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We describe a procedure for mapping a self-consistent mean-field theory (also known as density functional
theory) onto a shell-model Hamiltonian that includes quadrupole-quadrupole and monopole pairing interactions
in a truncated space. We test our method in the deformed N = Z sd-shell nuclei 20Ne, 24Mg, and 36Ar, starting
from the Hartree-Fock plus Bardeen-Cooper-Schrieffer (BCS) approximation of the universal sd shell-model
interaction. A similar method is then followed using the SLy4 Skyrme energy density functional in the particle-hole
channel plus a zero-range density-dependent force in the pairing channel. Based on the ground-state solution
of this density functional theory at the Hartree-Fock plus BCS level, an effective shell-model Hamiltonian is
constructed. We apply this mapped Hamiltonian to extract quadrupolar and pairing correlation energies beyond
the mean-field approximation. The rescaling of the mass quadrupole operator in the truncated shell-model space is
found to be almost independent of the coupling strength used in the pairing channel of the underlying mean-field
theory.
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I. INTRODUCTION

One of the major challenges in nuclear many-body theory
is to develop a microscopic and systematic approach that
would account for the most relevant correlations in the
description of nuclear properties. Most existing methods can
be divided into two classes: the self-consistent mean-field
(SCMF) approximation [1], also known as density functional
theory (DFT), and the configuration-interaction shell-model
(CISM) approach [2]. SCMF theories are often cast in
terms of an energy density functional that is minimized to
obtain the ground-state solution of the system. There exist
parametrizations of this energy density functional that are valid
globally through the table of nuclei. Such parametrizations are
usually based on the zero-range Skyrme force [3] or on the
Gogny interaction [4]. The CISM approach requires as input
a large number of interaction matrix elements in a truncated
space. Although effective CISM interactions can sometimes
be traced back to the bare nucleon-nucleon interaction, it is
often necessary to adjust them empirically. Because the CISM
method requires a truncation to a finite number of shells, the
single-particle energies and interaction matrix elements are
specific to the mass region under consideration. Thus the CISM
approach lacks the global validity of the SCMF.

However, the CISM approach has the advantage that
the underlying nuclear wave functions (both ground and
excited states) are fully correlated. Complete 0h̄ω major shell
calculations in p- [5], sd- [2,6], and fp-shell [7,8] nuclei
have successfully described many of the observed properties
of these nuclei. In contrast, the SCMF approach does not
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account for all correlations present in the nuclear ground
state. Partial correlations in a mean-field approach are often
accounted for by the spontaneous symmetry breaking of the
ground state (e.g., the breaking of rotational symmetry by a
deformed ground state) [9]. Additional correlations beyond the
mean-field approximation are included by restoration of this
broken symmetry (e.g., by angular momentum projection) [10]
and by configuration mixing of symmetry-projected states via
the generator coordinate method (GCM) [11–13]. The GCM
is also useful in providing information on excited states of the
nucleus. Angular-momentum and particle-number projected
GCM has been applied successfully in global studies of
binding energies [14–16] and of spectroscopic properties of
the first excited 2+ state [17] in even-even nuclei.

In a recent work [18] we initiated an approach that takes
advantage of the global validity of the SCMF method and
the higher accuracy of the CISM approach. It is based on the
idea of mapping an SCMF theory onto an effective CISM
Hamiltonian that is defined in a suitably chosen truncated
model space. Such an approach would enable one to start from
an SCMF theory with a global parametrization and construct
effective CISM Hamiltonians in different mass regions. In
heavy nuclei, the required truncated shell-model spaces are
expected to be too large for conventional diagonalization
of the CISM Hamiltonian. In such cases, one can apply
methods that have been developed to treat very large model
spaces, such as the shell-model Monte Carlo (SMMC) method
[19,20], the Monte Carlo shell-model [21] approach, and
direct matrix methods [22]. Alternatively, one can use tractable
approximations that go beyond the mean-field approximation
such as the random-phase approximation (RPA) [23].

A mean-field approximation, based on a Skyrme force, was
used in Ref. [24] to determine the single-particle energies of a
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CISM Hamiltonian. In Ref. [18] we carried out the first step of
mapping an SCMF theory onto the CISM and constructed an
effective Hamiltonian that includes quadrupolar correlations.
The map was tested successfully in N = Z sd-shell nuclei,
using the Hartree-Fock (HF) approximation of the so-called
universal sd (USD) Hamiltonian [6] as our starting point
for an SCMF theory. The USD Hamiltonian was constructed
empirically and is known to give a good description of the
low-energy spectroscopy of sd-shell nuclei. Using the mapped
CISM Hamiltonian, we found that quadrupolar correlations
alone account for more than 50% of the full correlation
energies contained in the USD Hamiltonian. We then applied
our mapping procedure to study quadrupolar correlations in
N = Z sd-shell nuclei starting from the SLy4 parametrization
of the Skyrme energy functional as the SCMF theory [18].

Here we explore the SCMF to CISM mapping idea further
by including pairing correlations in the mapped effective
CISM Hamiltonian in addition to quadrupolar correlations.
The starting point is an SCMF theory that includes pairing
correlations. Such a theory can be solved in the HF plus
Bardeen-Cooper-Schrieffer (BCS) approximation [or more
generally in the Hartree-Fock-Bogolyubov (HFB) approach]
to provide the ground-state single-particle HF wave functions
and energies, as well as the BCS occupation amplitudes. A
similar HF+BCS approximation can be used to determine a
spherical single-particle basis. This mean-field output is used
to construct an effective CISM Hamiltonian in a truncated
spherical model space that contains both quadrupolar and
monopole pairing correlations. After testing the method using
the HF+BCS approximation of the USD interaction as our
initial SCMF theory, we apply it to deformed N = Z sd-shell
nuclei in the context of DFT. The latter is based on the
SLy4 parametrization of the Skyrme force in the particle-hole
channel [25] plus a zero-range density-dependent force in the
pairing channel [26]. It is solved in the HF+BCS approxi-
mation using the Brussels-Paris computer code ev8 [27,28].
The mapping constructed here could also be useful in global
studies of level densities within the SMMC approach [29,30].
Both quadrupolar and pairing correlations play an important
role in the microscopic calculations of level densities.

Pairing correlations are natural for spherical nuclei. Here,
however, we consider the addition of pairing correlations on
top of quadrupolar correlations in the CISM Hamiltonian.
We therefore focus on nuclei whose HF+BCS ground state
is deformed. In principle, the method presented here can
be extended to spherical nuclei by applying an external
quadrupole field, thus effectively deforming the nucleus.

