density the condensate fraction will
disappear. For this, we have not only to take into account the
HNC-type improvement of the pair variational wave function
(7) but also the Pauli blocking effects that modify the internal
structure of the α particle so that the use of the Ali-Bodmer
interaction potential is no longer justified. Improved versions
of the α-α interaction have been proposed [19]. Another
issue not detailed here is the consequence of α clustering
and condensate formation for the thermodynamic stability of
the equation of state of homogeneous nuclear matter with
respect to phase separation, as discussed above. We mention
only that the use of the Ali-Bodmer interaction would lead
to a region of thermodynamic instability that is too large
and an improved effective interaction between the α particles,
including three-α forces, is expected to give a spinodal point
for the instability of α matter that is positioned below saturation
density [20]. Thus, the repulsive part of the α-α interaction
(which also is a consequence of the Pauli blocking with
respect to the internal nucleonic structure) is only a part
of the suppression of the condensate, which is described
here.

Another effect is the medium modification of the internal
structure of the α particle as well as of the interaction that can
be elaborated within a cluster mean field approximation [4].
The dissolution of α-like bound states due to Pauli blocking
has been evaluated for an uncorrelated medium solving the
Faddeev-Yakubowsky equation [5]. It has been shown [6] that
the four-particle correlations in the condensate disappear due
to Pauli blocking at around ρ0/3 within a variational approach,
approximating the four-nucleon wave function by the solution
of the two-particle problem and describing the relative center-
of-mass motion by a Gaussian wave function. Therefore, a
medium-dependent α-α interaction of the Ali-Bodmer type
may be expected to account for the features of this effect
in an exploratory way. In principle, an ab initio calculation
based on interacting nucleons should be performed, with Green
functions, variational, or antisymmetrized molecular dynamics
(AMD) techniques.

III. ENHANCEMENT OF CLUSTER CENTER-OF-MASS
S ORBITAL OCCUPATION IN 4n NUCLEI

Signatures akin to Bose-Einstein condensation should arise
already in finite nuclei. Low-density states of self-conjugate
4n nuclei clearly show an α-cluster structure, in particular, for
the Hoyle state (n = 3) being the 0+

2 state of 12C. This state
is well known as the key state for the synthesis of 12C in stars
and also as one of the typical mysterious 0+ states in light
nuclei that are very difficult to understand from the point of
view of the shell model [21]. The counterpart of a condensate
in infinite α matter, where the occupation of the ground state is
enhanced and becomes of the same order as the total particle
number, will be the enhancement of the occupation number of
a single-α orbital of the α clusters in a low-density state of the
nucleus.

The α-clustering nature of the nucleus 12C has been studied
by many authors using various approaches [22]. Among these
studies, solving the fully microscopic three-body problem of
α clusters gives us the most important and reliable theoretical
information of α clustering in 12C. First solutions of the
microscopic 3α problem where the antisymmetrization of
nucleons is exactly treated, have been given by Uegaki
et al. [23] and by Kamimura et al. [24]. Their calculations
reproduced reasonably well the observed binding energy and
rms radius of the ground 0+

1 state that is the state with normal
density, whereas they both predicted a very large rms radius
for the second 0+

2 state that is larger than the rms radius
of the ground 0+

1 state by about 1 fm, i.e., by over 30%.
The observed 0+

2 state lies slightly above the 3α breakup
threshold. The energies of the calculated 0+

2 state reproduced
reasonably well the observed value, together with the electron
scattering form factors with respect to the 0+

2 state [23,24].
The dilute character of the 0+

2 state can be described by a
gaslike structure of 3α particles that interact weakly among
one another, predominantly in relative S waves. This S-wave
dominancy in the 0+

2 state had been already suggested by
Horiuchi on the basis of the 3α orthogonality condition model
(OCM) calculation [25].
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Recently, based on the investigations of the possibility of
α-particle condensation in low-density nuclear matter [6],
the present authors proposed a conjecture that near the nα

threshold in self-conjugate 4n nuclei there exist excited states
of dilute density that are composed of a weekly interacting
gas of self-bound α particles and that can be considered as
an nα condensed state [10]. This conjecture was backed by
examining the structure of 12C and 16O using a new α-cluster
wave function of the α-cluster condensate type.

