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Momentum distributions of α particles from decaying low-lying 12C resonances
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The complex scaled hyperspherical adiabatic expansion method is used to compute momentum and energy
distributions of the three α particles emerging from the decay of low-lying 12C resonances. The large distance
continuum properties of the wave functions are crucial and must be accurately calculated. We discuss separately
decays of natural-parity states: two 0+, one 1−, three 2+, one 3−, two 4+, one 6+, and one of each of unnatural
parity 1+, 2−, 3+, 4−. The lowest natural-parity state of each J π decays predominantly sequentially via the
8Be ground state, whereas other states, including unnatural-parity states, predominantly decay directly to the
continuum. We present Dalitz plots and systematic detailed momentum correlations of the emerging α particles.
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I. INTRODUCTION

The low-lying resonance states of 12C have been stud-
ied over many years both theoretically and experimentally,
motivated partly by their astrophysical importance [1–10].
Surprisingly, many issues are still not really understood, e.g.,
the energies, angular momenta, structure, and decay properties
of the resonances. Completely open questions still remain on
the 2+ resonances. Morinaga conjectured in the 1950s that a 2+
state should exist around 9 MeV as a member of the rotational
band with the 0+ resonance at 7.65 MeV as band-head [1].
Several experiments recently provided new results [11–13]
but unfortunately no agreement has yet been reached for the
position and width of the first 2+ resonance.

Attempts to obtain information about the spectrum from
decay measurements immediately face the problem that only
the final state is observed. Properties of the initial state must
then be reconstructed from the momentum distributions of the
three fragments after the decay. Both the initial state and the
intermediate paths connecting initial and final states are not
observables. These configurations can therefore be described
only through model interpretations. This is somewhat different
in reaction experiments, where information can in addition be
extracted from properties of outgoing particles in transfer or
scattering reaction.

If we assume that the initial state is a resonance populated
one way or another and that its decay is independent of
the previous history. This is a simplification decoupling the
formation from the decay in analogy to compound nuclear
reactions. The decay process can then be viewed as a stationary
wave function connecting initial and final states through
a continuous series of intermediate configurations. This is
equivalent to a time-dependent process where the initial state,
formed at small distances, evolves through the intermediate
configurations and results in the final state at large distances.
This implies a steady-state outgoing flux described precisely
by the stationary resonance wave function.

Thus the resonance wave function can be interpreted as
reflecting the decay mechanisms. Two principally different
modes are traditionally considered, i.e., sequential decay via
an intermediate two-body configuration, and decay directly

into the three-body continuum. In both cases the final state is
embedded in the three-body continuum and the modes can only
be distinguished if the momentum distributions carry unique
information characterizing one of the modes. Otherwise the
distinction becomes fluent or a matter of an artificial, although
perhaps more precise, model definition. Previous approaches
to describe this type of observables have been performed
mainly for the 1+ states, e.g., Faddeev calculations [14], R-
matrix computations, which describe their decay as sequential
[15], and Kurchatov fitting, which describes them as direct or
democratic [16].

The purpose of this article is to present α-particle mo-
mentum distributions and Dalitz plots [17] after decays of all
the computed 12C resonances [18] below the proton separation
threshold at an excitation energy of 15.96 MeV, where only 3α

decay is possible. These distributions should help to establish
spins and parities of the yet unknown levels. They provide then
information about structures of initial and intermediate states.
Combined with the measurements a more complete picture
of the 12C spectrum and the decay mechanisms should then
emerge. In Sec. II we first sketch the theoretical framework
and the choice of interactions. The results are presented and
discussed in Sec. III for both unnatural- and natural-parity
states. Section IV contains a summary and the conclusions.