The outline of this article is as follows. In Sec. II we
discuss our mapping procedure when pairing correlations are
included in the SCMF theory. The ground state is solved in the
HF+BCS approximation and its unique description requires
both a density matrix and a pairing tensor (or an anomalous
density matrix). The CISM Hamiltonian is constructed in a
truncated spherical space to include both quadrupolar and
pairing correlations. In Sec. III we test our mapping procedure
using the HF+BCS approximation of the USD Hamiltonian as
our initial SCMF theory for deformed N = Z sd-shell nuclei
(20Ne, 24Mg, and 36Ar). In Sec. IV we map a DFT that is based
on the SLy4 Skyrme interaction plus a zero-range density-

dependent pairing force onto an effective CISM Hamiltonian
for deformed N = Z sd-shell nuclei. The correlation energies
extracted from the mapped Hamiltonian compare well with the
correlation energies obtained with other methods. We conclude
with a brief discussion of possible future directions in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we discuss the theoretical framework of
mapping an SCMF theory into a CISM theory in the case where
the SCMF includes pairing correlations. We assume that the
SCMF theory is solved in the HF+BCS approximation [9].
This is, for example, the case of Skyrme-type density func-
tional theories in which pairing correlations are considered
through the addition of a zero-range density-dependent force
in the pairing channel [27,28].

The HF+BCS mean-field theory provides us with a set of
single-particle HF orbitals φk and their corresponding single-
particle energies εk and BCS occupation amplitudes vk , as well
as the total energy EHF+BCS

mf of the HF+BCS ground state. For
simplicity we assume that this solution, obtained as the global
minimum of an energy density functional, is deformed.1 Using
the same SCMF theory (i.e., HF+BCS) we can also find
the spherical solution. Our plan is to use this output of the
SCMF theory to construct an effective CISM Hamiltonian
that is defined within a truncated shell-model space. In
particular, we will consider an CISM Hamiltonian that contains
a quadrupole-quadrupole interaction and a monopole pairing
interaction.

The CISM is defined in a spherical basis, and we determine
such a basis from the spherical solution of the SCMF theory.
A spherical solution could be found by iterations when the
initial guess for the density matrix is chosen to be spherically
symmetric, and as long as the spherical symmetry is preserved
in the iteration procedure. In Ref. [18] we used the HF
approximation, in which case it was necessary (for an open
shell nucleus) to use the uniform filling approximation or add
a pairing-like interaction with a fixed gap to preserve spherical
symmetry in the next iteration. Here, the BCS approximation
guarantees that the density matrix in the next iteration remains
spherical.

The construction of a standard spherical basis with good
angular momentum j and projection m was discussed in
Sec. IV of Ref. [18]. Here we use α as a generic label for
the spherical basis, i.e., α includes the quantum numbers j,m

as well as other quantum numbers.2

The transformation matrix between the deformed single-
particle basis k and the spherical single-particle basis α is
denoted by Ukα ≡ 〈k|α〉. We have

â†
α =

∑
k

Ukαb̂
†
k , (1)

1Spherical nuclei can be treated by adding a constraining quadrupole
field, leading effectively to a deformed ground state.

2In general we use lowercase greek letters α, α′, . . . to denote
spherical states and lowercase roman letters k, k′, . . . to denote
deformed states.
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where â†
α is the creation operator in a spherical state α and b̂

†
k

is the creation operator in a deformed state k.

A. Deformed SCMF solution in the HF+BCS theory

The deformed ground state in the HF approximation is a
Slater determinant �kb̂

†
k|−〉 that is uniquely described by a

density matrix ρ. However, in the HF+BCS approximation,
the ground state � = �k>0(uk + vkb̂

†
kb̂

†
k̄
)|−〉 is defined by the

BCS amplitudes uk, vk (the product runs over half the number
of single-particle states k > 0 and k̄ is the state conjugate to k).
The unique description of this BCS ground state requires both
a density matrix ρ and a pairing tensor (or anomalous density)
κ [9]. In the deformed basis ρkk′ = 〈b̂†k′ b̂k〉 and κkk′ = 〈b̂k′ b̂k〉,
where 〈. . .〉 denotes the expectation value in the HF+BCS
ground state �. In the spherical basis, we can similarly
define ραα′ = 〈â†

α′ âα〉 and καα′ = 〈âα′ âα〉.3 Using the unitary
transformation (1) from the deformed to the spherical basis,
we have

ραα′ =
∑
kk′

Uk′α′ρkk′U ∗
kα, (2a)

καα′ =
∑
kk′

U ∗
k′α′κkk′U ∗

kα, (2b)

or, equivalently, in a matrix notation

ρ → U†ρU, (3a)

κ → U†κU∗. (3b)

According to Eq. (3), ρ transforms as a linear operator under
the unitary transformation U , whereas κ transforms as an
antilinear operator.

Just as in the HF approximation, the trace of ρ must be equal
to the total number of particles N of a given type (protons or
neutrons)

tr ρ = N. (4)

In the framework of the HF+BCS approximation, this condi-
tion is satisfied by using a suitable chemical potential µ (for
each type of particle).

In the HF approximation, the ground state is a Slater
determinant and the corresponding density matrix must be a
projector ρ2 = ρ with all eigenvalues either 1 or 0. However, in
the HF+BCS ground state the matrix ρ is no longer a projector
and its eigenvalues v2

k are between 0 and 1. The matrices ρ

and κ , which characterize uniquely the HF+BCS ground state,
satisfy now the relations

ρ − ρ2 = κκ†; (5a)

ρκ = κρ∗. (5b)

In the following, we assume that the SCMF theory has time-
reversal symmetry so that the single-particle orbitals come in

3For simplicity of notation, we use the same symbols to denote
the matrices in the deformed and spherical basis and they can be
distinguished according to their subscripts.

degenerate time-reversed pairs |k〉 and |k̄〉 ≡ T |k〉(T is the
time-reversal operator). In the following we choose the k >

0 orbitals to be the orbitals with positive z signature [28].
The set {k, k̄} with k > 0 spans the complete single-particle
space. We also assume that the ground-state solution is axially
symmetric, in which case Jz = m is a good quantum number
(z is the symmetry axis), and the positive z signature orbitals
have m = 1/2,−3/2, 5/2, . . .. Similarly, the spherical states
appear in degenerate time-reversed pairs {α, ᾱ ≡ T α} with
α > 0 denoting the positive z-signature states.