The new α-cluster wave function [10], which has been de-
noted above as THSR wave function, represents a condensation
of α clusters. This is clearly seen by the following expression

|�〉 = P(C†
α)

n|vac〉, (8)

with

〈1234|C†
α|vac〉 = �(P)δP, p1+ p2+ p3+ p4

×φα(1234)a†
1a

†
2a

†
3a

†
4, (9)

with �(P) describing the center-of-mass motion of the α

cluster and φα the internal wave function of the four-nucleon
cluster. The operator P is projecting out the total center-of-
mass motion of the 4n nucleus. In the limit of infinite nuclear
matter, the � orbitals are plane waves, and the projection
operator P can be neglected. In the case considered here,
the use of a product ansatz with Gaussians for φα allows
the explicit separation of the center-of-mass motion of the
four-nucleon cluster as well as of the whole 4n nucleus. It
should also be noted that Eq. (8) contains two limits exactly:
the one of a pure Slater determinant relevant at higher densities
and the one of a 100% ideal α-particle condensate in the
dilute limit [10]. All intermediate scenarios are also correctly
covered.

This THSR wave function was applied to study the structure
of 12C and 16O and actually succeeded to place a level of
dilute density (about one-third of saturation density) in each
system of 12C and 16O in the vicinity of the 3α and 4α

breakup thresholds, respectively, without using any adjustable
parameter. In the case of 12C, this success of the new
α-cluster wave function may seem rather natural, because
the microscopic 3α cluster models had predicted a gaslike
structure of 3α particles for the 0+

2 state, as mentioned above.
The detailed structure analyses of 12C [26] showed that the

0+
2 wave function of 12C that was obtained in past by solving the

full three-body problem of the microscopic 3α cluster model
is almost completely equivalent to the wave function of the
3α THSR state. This result gives us strong support to our
opinion that the 0+

2 state of 12C has a gaslike structure of 3α

clusters with “Bose condensation.” The rms radius for this
THSR state was calculated as R(0+

2 )THSR = 4.3 fm, which fits
well with experimental data for the form factor of the Hoyle
state; see Ref. [27]. It confirms the assumption of low density
as a prerequisite for the formation of an α-cluster structure for
which the Bose-like enhancement of the occupation of the S

orbit is possible.
A very interesting analysis of the applicability of the THSR

wave function can be performed by comparing with stochastic
variational calculations [28] and OCM calculations [29]. The
α-particle density matrix ρ(r, r ′), defined by integrating out

of the total-density matrix all intrinsic α-particle coordinates,
is diagonalized to study the single-α orbits and occupation
probabilities in 12C states. Figure 2 shows the occupation
probabilities of the L orbits with S,D, and G waves belonging
to the k-th largest occupation number (denoted by Lk) for
the ground and Hoyle state of 12C obtained by diagonalizing
the density matrix ρ(r, r ′). We found that in the Hoyle state
the α-particle S orbit with zero node (S1 in Fig. 2) is occupied
to more than 70% by the three α particles (see also Ref. [28]
and Fig. 1). Taking into account the finite size of the nucleus, a
reduction of the condensate fraction from 100% to about 70%
is not surprising, and the remaining fraction (about 30%) is due
to higher orbits originating from antisymmetrization among
nucleons. This huge percentage means that an almost ideal
α-particle condensate is realized in the Hoyle state. One should
remember that superfluid 4He has only 8% of the particles
in the condensate, what represents a macroscopic amount
of particles nonetheless. Please also note that the S-wave
occupancy of the Hoyle state is larger than the occupancy of
any other state by at least a factor of 10 (Fig. 2). Independent
of the absolute occupancy of the S-wave state, this is a clear
signature of quantum coherence, i.e., of condensation (see
also Ref. [30] for a more detailed discussion of this point).