II. THEORETICAL FRAMEWORK

The resonances decay into three particles, therefore we need
a theoretical tool to describe this three-body continuum struc-
ture. We employ the hyperspherical complex rotated [19,20]
adiabatic expansion [21] in coordinate space to compute bound
states and resonances. This method is able to deal with several
simultaneously bound and nearly bound two-body states in
different subsystems. Relatively large distances can often be
calculated accurately with a specific choice of basis and partial
waves. The Fourier transform of the wave function provides the
observable momentum distributions. The three-body model
consisting of α particles requires interactions that reproduce
energies and scattering properties of the α-α system.
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A. Practical procedure

We describe 12C as a 3α-cluster system at all distances.
We use Faddeev equations and solve them in coordinate space
using the adiabatic hyperspherical expansion method [20–22].
The hyperspherical coordinates consist of the hyperradius ρ

and five generalized angles. The angular Faddeev decomposed
wave functions, �nJM = ∑3

i=1 �
(i)
nJM, are chosen for each ρ as

the eigenfunctions of the angular part of the complex scaled
[�r → �r exp(iθ )] Faddeev equations

(T� − λn)�(i)
nJM + 2m

h̄2 ρ2Vi�nJM = 0 i = 1, 2, 3, (1)

where T� is the angular part of the kinetic energy operator and
Vi is the potential between particles j and k, being {i, j, k} a
cyclic permutation of {1, 2, 3}. The total wave function, �JM,
is expanded on the hyperangular eigenfunctions, i.e.,

�JM = 1

ρ5/2

∑
n

fn(ρ)�nJM(ρ,�), (2)

where the ρ-dependent expansion coefficients, fn(ρ), are the
hyper-radial wave functions obtained from the coupled set of
hyper-radial equations{

− ∂2

∂ρ2
+ 15/4

ρ2
+ 2m

h̄2 [Wn(ρ) + V3b(ρ) − E]

}
fn(ρ)

=
∞∑

n′=1

P̂nn′fn′ (ρ), (3)

where Wn(ρ) are the angular eigenvalues of the three-body
system Hamiltonian with fixed ρ, V3b is the three-body poten-
tial, E is the three-body energy, and Pnn′ are the nonadiabatic
terms. The eigenvalues Wn(ρ) of the angular equations Eq. (1)
serve as effective potentials.

To obtain the resonances we use the complex scaling
method. According to this method, the energy and width of
a resonance state are associated with the complex eigenvalues
of a certain analytically continued Hamiltonian operator.
The appropriate operator results from the rotation of the
position vectors of the ordinary Hamiltonian into the complex
coordinate plane

�r → �r ei θ θ > 0, real. (4)

This gives rise to the complex-rotated Hamiltonian

Hθ (�r) = H (�r ei θ ). (5)

The complex energy of a resonance corresponds to a pole
in the momentum-space wave function, whereas in coordinate
space this form corresponds to a large-distance asymptotic
wave function consisting of outgoing waves. In other words,
the three-body resonance corresponds to a complex energy
solution E0 = ER − i EI of the system (3) with the asymptotic
boundary condition of an outgoing wave in every channel n

fn(ρ → ∞) = Cn e+i κρ, (6)

where Cn is an asymptotic normalization coefficient and κ =√
2mE/h̄2 is the three-body momentum or the conjugate of

ρ. It has been seen that this boundary condition determines

that the scattering matrix has a pole at the complex energy E0,
being ER the position of the resonance and � = 2EI its width.

The 12C resonances are not necessarily of three-body
character even though this by definition must be the case at
large distances for 3α decay. We use the three-body model also
at small distances because, like in Gamow’s theory of α decay,
the detailed structure at small distances is not important for
the decay properties that require only the proper description
of the emerging three particles. We use the three-body short-
range potential to adjust the corresponding small-distance part
of the effective potential to reproduce the correct resonance
energies that are all-decisive for decay properties as evident in
the probability for tunneling through a barrier.

At intermediate distances the three α particles are formed
and the potential has a barrier that determines the partial
width of the resonance. At large distances the resonance wave
functions contain information about distributions of relative
energies between the three particles after the decay. These
properties are connected to the many-body properties at small
distances via preformation factors, as in α decay. An adjust-
ment of the resonance energy is then needed. After complex
rotation the resonance wave function is characterized by an ex-
ponential falloff at large distance. Thus the crucial information
is found in relative sizes of the very small values, fn, of the
resonance at large distances that are very difficult to compute
accurately, especially when the Coulomb interaction is present.