The matrices ρ and κ have the following simple form in the
deformed HF basis (for k, k′ > 0)

ρkk′ = ρk̄k̄′ = v2
k δkk′, ρkk̄′ = ρk̄k′ = 0; (6a)

κkk̄′ = −κk̄k′ = ukvkδkk′, κkk′ = κk̄k̄′ = 0. (6b)

The transformation matrix U is real (and thus orthogonal)
and the matrices ρ and κ remain real in the spherical basis.
Because the spherical states also have good z signature, the
transformation U does not mix states with different z signature
and for α > 0 we have |α〉 = ∑

k>0 Ukα|k〉. Applying the time-
reversal operator to this relation and using the fact that U is
real, we find that the time-reversed states transform in exactly
the same way |ᾱ〉 = ∑

k>0 Ukα|k̄〉. We therefore have

Uk̄α = Ukᾱ = 0; Ukα = Uk̄ᾱ. (7)

It follows that the density and anomalous density matrices have
the block form

ρ =
(

A 0
0 A

)
; κ =

(
0 B

−B 0

)
, (8)

where A and B are real matrices whose dimension is half the
total number of orbitals. It follows from Eqs. (2) and (6) that
(for α, α′ > 0)

Aαα′ =
∑
k>0

Ukα′v2
kUkα, (9a)

Bαα′ =
∑
k>0

Ukα′ukvkUkα. (9b)

The matrix ρ is real symmetric, whereas the matrix κ is real
antisymmetric. The form (8) is equivalent to

ραα′ = ρᾱᾱ′ = Aαα′ , ραᾱ′ = ρᾱα′ = 0; (10a)

καᾱ′ = −κᾱα′ = Bαα′ , καα′ = κᾱᾱ′ = 0. (10b)

It is convenient to define the density and anomalous density
operators by

ρ̂ =
∑
k>0

(|k〉v2
k 〈k| + |k̄〉v2

k 〈k̄|) ; (11a)

κ̂ =
∑
k>0

(|k〉ukvk〈k̄| − |k̄〉ukvk〈k|), (11b)

such that their matrix representation in the corresponding basis
gives us the matrices ρ and κ , i.e., ραα′ = 〈α|ρ̂|α′〉 and καα′ =
〈α|κ̂|α′〉. Equations (9) and (10) follow then immediately from
the operator form (11).

The basic relations (5) defining an HF+BCS state can be
rewritten in terms of the matrices A and B as

A − A2 = B2; (12a)
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RODRÍGUEZ-GUZMÁN, ALHASSID, AND BERTSCH PHYSICAL REVIEW C 77, 064308 (2008)

AB = BA. (12b)

A more compact way of representing the relations (5) or
(12) is to introduce a generalized density matrix R whose
dimension is twice the total number of orbitals [9,31]

R ≡
(

〈a†
α′aα〉 〈aα′aα〉

〈a†
α′a†

α〉 〈aα′a†
α〉

)
=

(
ρ κ

−κ∗ 1 − ρ∗

)

=




A 0 0 B
0 A −B 0
0 −B I − A 0
B 0 0 I − A


 , (13)

where I is the identity matrix in a space whose dimension is
half the number of orbitals. Relations (5) or (12) are equivalent
to the condition that R is a projector

R2 = R. (14)

Thus the eigenvalues of R must be 1 or 0. This condition
is formally similar to the one satisfied by ρ in the HF
approximation except that there are now twice as many
eigenvalues. In our case, the matrix R is real symmetric and
its eigenvalues are pairwise degenerate.

B. Criteria for choosing the truncated CISM space and the
rescaling of one-body observables

As long as the spherical basis α is complete, U is unitary and
we have just generated a different representation of the same
ground-state density matrix and pairing tensor. However, in
constructing a shell-model space, it is necessary to truncate
to a valence subspace. We define such a subspace in terms of
a projector P̂ = ∑′

α |α〉〈α| where
∑′ denotes a sum over a

subset of the single-particle orbitals α. The density operator
ρ̂ and anomalous density operator κ̂ are then replaced by
projected densities

ρ̂ → P̂ ρ̂P̂ ; κ̂ → P̂ κ̂P̂ . (15)

The corresponding matrices in the truncated spherical space
are PρP and PκP.

In choosing a suitable truncated subspace, we require the
projected densities to preserve approximately their basic prop-
erties in the complete space. In the HF+BCS approximation,
the trace of the density matrix is constraint to give the total
number of particles [see Eq. (4)], and we require that a similar
relation is satisfied approximately by the projected density
PρP with the number of particles replaced by the valence
number of particles

tr(PρP) ≈ Nvalence. (16)

Another requirement is that the conditions (5) are satisfied
approximately by the projected densities PρP and PκP.
Alternatively, we require the matrices PAP and PBP to
approximately satisfy (12). It is convenient to define the
projected R matrix

PRP =
(

PρP PκP
−PκP P − PρP

)
, (17)

and require that it satisfies approximately the condition (14),
namely that its eigenvalues are close to either 1 or 0. Formally,
this condition is similar to the one we require from the
projected density matrix ρ at the HF level [18], except that
the projected R matrix is defined in twice the number of
dimensions.

In general, we can calculate the expectation value of a one-
body observable Ô = ∑

αα′ Oαα′ â†
αâα′ in the truncated CISM

space using the projected density

〈Ô〉 = Tr(ÔP̂ ρ̂P̂ ) =
∑
αα′

′
Oαα′ρα′α = tr (OPρP) , (18)

where the sum is restricted to the truncated spherical space.
The ratio between the expectation value of Ô in the full and
truncated spaces provides us with simple rescaling factors of
one-body operators in the truncated CISM space.

C. Effective CISM Hamiltonian

In this section we construct the CISM Hamiltonian given the
HF+BCS ground-state solution. In the self-consistent basis k

of the HF+BCS, the HF Hamiltonian is hmf,kk′ = εkδkk′ , where
εk are the energies of the deformed HF single-particle orbitals.
We then proceed as in Ref. [18]. The HF Hamiltonian matrix
hmf is transformed to the spherical space and projected on the
truncated CISM space. The projected one-body Hamiltonian
is

h = PUT hmfUP. (19)

Next, we expand h in multipoles h = ∑
K h(K) and construct

the second quantized one-body tensor operators ĥ(K) of rank
K [see Eqs. (10) and (8) in Ref. [18]]. The lowest multipole
is the monopole ĥ(0) = ∑

α ε(0)
α a†

αaα , which we use to define
the spherical single-particle Hamiltonian, whereas the K = 2
multipole is a quadrupole operator ĥ(2), which we use to define
a quadrupole-quadrupole interaction.4

We now consider the following effective CISM
Hamiltonian

Ĥ = ĥ(0) − 1
2gQ : ĥ(2) · ĥ(2) : −gP (P̂ †

pP̂p + P̂
†
n P̂n), (20)

where :: denotes normal ordering and P̂ † is the monopole pair
creation operator

P̂ † =
∑
α>0

â†
αâ

†
ᾱ, (21)

defined separately for protons and neutrons. Here gQ and gP

are, respectively, quadrupole and pairing coupling constants. In
comparison with the CISM effective Hamiltonian considered
in Ref. [18], Eq. (20) contains an additional monopole pairing
interaction. We note that one might consider an isovector
monopole pairing (which contains also a proton-neutron
component). However, in the DFT applications we discuss
in Sec. IV, the resulting HF Hamiltonian does not conserve
isospin symmetry (because of the Coulomb interaction) and

4Our studies here are limited to even-even nuclei, for which time-
reversal invariance implies even values of K .
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we consider here only a Hamiltonian of the form (20).5 Both
quadrupole-quadrupole and pairing interactions in Eq. (20) are
attractive (i.e., gQ, gP > 0), leading to a CISM Hamiltonian
that has a good Monte Carlo sign in the SMMC approach [29].