However, in the ground state of 12C, the α-particle occupa-
tions are equally shared among S1,D1, and G1 orbits, where
they have two, one, and zero nodes, respectively, reflecting the
SU(3)(λµ) = (04) character of the ground state [29]. This fact
thus invalidates a condensate picture for the ground state.

To get a more extended analysis, OCM calculations have
been performed [29] for studying the density dependence of
the S-orbit occupancy in the 0+ state of 12C on the different
densities ρ/ρ0 ∼ [R(0+

1 )exp/R]3, in which the rms radius (R)

of 12C is taken as a parameter and R(0+
1 )exp = 2.56 fm. A Pauli-

principle respected OCM basis �OCM
0+ (ν) with a size parameter

ν is used, in which the value of ν is chosen to reproduce a
given rms radius R of 12C, and the α-particle density matrix
ρ(r, r ′) with respect to �OCM

0+ (ν) is diagonalized to obtain the
S-orbit occupancy in the 0+ wave function. The results are
shown in Fig. 3. The S-orbit occupancy is 70 ∼ 80% around
ρ/ρ0 ∼ [R(0+

1 )exp/R(0+
2 )THSR]3 = 0.21, whereas it decreases

with increasing ρ/ρ0 and amounts to about 30 ∼ 40% in the
saturation density region. A smooth transition of the S-orbit is
observed from the zero-node S-wave nature (ρ/ρ0 	 0.2) to a

FIG. 2. (Color online) Occupation of the single-α orbitals of
the ground state of 12C compared with the Hoyle state [29]. For
explanation see the text.
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FIG. 3. Occupation of the S1 orbital as function of density using
the 3α OCM [29].

two-node S-wave one (ρ/ρ0 ∼ 1) with increasing ρ/ρ0 [29].
The feature of the decrease of the enhanced occupation of the
S orbit is in striking correspondence with the density depen-
dence of the condensate fraction calculated for nuclear matter
(see Fig. 1).

An interesting item is whether there exist other nuclei
showing the Bose condensate-like enhancement of the S-orbit
occupation number. Then, the suppression of the condensate
with increasing density is also of relevance for those nuclei.
After we discussed the case of 12C corresponding to n = 3
we will now shortly discuss the situation in the next nucleus
16O corresponding to n = 4, where great efforts are being
performed to investigate low-density excitations in the 0+
spectrum in theory as well as in experiments.

In analogy to the aforementioned OCM calculation for
12C [29], we recently performed a quite complete OCM
calculation also for 16O, including many cluster configurations
(a full account is given in a separate publication [12]). We
were able to reproduce the full spectrum of 0+ states with
0+

2 at 6.4 MeV, 0+
3 at 9.4 MeV, 0+

4 at 12.6 MeV, 0+
5 at

14.1 MeV, and 0+
6 at 16.5 MeV. Also the rms radii are obtained.

The largest values are found as R(0+
6 )OCM = 5.6 fm, followed

by R(0+
4 )OCM = 4.0 fm. We tentatively make a one to one

correspondence of those states with the six lowest 0+ states of
the experimental spectrum. In view of the complexity of the
situation, the agreement can be considered as very satisfactory.
The analysis of the diagonalization of the α-particle density
matrix ρ(r, r ′) (as was done in Ref. [29]) showed that the
newly discovered 0+ state at 13.6 MeV [31], as well as the
well known 0+ state at 14.01 MeV, corresponding to our states
at 12.6 and 14.1 MeV, respectively, have, contrary to what
we assumed previously [32], very little condensate occupancy
of the zero-node S-orbit (about 20%). However, the sixth
0+ state at 16.5 MeV calculated energy, to be identified with
the experimental state at 15.1 MeV, has 61% of the α particles
being in the zero-node S orbit.