B. Momentum distributions

The complex scaled coordinate space resonance wave
function should be rotated back to real coordinates and
Fourier transformed to provide the observable momentum
distributions. Unfortunately the corresponding integral is not
convergent and a regularization procedure has to be applied.
The origin is simply that the resulting wave function should
be a non-normalizable outgoing plane wave at large distances.
We overcome this problem with the Zeldovic regularization
procedure that is well defined for short-range interactions [20].
In total this amounts to using the angular part of the coordinate
space wave function at a large hyper-radius but interpreted as
the momentum space wave function. Inclusion of the Coulomb
interaction is achieved by treating it as an ordinary potential
up to a large value of the hyper-radius and then extrapolating
the diagonal parts of the adiabatic wave functions with the
numerically obtained Coulomb and centrifugal potentials.

Two different cases must be treated, i.e., sequential and
direct decays distinguished theoretically by the structure of the
adiabatic wave functions [23]. Direct decay is characterized by
structures where all particles are far apart and as the hyper-
radius increases all distances increase proportionally. The
Zeldovic regularized Fourier transform of the resonance wave
function gives in this case the momentum distributions [24].

Sequential decay is characterized by a wave function
describing a bound-state-like structure of two close-lying
particles supplemented by the third particle far away. For a
complex scaled wave function such a structure would be that
of a two-body resonance, provided the rotation angle θ is larger
than the angle corresponding to the energy and width of this
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resonance. These structures approach two-body bound-state
configurations as the hyper-radius increases.

However, Fourier transformed and rotated back to the real
axis, the wave function should at large distances approach
the description of the third particle (plane or Coulomb wave)
leaving the decaying resonance that has the given two-body
energy and width. This is two sequential two-body decays,
hence the characterizing notation. The resulting momentum
distributions cannot be obtained from the rotated wave function
but should instead be calculated from the correct physical
description of two two-body decays. This results in a Breit-
Wigner distribution for the third particle with a width equal to
the sum of two-body and initial three-body resonance widths
peaking around the energy found by subtracting the two-body
from the three-body energies.

C. Interactions

The basic ingredients are the two-body interactions,Vi , be-
tween particles j and k, where {i, j, k} is a cyclic permutation
of {1, 2, 3}. First Vi must reproduce the low-energy two-body
scattering properties that can be obtained independently for
each partial wave resulting in angular-momentum-dependent
or nonlocal interactions. We rely on the experience gained
previously especially through [18], and we choose an Ali-
Bodmer potential [25] slightly modified to reproduce the
s-wave resonance of 8Be. The phase shifts are essentially
unchanged and reproduce α-α scattering data but to describe
sequential decays properly the two-body subsystems must also
have the correct energies. In total we use a potential given as

Vαα = (125P̂l=0 + 20P̂l=2)e−r2/1.532 − 30.18e−r2/2.852
, (7)

where lengths are in fm and strengths are in MeV. The operators
P̂l project on angular momentum.

The three-body resonance energy and wave function can
now be computed but the energy usually does not coincide
with the measured value. It may be close, indicating that the
three-body structure is nearly correct. Then only fine-tuning
is needed due to the neglected smaller three-body effects
of polarization or excitations of intrinsic particle degrees of
freedom or off-shell effects. We emphasize that only three-
body effects are missing because the two-body data already are
reproduced by the phenomenological two-body interactions.
We then correct the energy by including a diagonal three-body
short-range interaction chosen to be Gaussian in hyper-radius,
i.e., V3b = S exp(−ρ2/b2). The structures of the resonances
are then maintained [26]. A larger range corresponding to a
third-order power law is not selected as, e.g., in Ref. [27]
where it is used to compensate for the limitation in Hilbert
space due to the hyperharmonic expansion in only one Jacobi
coordinate. Our better basis confines the three-body interaction
to be genuinely of short-range character.

In the actual parameter choice we prefer to maintain the
same values of b and S for different states with the same
angular momentum and parity Jπ but allow variation with Jπ .
To see the systematic behavior we then decided to fix b = 6 fm
corresponding to the hyper-radius obtained when the three αs
are touching in an equilateral triangle. The strength S is then
adjusted to reproduce one of the observed resonance energies.