The method outlined above determines the effective Hamil-
tonian (20) up to the two coupling constants gQ and gP .
In Ref. [18] we determine the coupling constant of the
quadrupolar interaction by matching the deformation energy
of the SCMF theory with the deformation energy of the CISM
effective Hamiltonian when the latter is solved in the HF
approximation. When the effective Hamiltonian has the form
(20), it is necessary to match two energy scales to determine
the two coupling constants gQ and gP . One energy scale
is the deformation energy, here redefined in the HF+BCS
approximation

EHF+BCS
def = EHF+BCS

sph − EHF+BCS
mf , (22)

where EHF+BCS
sph is the energy of the spherical HF+BCS

solution and EHF+BCS
mf is the HF+BCS energy of the deformed

ground-state solution. The deformation energy in Eq. (22) is
usually smaller than the deformation energy calculated in the
HF approximation.

To introduce a second energy scale, we define EHF+BCS
pair to

be the average interaction in the pairing channel

EHF+BCS
pair = − 1

2 tr(κ
), (23)

where 
 is the pairing gap matrix.6 The energy EHF+BCS
pair is

often vanishing or small in the deformed configuration, and
we take the second energy scale to be the pairing energy (23)
in the spherical configuration, i.e., EHF+BCS

pair,sph .
The two coupling parameters gQ and gP are determined by

matching simultaneously the two energy scales (22) and (23)
between the SCMF theory and the CISM Hamiltonian when
the CISM is treated in the HF+BCS approximation. We note
that both matching energy scales are defined within a single
SCMF theory (i.e., HF+BCS).

In general, the coupling parameters should be renormalized
depending on the truncation used for the CISM space.
These renormalization effects are included implicitly in our
procedure by matching the energy scales calculated in the
SCMF approach in the complete space with similar energy
scales calculated in the truncated CISM space within the
HF+BCS approximation.

An important application of our mapping is in the calcu-
lation of correlation energies. The correlation energy Ecorr is
defined as the difference between the ground-state energy in
the HF+BCS approximation to the CISM Hamiltonian and the
fully correlated ground-state energy Egs of the CISM

Ecorr = EHF+BCS
mf − Egs. (24)

5For the USD tests in Sec. III we found that an isospin-invariant
interaction constructed from an isovector monopole pair operator
gives only a small correction to the correlation energy when compared
with a Hamiltonian of the form (20).

6The gap matrix is defined by 
ll′ = 1
2

∑
kk′ vA

ll′,kk′κkk′ , where vA is
the antisymmetrized two-body interaction.

Quadrupolar and pairing correlations compete with each
other; the quadrupole-quadrupole interaction favors deforma-
tion in which pairing is suppressed, whereas pairing favors
the spherical configuration. If we consider the spherical
configuration alone, then the BCS approximation already
takes into account some of the gain in pairing correlation
energy. However, in the deformed nuclei considered here we
effectively gain more in mean-field energy by deformation.
In the deformed ground state, BCS correlations are often
significantly smaller than in the spherical solution (or even
vanish). Nevertheless, the correlation energy described by
Eq. (24) is expected to increase when a pairing term is
added to the quadrupolar CISM Hamiltonian. This increase
arises from fluctuations of the pairing fields beyond the
BCS approximation. In particular, these fluctuations sample
the spherical configuration in which pairing correlations are
significant.

Even in spherical nuclei (which we do not treat here)
we expect to gain a finite correlation energy in Eq. (24)
when adding a pairing term to the CISM Hamiltonian, i.e.,
there are pairing correlations beyond those described by the
spherical BCS solution. The BCS approximation is valid in
the limit when the pairing gap is much larger than the mean
single-particle level spacing, and studies of pairing effects in
ultrasmall metallic grains revealed deviations from BCS theory
in the crossover to the fluctuation-dominated regime [32,33].
Nuclei belong to this crossover regime, in which the pairing
gap is comparable to the mean-level spacing [34].

III. TESTS FOR THE USD SHELL-MODEL HAMILTONIAN

In this section we test the mapping procedure discussed
in Sec. II by considering the HF+BCS solution of the USD
Hamiltonian [6] as our starting point of an SCMF theory. The
USD interaction provides a rather good description of binding
energies, spectra, and electromagnetic transition intensities of
sd-shell nuclei [2]. In these studies we compare the correlation
energies found from the mapped CISM Hamiltonian with the
full correlation energies of the USD Hamiltonian. In Sec. IV,
we apply the mapping formalism to a DFT that is defined by
an SLy4 Skyrme force [25] in the particle-hole channel plus a
zero-range density-dependent force in the pairing channel [26].

Here and in Sec. IV we focus on N = Z nuclei, in
which isovector quadrupole-quadrupole correlations could
be ignored. We also restrict our studies to nuclei whose
self-consistent HF+BCS ground state is deformed. In the
sd shell, this excludes 32S whose self-consistent HF+BCS
ground state is spherical. Spherical nuclei can be studied by a
similar method once a deformation is induced by a quadrupole
constraining field.

We also restrict our studies to nuclei in which the spherical
configuration supports a BCS solution (so that EHF+BCS

pair,sph �= 0).
Otherwise, it is necessary to add a constraining pairing field.
In the sd shell, this excludes 28Si for which both spherical
and deformed solutions are found to have no pairing solution.
A similar situation occurs in the framework of the SCMF
application discussed in Sec. IV. Therefore, the N = Z
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TABLE I. HF+BCS results for the deformed N = Z sd-shell nuclei 20Ne, 24Mg, and 36Ar, using the USD interaction and the
effective CISM Hamiltonian (20). Energies are in MeV, the average quadrupole moment 〈Q̂〉 is in b2 (with b being the oscillator radius),
gQ is in MeV/b4, and gP is in MeV.