These results confirm our statement that the α-particle con-
densate in nuclear matter is suppressed with increasing density
and, consequently, a well-developed condensate state in nuclei
can be expected only at very low densities. For 16O, the relative
densities ρ/ρ0 are estimated as [R(0+

1 )exp/R(0+
4 )OCM]3 = 0.32

and [R(0+
1 )exp/R(0+

6 )OCM]3 = 0.12. Therefore we expect a
significant enhancement of the S-orbit occupation number only

for the 0+
6 state, in full agreement with the OCM calculation

cited above. The very large radius of that state is again a
clear indication of an α-particle gas- (Hoyle) like state, and
the THSR wave function is expected to describe this state in
a sufficient approximation. Work to determine the complete
spectrum of THSR states in 16O showing the relevance of a
Bose-condensate like state is in progress [11].

IV. CONCLUSIONS

Multiple successful theoretical investigations concerning
the Hoyle state in 12C have established, beyond any doubt,
that it is a dilute gaslike state of three α particles held
together only by the Coulomb barrier and describable to first
approximation by a wave function of the form (C†

α)3|vac〉,
where the three bosons (C†

α) are condensed into the S orbital.
There is no objective reason why in 16O,20Ne,· · · there should
not exist similar “Hoyle”-like states. At least the calculations
with THSR and OCM approaches show this to be the case,
systematically. In this work, we give preliminary results of
a complete OCM calculation that reproduces the six first 0+
states of 16O to rather good accuracy. In that calculation the
0+

6 state at 16.5 MeV, which might be identified with the
experimental 0+ state at 15.1 MeV, shows the characteristics
typical for a Hoyle-like state, that is high α-particle S-wave
occupancy combined with an unusually large radius.

Therefore, the main quantity for the formation of an α

cluster state is the density that should be low. Then, the
occurrence of a THSR state where all α particles occupy
the same orbit with respect to the center-of-mass motion
is an interesting effect that corresponds to the formation of
an α-particle condensate in symmetric nuclear matter. The
condensate fraction decreases with increasing density because
of correlations, as is known from interacting Bose systems. In
addition, the internal structure of the four-nucleon cluster is
changed due to Pauli blocking if density is increasing.

The α particles may be considered as independent bosons
moving relatively free like quasiparticles only in the very low
density limit. A mean field approach of the interaction that is
assumed to be weak would give a Gross-Pitaevskii equation
[33]. Then we can apply the approach of a noninteracting Bose
gas where the α particles may occupy the same center-of-mass
orbital. The enhanced occupation of the ground state (plane
wave) in infinite matter is the standard description of Bose-
Einstein condensation. This corresponds, in finite nuclei, to the
enhanced occupation of the same orbital for the center-of-mass
motion so that the THSR state will be a good approximation
for the many-nucleon wave function. We stress the similarity
to two-particle pairing where the concept of a BCS state was
successfully applied to finite nuclei. The question of finite
number of Cooper pairs in the nuclear BCS state is also to be
considered in analogy with the finite number of α particles in
the THSR state.

With increasing contribution of the interaction, e.g., with
increasing density, the condensate state becomes more com-
plex. Calculations in infinite matter (T = 0) show that the
condensate state becomes increasingly nonideal (the conden-
sate fraction is smaller than one). The same is also observed

064312-5



Y. FUNAKI et al. PHYSICAL REVIEW C 77, 064312 (2008)

in OCM calculations for finite nuclei where with increasing
density the condensate state becomes gradually depleted. We
conclude that there are similarities between the structure of
the ground-state wave function of α matter and the α gaslike
states in finite nuclei.

In addition to the effect of interaction, mixing higher states
of center-of-mass orbits to the ground-state wave function,
there is also the dissolution of the internal wave function of
the α particle due to medium effects. The transition from the
cluster picture with well-defined α states to a shell model
where nucleons move independently in a mean field is also
reproduced in harmonic oscillator approximation but needs a
first principle approach to calculate the many-nucleon wave
function.

These results are also of relevance for other phenomena
that arise if the local density approach is used. Low-density

matter arises in the halo of heavy nuclei so that preformation
of α clusters is an interesting issue there, but also in heavy-ion
reactions or during supernova explosions. Cluster condensa-
tion very likely will soon also become an important subject
in cold atom physics. Theoretical investigations already have
appeared [7]. So far nuclear physics is at the forefront of this
subject.
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