The main dependence is indirect through the variation of the
three-body energy and much less through the shape of the total
potential [18]. In this way we attempt to separate the effects of
the initial many-body structure from the symmetries related to
the angular-momentum conservation. The strongest influence
is expected from Coulomb potentials and centrifugal barriers.

III. COMPUTED DISTRIBUTIONS

We find 12C resonances below 15.96 MeV for most angular
momenta J � 6 and all parities, i.e., two 0+, three 2+, two
4+, and one of each of 1±, 2−, 3±, 4−, and 6+ [18]. Their
structures were described in detail in Ref. [18], including the
variation with possible interaction parameters. However, only
small and intermediate distance properties are important for
energies, widths, and partial wave decomposition. The final-
state momentum distributions after decay arise from the large
distance properties that are much more difficult to determine
numerically.

The procedure is to compute ratios of radial wave functions
at large distances. This supplies the relative weights on the
contributions from each of the adiabatic wave functions. First
we have to remove the contributions from the wave functions
corresponding to population of two-body resonances. These
fractions must be computed as consecutive two-body decays
and their contributions added to the remaining results from
direct decays that are found by absolute square of the wave
function at a large hyper-radius followed by integration over
the unobserved angular variables.

The asymptotic large-distance behavior should be reached
by increasing the partial waves and the basis size used. This
convergence can be tested by showing independence of the
results with variation of the largest value of the hyper-radius.
Failing the test implies that the basis size is too small, or
contrarily, a larger hyper-radius can be compensated by a larger
basis producing the same result. It is then economical to get sta-
bility for a hyper-radius and basis as small as possible. In most
cases we find that the asymptotic behavior is reached for hyper-
radii larger than about 60 fm. There is a small variation of the
distributions from 70 to 100 fm, and we have chosen 80 fm as
the value of ρ where the energy distributions are computed.

The results fall in two groups of natural- and unnatural-
parity states, e.g., implying that sequential decay through
8Be(0+) is either allowed or forbidden by conservation of
angular momentum and parity. Decay through 8Be(2+) is
possible in both cases but this state is rather broad and the
result would be hard to distinguish from direct decay. We see
no indication of population of this channel in the numerical
results. To optimize the accuracy we then maintain as small a
scaling angle as possible consistent with distinct separation of
the three-body resonance from the background continuum.

A. Unnatural-parity states

These states are 1+, 2−, 4−, and 3+ and our basis describes
them as decaying directly although analyses of measured
distributions employ interpretations as sequential through
8Be(2+) [13,28,29].

The lowest 1+ state was briefly discussed previously in
Refs. [23,30]. Experimentally two 1+ states, isospin 0 and 1,
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FIG. 1. (Color online) Dalitz plot (upper part) and the α-particle energy distribution (lower part) for the (1+, 2−, 3+, 4−) resonances at an
excitation energy of (14.98, 11.80, 14.40, 13.26) MeV or (7.70, 4.53, 7.13, 5.98) MeV above the 3α threshold, which is 7.275 MeV above the
ground state. We have performed a Monte Carlo integration over the phase space, which, due to the statistical nature, produces the unphysical
fluctuations.

are known but we find only one reflecting that we are
confined to isospin 0 by using α particles as building blocks.
Both states are very far from resembling α-cluster states.
Still, the decays of both states must proceed through the
same α-cluster configurations, although the weights on the
adiabatic potentials might differ from state to state. Underlying
many-body effects are beyond the present model but we
can pinpoint two ingredients both related to the transition
from the N-body problem at short distance to the three-body
problem at large distance. The first is the preformation factor
describing the probability of finding three particles at small
distances. The second is the three-body potential designed to
continue smoothly the three-body description from large to
small distances. For these reasons the contributions from the
individual adiabatic potentials could differ for decays of these
two 1+ states of different isospin.