Nucleus Interaction gQ gP EHF+BCS
sph EHF+BCS

pair,sph EHF+BCS
mf EHF+BCS

def 〈Q̂〉 Ecorr

20Ne USD – – −30.74 −7.04 −36.38 5.64 15.4 4.1
ĥ(2)+ pairing 0.0498 0.2865 −36.96 Fit −42.60 Fit 14.9 4.1

24Mg USD – – −73.12 −7.00 −80.17 7.05 18.0 6.9
ĥ(2) + pairing 0.0254 0.4765 −103.42 Fit −110.47 Fit 17.5 5.7

36Ar USD – – −225.29 −3.55 −226.56 1.27 −13.5 4.0
ĥ(2) + pairing 0.0582 0.3554 −379.57 Fit −380.84 Fit −12.2 2.7

sd-shell nuclei we consider here and in Sec. IV are 20Ne,
24Mg, and 36Ar.

A. Mapping the HF+BCS theory of the USD interaction

We have carried out HF+BCS calculations using the
USD interaction. The resulting HF+BCS energies are listed
in Table I for both spherical and deformed ground-state
configurations. We find the ground-state solutions to be prolate
for 20Ne and 24Mg, and oblate for 36Ar, with average mass
quadrupole moments 〈Q̂〉 given in Table I. The HF+BCS
deformation energies (22) are calculated to be 5.64, 7.05,

and 1.27 MeV for 20Ne, 24Mg, and 36Ar, respectively. It is
interesting to compare these energies with the corresponding
HF deformation energies [18] of 10.92, 11.97, and 3.82 MeV
for the same nuclei. The reduction in deformation energies
originates in a negative EHF+BCS

pair,sph that lowers the spherical HF
energy.

This leads us to the second energy scale EHF+BCS
pair

[Eq. (23)], which in the spherical configuration is found to
be −7.04,−7.00, and −3.55 MeV for 20Ne, 24Mg, and 36Ar,
respectively. The deformed solution of all three nuclei is found
to have no pairing.

The original space of the USD interaction is already
truncated, so orbital truncation effects are not present. The
transformation matrix from the deformed to the spherical basis
is therefore unitary and the projector P is not required. In par-
ticular, the consistency relations (16) and (5) [or equivalently
(14)] are automatically satisfied within the spherical sd shell.

The deformed mean-field Hamiltonian is expressed in the
spherical basis [Eq. (19)] and decomposed into multipoles to
find ĥ(0) and ĥ(2). To construct the effective CISM Hamiltonian
(20), it remains to determine the strength parameters gQ

and gP of the quadrupole and pairing interactions. We
tune these parameters to match simultaneously both energy
scales (22) and (23) of the USD Hamiltonian when solved
in the HF+BCS approximation. For example, in 20Ne the
USD energy scales of EHF+BCS

def = 5.64 MeV and EHF+BCS
pair,sph =

−7.04 MeV are matched by similar energies calculated for
a CISM Hamiltonian (20) with gQ = 0.0498 MeV/b4 and
gP = 0.2865 MeV. In all three nuclei we find that the deformed
configuration has no pairing solution.

To verify the validity of our map, we compare the
quadrupole moments of the mapped CISM Hamiltonian with

their mean-field values in the USD interaction. The results,
shown in Table I, are in close agreement with each other.

The ground-state energies of the CISM Hamiltonian (20)
were calculated using the computer code OXBASH [35] and
the corresponding correlation energies are listed in Table I.
Figure 1 shows these correlation energies (solid squares)
versus mass number A. They are compared with the correlation
energies extracted from a mapped CISM Hamiltonian that
includes only quadrupolar correlations (open squares) [18]
and with the full USD correlation energies (open circles).
Quadrupole correlations alone seem to be responsible for more
than 50% of the USD correlation energies [18]. We observe that
the inclusion of pairing correlations in the CISM Hamiltonian
(on top of quadrupole correlations) brings us even closer to the
full USD correlation energies. These results are encouraging
considering that the USD interaction [6] with three single-
particle energies and 63 anti-symmmetrized interaction matrix
elements was fitted to reproduce the observed properties of
nuclei in this mass region.

IV. MAPPING THE DFT

In this section we apply the mapping procedure of Sec. II
starting from a DFT theory that is based on the SLy4 Skyrme
force [25] in the particle-hole channel plus a zero-range

20 24 28 32 36
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rr
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)

FIG. 1. Correlation energies Ecorr versus mass number A for the
deformed N = Z sd-shell nuclei 20Ne, 24Mg, and 36Ar. Results for
the mapped CISM Hamiltonian (20) (solid squares) are compared
with the quadrupolar correlation energies calculated in Ref. [18]
(open squares) and with the full correlation energies of the USD
Hamiltonian (open circles).
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FIG. 2. HF+BCS energy curves for the nuclei 20Ne (left column),
24Mg (middle column), and 36Ar (right column) as functions of the
axially symmetric mass quadrupole moment 〈Q̂〉. The corresponding
surfaces are shown for DFT pairing strengths of gDFT = 900 and
1000 MeV fm3. The SLy4 parametrization of the Skyrme interaction
is used in the particle-hole channel, whereas a zero-range density-
dependent interaction is included in the pairing channel. All energies
are measured with respect to the global minimum of the corresponding
surface.

density-dependent force

V (r1, r2) = −gDFT(1 − P̂ σ )

[
1 − ρ(r1)

ρc

]
δ(r1 − r2) (25)

in the pairing channel [26]. In Eq. (25), P̂ σ is the spin exchange
operator and ρ(r) the total nuclear density. Throughout this
work, we choose the strength of the force gDFT to be the
same for protons and neutrons and the central density is ρc =
0.16 fm−3. A smooth cutoff of 5 MeV around the Fermi level
is used for the interaction (25). The above DFT is solved in the
HF+BCS approximation using the Brussels-Paris computer
code EV8 [27,28].

A. SCMF results

The starting point of our study is presented in Fig. 2
where we show HF+BCS energy surfaces versus the axially
symmetric mass quadrupole moment 〈Q̂〉 for the nuclei 20Ne,
24Mg, and 36Ar. These surfaces are calculated for the SLy4
force plus the zero-range density-dependent force (25) by
constraining the value of the mass quadrupole 〈Q̂〉. Results
are shown for pairing strengths of gDFT = 900 and 1000 MeV
fm3. These energy surfaces are useful in finding the global
minimum of the HF+BCS energy as well as providing the
energy of the spherical solution. Unlike the HF surface of
an open-shell nucleus, the 〈Q̂〉 = 0 configuration is always a
stationary point of the HF+BCS energy surface.