We first focus on the isospin 1 state at an excitation energy
of 14.98 MeV (7.70 MeV above threshold). We adjust the
three-body potential and compute the energy distributions
shown in Fig. 1. The upper part exhibits the Dalitz plot and
the lower part projects the distribution on the axis with one
α-particle energy. The latter is computed by using Monte
Carlo integration over all phase space directly from the wave
function.

The measured distributions [31] are very uncertain, first,
because the lower-lying isospin zero 1+ state at 12.70 MeV
(5.42 MeV above threshold) also is populated via feeding from
a γ transition between the two 1+ states. This contribution is
not easily removed from the existing data to allow a clean
comparison. A better analysis or a new experiment measuring
the α decay of the T = 1 1+ state in complete kinematics
is required. Our computed result is almost identical to the

distributions, measured and calculated, for the 12.70-MeV
state [23,29] if the difference in available energy is corrected
for. The distributions in Fig. 1 are then direct prediction
based on the assumptions that the isospin zero components
in both states are equally populated and decay through the
same mechanism.

A test of this prediction would provide interesting infor-
mation about the dynamics of isospin mixing. Two extremes
can be imagined, i.e., the same isospin 0 components can be
present from small to large distance, resulting in the same
distribution, or different complicated many-body structures
at small distances cluster into α particles around the nuclear
surface and proceed to detection at large distances. We know
that the partial decay widths for both states are much smaller
than predicted from the cluster model [18] but this information
does not prohibit the momentum distributions from being
almost identical.

In the computation we find only one of each state of
even J and negative parity, i.e., one 2− and one 4− state.
The experimental spectrum has two states of 2− where the
highest at 13.26 MeV (5.98 MeV above threshold) only is
tentatively assigned to have 2− [32], whereas no 4− state is
found experimentally. It is then tempting to believe that this
state at 13.26 MeV really is a 4− state as indicated by our
computations [33]. This new spin-parity assignment has also
been suggested recently in Ref. [34].

One way to decide which spin and parity is correct is
to measure the momentum distributions of the fragments
emerging after decay. Usually this carries distinct signatures of
the angular momentum of the decaying state. In Refs. [35,36] it
is shown that, even within nonsophisticated theoretical models,
the basic signatures of the angular momentum are present in
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FIG. 2. The angular distributions of the directions between two particles and their center-of-mass and the third particle for the
(1+, 2−, 3+, 4−) resonances in Fig. 1. We performed a Monte Carlo integration over the phase space, which, due to the statistical nature,
produces the unphysical fluctuations.

the experimental data. We first turn to the energy distributions
in Fig. 1. Both 2− and 4− show very similar distributions but
the peaks appear at slightly higher values for the 4− state.
However, the two-dimensional Dalitz plots differ more from
each other. Both have the triangular symmetry but the 2−
resonance have virtually nothing in between these peaks in
contrast to the somewhat more smeared-out distributions of
the 4− resonance.

In the computations we find also a 3+ resonance for which
there is no experimental evidence, but it has been suggested in
Ref. [34] to assign these quantum numbers to the state at about
an excitation energy of 13.35 MeV. Theoretically a 3+ state
has also been found in Ref. [4]. With a reasonable three-body
strength, −20 MeV, placing the state at 14.40 MeV (7.13 MeV
above threshold), we find the energy distributions in Fig. 1. The
distribution is very broad but peaked at intermediate energies.
This is seen to arise from a Dalitz plot distribution with a small
hole in the middle surrounded by a close-lying dense circle and
a much larger diffuse distribution.

The angular momentum may leave an even more distinct
signature in the angular distributions, shown in Fig. 2, of
the directions between two particles and their center-of-mass
and the third particle. The information is then directly about
the corresponding angular momentum denoted as y , i.e.,
the angular momentum of the third particle relative to the
center-of-mass of the other two with the relative angular
momentum x . We see that the angular distribution patterns are
quite different for different states. The 1+ distribution shows
two broad peaks separated by a minimum with vanishing
probability at an angle of π/2.