In the HF approximation, the nucleus 20Ne is prolate with a
deformation energy of 5.6 MeV and 〈Q̂〉mf = 84 fm2 [18]. In
HF+BCS, when including a pairing channel in the DFT with
a strength of gDFT = 900 MeV fm3, it remains prolate but the
deformation energy and quadrupole moment are reduced to

EHF+BCS
def = 0.14 MeV and 〈Q̂〉mf = 57.8 fm2, respectively.

The deformed state is paired with EHF+BCS
pair,mf = −3.3 MeV.

However, the pairing energy is more negative in the spherical
state EHF+BCS

pair,sph = −6.16 MeV, lowering the mean-field energy
of the spherical configuration more than in the deformed
configuration and hence the overall reduction of deformation
energy. The results are tabulated in Table II.

As gDFT increases beyond 900 MeV fm3, a shape transition
occurs in 20Ne to a spherical shape, and for gDFT = 1000 MeV
fm3 the ground-state configuration is spherical. In the present
work, we discuss the mapping for nuclei whose mean-field
solution is deformed, so the case gDFT = 1000 MeV fm3 is
excluded for 20Ne.

The nucleus 24Mg is also prolate in the HF approximation
with a deformation energy of 8.73 MeV and 〈Q̂〉mf =
111.9 fm2 [18]. When a zero-range density-dependent force
is included in the DFT pairing channel, 24Mg remains prolate
with the same deformation of 〈Q̂〉mf = 111.9 fm2 for both
values of gDFT. This is because the deformed HF+BCS
ground state is found to have κ = 0. However, the spherical
HF+BCS energy is lowered by the pairing force, decreasing
the deformation energy to EHF+BCS

def = 3.32 and 2.66 MeV for
gDFT = 900 and 1000 MeV fm3, respectively. The spherical
pairing energy is observed to increase for larger values of the
DFT pairing strength gDFT (see Table II).

Finally, the nucleus 36Ar is oblate in the HF approximation
with a deformation energy of 2.27 MeV and 〈Q̂〉mf =
−74.7 fm2 [18], and it remains oblate with the same defor-
mation in HF+BCS for gDFT = 900 MeV fm3 (no pairing in
the deformed solution). The pairing energy of the spherical
configuration increases slightly in magnitude with gDFT.
However, the deformed solution becomes weakly paired for
gDFT = 1000 MeV fm3 (EHF+BCS

pair,mf = −0.53 MeV), and the
ground-state quadrupole moment is reduced in magnitude to
〈Q̂〉mf = −68.9 fm2.

The SCMF calculations provide us with the single-particle
mean-field Hamiltonian of the deformed configuration, nec-
essary for the construction of ĥ(0) and ĥ(2) in the effective
CISM Hamiltonian (20), as well as with the two energy scales
EHF+BCS

def and EHF+BCS
pair,sph required for the determination of the

two coupling parameters gQ and gP in Eq. (20).

B. Truncation effects and operator rescaling

The next step in constructing the map involves a transfor-
mation to the spherical basis and truncation of the spherical
shell-model space to the valence shells. This truncation was
absent in our USD studies in Sec. III, because the original
space was already truncated. Here the situation is different
because the starting SCMF theory includes a large number of
spherical orbitals and it is necessary to truncate to the spherical
sd shell. Thus, before we proceed with the construction of the
CISM Hamiltonian, we study in this section truncation effects
on the density matrix and pairing tensor, as well as on the
quadrupole moment.

The HF+BCS calculations determine the density matrix
ρ and pairing tensor κ (separately for protons and neutrons)
of the deformed mean-field ground state. We transform these

064308-7
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TABLE II. HF+BCS results for the nuclei 20Ne, 24Mg, and 36Ar, using the SLy4 Skyrme interaction plus a zero-range density-dependent
force (25) in the pairing channel, are compared with HF+BCS results for the mapped Hamiltonian (20). The coupling constants gQ and gP in
Eq. (20) are determined by matching the deformation energy (22) and pairing energy (23)(in the spherical configuration) of the SCMF theory
with those of the CISM. Energies are in MeV, 〈Q̂〉 is in fm2, and gQ is in MeV/fm4. For the mapped Hamiltonian gP is in MeV, whereas for
the SCMF gP ≡ gDFT is in MeV fm3. The last column shows the correlation energy (24), calculated from the ground-state energy of the CISM
Hamiltonian with the coupling parameters shown in the table.

Nucleus Interaction gQ gP EHF+BCS
sph EHF+BCS

pair,sph EHF+BCS
mf EHF+BCS

def 〈Q̂〉 〈Q̂〉mf Ecorr

20Ne SLy4 – 900 −157.91 −6.16 −158.05 0.14 34.8 57.8 –
ĥ(2) + pairing 0.1069 0.5445 −36.42 Fit −36.56 Fit 36.6 – 4.0

24Mg SLy4 – 900 −192.61 −5.84 −195.93 3.32 59.4 111.9 –
ĥ(2) + pairing 0.0343 0.4930 −85.12 Fit −88.44 Fit 58.4 – 4.7

24Mg SLy4 – 1000 −193.27 −6.67 −195.93 2.66 59.4 111.9 –
ĥ(2) + pairing 0.0332 0.5729 −86.02 Fit −88.68 Fit 58.0 – 5.1

36Ar SLy4 – 900 −305.02 −2.14 −305.43 0.41 −43.4 −74.7 –
ĥ(2)+ pairing 0.0992 0.3128 −281.15 Fit −281.56 Fit −38.8 – 2.0

36Ar SLy4 – 1000 −305.26 −2.48 −305.43 0.17 −39.7 −68.9 –
ĥ(2) + pairing 0.1148 0.3832 −282.65 Fit −282.82 Fit −37.9 – 2.2

matrices to the spherical SCMF basis using Eqs. (3) and, as
long as this spherical basis is complete, they continue to satisfy
the consistency conditions (4) and (5).

Once the model space is truncated, the matrices ρ and κ are
projected on the valence sd shell to give PρP and PκP. We
expect the mapping procedure to work well when the projected
density matrix and pairing tensor satisfy approximately the
consistency relations (16) and (5).

When the deformed HF+BCS solution is unpaired, κ = 0
and relations (5) reduce to the usual HF consistency relation
ρ2 = ρ. For such cases, this relation together with (16) were
already found to hold to a very good approximation in
Ref. [18]. Hence, we need to study truncation effects only
in cases where the deformed mean-field solution is paired
(κ �= 0). These cases are 20Ne for gDFT = 900 MeV fm3 and
36Ar for gDFT = 1000 MeV fm3 (see Table II).