This reflects that the partial wave components in the angular
wave function are a linear combination of only (x, y) =
(2, 2), (4, 4), each coupled to the resulting value of 1 [23].
Choosing the specific directional angles of φx = φy = θx = 0
and θy = π/2 we find that only projection quantum numbers of

mx = 0 and my = 0,±2,±4 give nonvanishing contributions.
This is consistent only with a projection of the total angular mo-
mentum M = mx + my because M = my = ±1 gives zero.
However, when all projections are zero the Clebsch-Gordan
coupling coefficient is also zero. The observables in Fig. 2
reveal information about the intrinsic angular momenta used
to construct the wave function.

In contrast, 2−, 3+, and 4− have peaks in the distributions
at π/2. The different shapes can be traced back to the different
partial wave decomposition computed and discussed in [23],
i.e., 2− has about 40 to 60% of y = 1, 3, whereas 4−
is dominated by y = 3, and 3+ has about twice as much
y = 2 as y = 4. These features are clearly distinguishable,
demonstrating that these observables can be used to determine
the large-distance structure of these resonances. The initial
state can still be determined only through the theoretical
information about the dynamical evolution of the resonances.

The one-dimensional distributions in Fig. 1 can be used to
extract the distributions of how far the three particles are from
each other [37]. This is visualized by a triangle with a particle
in each corner moving apart from their common center-of-
mass. In particular the distributions of the ratio, x/y, of the
distances between two particles, x, and their center-of-mass
and the third particle, y, are shown in Fig. 3. Because all Jacobi
systems are identical we do not have to distinguish between
Jacobi sets. Unfortunately the symmetric wave function then
do not allow distinction between these identical particles.

With several peaks as for the 1+ resonance the interpretation
is obvious, namely that each peak contains one α particle. The
triangular geometric structure for the decay of this isospin one
1+ state then corresponds to side ratios of 2.2:1.8:1 of the
triangle. For the other unnatural-parity states only one broad
peak is seen close to the value 1. For an equilateral triangle
the x/y ratio is 2/

√
3 ≈ 1.15, which then is the only value

where a narrow peak is possible. Otherwise a broader peak

FIG. 3. The distributions of the ratio
of the distances between two particles
and their center-of-mass and the third
particle for the (1+, 2−, 3+, 4−) reso-
nances in Fig. 1.
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FIG. 4. (Color online) Dalitz plots (upper graphs) and the α-particle energy distributions (lower graphs) for the (0+
2 , 2+

2 , 2+
3 ) resonances at

an excitation energy of (11.22, 11.76, 13.76) MeV or (3.95, 4.48, 6.49) MeV above the 3α threshold, which is 7.275 MeV above the ground
state. We have performed a Monte Carlo integration over the phase space. The sequential decay, respectively, of 59, 15, and 4% through 8Be(0+)
is removed. Labels are as in Table I.

must cover overlapping distributions deviating somewhat from
the equilateral triangle and corresponding to similar but less
symmetric configurations.

B. Natural-parity states

These states are 0+, 1−, 2+, 3−, 4+, and 6+. They can decay
via the energetically favorable 8Be(0+), which asymptotically
must be described by one of the adiabatic potentials with the
8Be+α structure. The signature is simply that this potential
approaches the complex energy of the 8Be(0+) resonance. The
radial resonance wave functions at large distances determine
the population fractions for each of the adiabatic potentials.
In particular we can find the fraction of decay proceeding
sequentially through this 0+ state, and furthermore we can
compute the related distributions as two consecutive two-body
decays.

The result is one peak close to an energy of Emax = 2Eα/3
with a width roughly equal to the width of the decaying
state and a broader squarelike peak at an energy of about
Emax/4 determined by kinematics. Here we assumed vanishing
energy and width of 8Be(0+), otherwise the peak positions and
widths should be modified. The Dalitz plots should also reflect
these features by showing one high-energy, almost vertical,
single-α distribution, and two separated (for each of the other
α particles) more horizontal distributions corresponding to a
broader peak after projection on the single α-energy x axis.

The angular distribution from sequential decay through
8Be(0+) must reflect the behavior of the angular momentum

y precisely as for ordinary decays of a quantum state of given
angular momentum. The direct decay is expected to give a
relatively broad distribution shifted from the central value
at half the maximum energy by an appropriate average over
the combinations of angular-momentum phase-space factors.
This can also be interpreted geometrically as an expanding
triangular configuration with given side ratios.