Rather than studying relations (5), it is more convenient to
study the equivalent requirement that the projected generalized
density matrix R is a projector in twice the number of
dimensions [see Eq. (14)]. Relation (14) is satisfied exactly
when R has eigenvalues that are either 1 or 0 and trace
that is twice the number of valence single-particle orbitals.

Table III lists the eigenvalues and trace of the matrix PRP.
The dimension of PRP in the sd shell is 24 for each type
of nucleon. However, the eigenvalues of PRP are pairwise
degenerate (because of time-reversal symmetry) and we list
only the 12 distinct eigenvalues (for either protons or neutrons).
We observe that all eigenvalues are very close to either 1 or 0, so
the projected generalized density matrix satisfies the HF+BCS
consistency condition R2 = R to a good accuracy.

Another condition is relation (16) (i.e., the trace of the
projected density PρP should be approximately equal to the
valence number of nucleons of each type). When κ = 0, this
condition was already found to be well satisfied in Ref. [18].
For cases with κ �= 0, the respective traces are tabulated in
the last column of Table III. We observe that condition (16)
is satisfied to a good accuracy also when the ground-state
solution is paired. We note that although the number of
particles is fixed in the HF approximation, it is only the
average number of particles that is fixed in the HF+BCS
approximation. We also note that when the deformed ground
state has κ �= 0, the eigenvalues of ρ correspond to the BCS
parameters v2

k and they can differ significantly from both 1
and 0.

TABLE III. Eigenvalues and trace of the truncated generalized density matrix PRP of the deformed ground state in the SCMF theory of
the SLy4 Skyrme energy functional plus a zero-range density-dependent force. The last column shows the trace of the truncated density matrix
PρP. Results are shown for those cases in Table II that have a paired deformed solution (κ �= 0).

Nucleus Interaction gDFT Nucleon Eigenvalues
of PRP

tr (PRP) tr (PρP)

20Ne SLy4 900 Neutron −6 × 10−6 −1 × 10−6 4 × 10−6 2.6 × 10−5 1.7 × 10−4 0.003 23.824 1.986
0.986 0.991 0.991 0.992 0.995 0.996

Proton −3 × 10−6 1 × 10−6 5 × 10−6 7.1 × 10−5 3.8 × 10−4 0.003 23.774 1.985
0.983 0.985 0.991 0.991 0.995 0.996

36Ar SLy4 1000 Neutron −2 × 10−6 1.1 × 10−5 4.1 × 10−5 8.2 × 10−5 1.9 × 10−4 8 × 10−4 23.918 9.964
0.993 0.995 0.996 0.997 0.998 0.999

Proton −1 × 10−5 −5 × 10−6 0 8 × 10−6 2.3 × 10−5 8.5 × 10−4 23.914 9.956
0.993 0.995 0.996 0.997 0.998 0.999
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FIG. 3. The occupation probabilities
〈n̂j 〉/(2j + 1) of the valence spherical or-
bitals as a function of the single-particle
energy ε

(0)
j for the nuclei 20Ne, 24Mg,

and 36Ar (see Table IV). The DFT results
(diamonds) are compared with the results
in the HF+BCS ground-state solution of
the CISM Hamiltonian (20) (triangles).
Also shown are the occupations calculated
in a shell-model approach for the effective
CISM Hamiltonian (squares). Open (solid)
symbols are for protons (neutrons).

The SCMF theory allows us to determine the rescaling of
one-body observables in the CISM model space by comparing
their expectation values in the complete and truncated spaces.
A good example is the mass quadrupole operator. In Table II
we compare its expectation value 〈Q̂〉mf in the complete space
with its expectation value 〈Q̂〉 in the truncated space (sd
shell). The ratio 〈Q̂〉mf/〈Q̂〉 determines the rescaling factor of
the mass quadrupole moment when working in the truncated
CISM space. In cases where κ = 0, these scaling factors
coincide with those found in the HF theory [18]. An interesting
issue is the dependence of the rescaling factor on the strength
gDFT of the DFT zero-range density-dependent force, once the
latter is sufficiently strong to induce pairing in the deformed
ground-state solution. For 20Ne, we find that the quadrupole
operator should be rescaled by 1.66 for gDFT = 900 MeV fm3,
compared with 1.71 in the absence of a pairing channel in the
DFT. This is a slight reduction of the rescaling factor by about
2.3%, even though the quadrupole moment itself is reduced
by about 31%. Thus, the rescaling of the mass quadrupole
operator in the truncated CISM space seems to be almost
independent of gDFT.

C. CISM Hamiltonian

Once the monopole and quadrupole parts [ĥ(0) and ĥ(2)]
of the projected mean-field Hamiltonian are determined, we
can construct the effective CISM Hamiltonian (20) except

for the two unknown coupling constants gQ and gP . As
already discussed in Sec. II C, these coupling constants are
determined by matching simultaneously the SCMF energy
scales EHF+BCS

def and EHF+BCS
pair,sph with similar energy scales for the

CISM Hamiltonian when the CISM is solved in the HF+BCS
approximation. The values of gQ and gP for the various cases
studied here are listed in Table II.

We next study how well the CISM Hamiltonian can
reproduce one-body observables such as the mass quadrupole.
In Table II we compare the value of 〈Q̂〉 calculated when
the CISM Hamiltonian (20) is solved in the mean field (i.e.,
HF+BCS) approximation, with its DFT value in the truncated
space (sd shell). For 20Ne at gDFT = 900 MeV fm3, we find
the CISM value of 〈Q̂〉 = 36.6 fm2 as compared with the DFT
value of 〈Q̂〉 = 34.8 fm2 in the truncated sd space. We find a
similarly close agreement for 24Mg and 36Ar.

Other relevant one-body quantities are the occupations
〈n̂j 〉 of the spherical orbitals. In Table IV we compare their
DFT values 〈n̂j 〉 = ∑

m ρjm,jm with the respective spherical
occupations of the CISM when solved in the HF+BCS
approximation. We also list in Table IV the CISM occupations
as calculated by the shell-model code OXBASH. Results are
shown for 20Ne and 24Mg at gDFT = 900 MeV fm3, and 36Ar
at gDFT = 1000 MeV fm3. Even in cases where the deformed
ground state is unpaired, the CISM occupations are expected
to differ from their values in Ref. [18]. The reason is that
the CISM Hamiltonian studied here contains an additional
pairing term. The occupations computed in all three methods

TABLE IV. Neutron and proton spherical occupations 〈nj 〉 for the nuclei 20Ne, 24Mg, and 36Ar in the sd-shell valence space. The DFT
(SLy4 with a zero-range density-dependent force in the pairing channel) results are compared with the occupations of the mapped CISM
Hamiltonian (20) both in the HF+BCS approximation and in shell-model calculations. For the SLy4 interaction gP ≡ gDFT.

Nucleus Interaction gQ gP n0d5/2 n1s1/2 n0d3/2 p0d5/2 p1s1/2 p0d3/2

20Ne SLy4 – 900 1.713 0.221 0.052 1.709 0.225 0.052
ĥ(2) + pairing (HF+BCS) 0.1069 0.5445 1.685 0.252 0.063 1.690 0.246 0.064

ĥ(2) +pairing (CISM) 0.1069 0.5445 1.686 0.257 0.057 1.680 0.261 0.058
24Mg SLy4 – 900 3.293 0.408 0.215 3.281 0.401 0.215

ĥ(2) + pairing (HF+BCS) 0.0343 0.4930 3.489 0.304 0.207 3.487 0.306 0.207
ĥ(2) + pairing (CISM) 0.0343 0.4930 3.441 0.299 0.260 3.435 0.303 0.263

36Ar SLy4 – 1000 5.934 1.793 2.237 5.930 1.786 2.239
ĥ(2) + pairing (HF+BCS) 0.1148 0.3832 5.992 1.838 2.170 5.991 1.833 2.176

ĥ(2) + pairing (CISM) 0.1148 0.3832 5.967 1.785 2.248 5.965 1.780 2.255
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FIG. 4. Neutron BCS occupations v2
k of the deformed ground-

state solution of the CISM Hamiltonian (20) (solid squares) are
compared with the BCS occupations in the deformed basis of the
DFT ground-state solution (open squares). These BCS occupations
are plotted versus the deformed single-particle HF energies εk .
Results are shown for 20Ne using the SLy4 parametrization of the
Skyrme force and a zero-range density-dependent force with gDFT =
900 MeV fm3.

are in rather close agreement. The various spherical occupation
probabilities 〈n̂j 〉/(2j + 1) are shown in Fig. 3 versus the
corresponding spherical single-particle energy ε

(0)
j .

Finally, we compare the BCS occupations v2
k of the

deformed solution of the mapped CISM Hamiltonian (defined
in the truncated space) with the v2

k of the original SCMF
ground state (defined in the complete space). Figure 4 makes
this comparison for 20Ne at gDFT = 900 MeV fm3. The v2

k of
the mapped theory are slightly enhanced (suppressed) below
(above) the Fermi energy when compared with their DFT
values. In the DFT, core orbitals below the sd shell have
v2

k ≈ 1, whereas orbitals above the valence sd shell have
v2

k ≈ 0.

D. Correlation energies

An important application of the SCMF to CISM map
is the calculation of correlation energies. We calculate the
ground-state energy Egs of the mapped Hamiltonian (20) in
the shell-model approach and determine the correlation energy
using Eq. (24). The correlation energies for the three nuclei
20Ne, 24Mg, and 36Ar are tabulated in Table II. In general,
the correlation energy of the mapped Hamiltonian is found
to increase with gDFT. In Fig. 5 we show the correlation
energy versus mass number A for gDFT = 900 MeV fm3.
We compare our results (solid squares) with the correlation
energies obtained in Ref. [18] where the effective interaction
includes only a quadrupolar component (open squares). The
inclusion of pairing correlations provides an additional gain in
correlation energy and the observed trend versus mass number
A is similar to the trend observed in the USD results shown in
Fig. 1.

Our correlation energies of 5.1 and 2.2 MeV for the nuclei
24Mg and 36Ar, calculated for gDFT = 1000 MeV fm3, are in
very close agreement with the values of 5.1 and 2.0 MeV
obtained in Ref. [16] starting from the same DFT but using an
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FIG. 5. Correlation energies Ecorr [see Eq. (24)] versus mass
number A for the N = Z sd-shell nuclei 20Ne, 24Mg, and 36Ar,
calculated using the mapped CISM Hamiltonian (20) (solid squares).
The SCMF theory used to construct the map is the SLy4 Skyrme force
plus a zero-range density-dependent force in the pairing channel of
strength gDFT = 900 MeV fm3. The open squares are the correlation
energies found from a mapped CISM Hamiltonian that includes
quadrupolar correlations alone [18].

angular-momentum projected GCM. The correlation energy
of 4.0 MeV we find for 20Ne is somewhat larger than the value
of 3.1 MeV reported in Ref. [16].

V. CONCLUSION

In this work we have mapped an SCMF theory onto
an effective CISM Hamiltonian in the presence of both
quadrupolar and pairing correlations. When compared with
Ref. [18], this is an important step forward in constructing a
general map that would take advantage of the global validity
of the energy density functional and the higher accuracy of
the CISM approach. The main differences compared with the
study initiated in Ref. [18] are as follows: (i) The SCMF
is now based on an HF+BCS approximation (rather than
HF) and the ground-state consistency conditions are recast
in terms of both the density matrix and the pairing tensor and
(ii) the effective Hamiltonian depends now on two coupling
strengths and consequently two energy scales must be matched
to determine these coupling parameters. One energy scale is
the deformation energy, similar to the one used previously
but now redefined in terms of the HF+BCS energies. The
second scale is determined by the average pairing energy in
the spherical configurations. The new map constructed here
provides improved correlation energies consistent with other
methods that include quadrupolar and pairing correlations
beyond the mean field.

The DFT application discussed here is based on a Skyrme
force in the particle-hole channel plus a zero-range density-
dependent interaction in the pairing channel. Alternatively,
one could start from a mean-field calculation with a finite-
range Gogny force. Such an interaction includes pairing
correlations consistently and is usually treated in the Hartree-
Fock-Bogolyubov (HFB) method. The map constructed here
can be easily generalized to the Gogny DFT by replacing
the HF+BCS approximation by the HFB approximation, both
when solving the DFT and in the mean-field solution of the
CISM Hamiltonian.

064308-10



EFFECTIVE SHELL MODEL HAMILTONIANS FROM . . . PHYSICAL REVIEW C 77, 064308 (2008)

As already discussed in Ref. [18] much remains to be done.
Nuclei that have no spherical pairing solution can be treated
by introducing a constraining pairing field. The addition of an
interaction term built from an isovector quadrupole operator
would enable us to apply our method to N �= Z nuclei
and carry out systematic studies. A major challenge is the
application to heavy deformed nuclei. Although the method
presented here can in principle be adapted to such nuclei,
outstanding issues are the ability of a spherical shell model

to describe nuclei with large deformation in a truncated space
and the practical issue of solving the CISM Hamiltonian in
large model spaces.
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