First, we extract the percentage of sequential decay via
8Be(0+) and direct decay for the natural-parity states, see
Table I. The lowest-lying natural-parity states of each
Jπ (0+, 2+, 3−, and 4+ states with excitation energies 7.66,

TABLE I. Energy above the triple-α threshold, excitation en-
ergy, and estimated amount of sequential via 8Be(0+) and direct
decays for the natural-parity states of 12C. If necessary we label the
resonances with increasing energy above threshold.

J π Eααα (MeV) Eexc (MeV) Sequential (%) Direct (%)

0+
1 0.38 7.66 95 5

2+
1 1.38 8.66 97 3

3− 2.33 9.60 96 4
4+

1 3.25 10.52 92 8
1− 3.61 10.88 70 30
0+

2 3.95 11.22 59 41
2+

2 4.48 11.76 15 85
2+

3 6.49 13.76 4 96
4+

2 6.83 14.10 20 80
6+ 7.13 14.40 5 95
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8.66, 9.60, and 10.52 MeV) seem to be completely dominated
by decays via 8Be(0+). In contrast, the highest-lying 2+ state
at 13.76-MeV excitation energy and the 6+ state at 14.40-MeV
excitation energy have only small fractions decaying through
the 8Be ground state. In the remaining cases (1−, 0+, 2+, and
4+ states with excitation energies 10.88, 11.22, 11.76, and
14.10 MeV) both mechanisms are comparable.

The lowest of the two 0+ resonances is the so-called Hoyle
state, which plays an important role in nuclear astrophysics.
According to our computation, it decays almost entirely
sequentially. Very little is left for the direct decay, which
therefore is not shown. The experimental distribution is also
consistent with complete domination of sequential decay
as in our computation [23]. We also omit the other three
natural-parity resonances dominated by sequential decays. We
concentrate instead on the six resonances where a substantial
amount is direct decay. These distributions are shown in Figs. 4
and 5 after removal of the contributions from the sequential
decay through the 8Be ground state. The experimental analyses
can extract the trivial contribution from the decay through
the 8Be ground state. It is therefore straightforward to make
a comparison with the experiment. Both Dalitz plots and
projected single-α energy distributions are shown.

The higher-lying 0+ resonance has a large width of about
3.5 MeV. On top of this difficulty the population through β

decay of the corresponding energy region leads to violation of

the independent approximation of formation and decay of the
resonance. The main effect is a shift in energy of the resonance
position. In any case this state has a significant probability of
decaying directly into the three-body continuum. This part,
shown in Fig. 4, exhibits a triangular structure in the Dalitz
plot, but now we find one low-energy α particle and two of
moderate energies. This is in almost complete contrast to the
sequential decay where one energy is high and two are small.

Next we focus on our results in connection with the
existence and position of low-lying 2+ resonances, which still
is an open question for the 12C nucleus. The old suggestion is
that the Hoyle state should be the bandhead followed by a 2+
state at around 10 MeV [1]. There are experimental indications
for the existence of such a state [29] but no consensus has so far
been reached. However, other theoretical models, also cluster
models, find three 2+ resonances in this energy region [38];
in Ref. [4] two 2+ excited states are found in this region,
whereas in Ref. [6] one 2+ state appears below the 12.3-MeV
excitation energy. We find rather different structures for these
three states, still all of α-cluster structure. Each of them is
dominated by its own adiabatic wave function corresponding
to three different low-lying adiabatic potentials with differing
partial-wave decomposition [18]. Most likely these states
are hidden behind broad states of roughly the same energy.
They are therefore extremely difficult to distinguish from the
background in any of the experiments.

FIG. 5. (Color online) Dalitz plots (upper graphs) and the α-particle energy distributions (lower graphs) for the (1−, 4+
2 , 6+) resonances at

an excitation energy of (10.88, 14.10, 14.40) MeV or (3.61, 6.83, 7.13) MeV above the 3α threshold, which is 7.275 MeV above the ground
state. We have performed a Monte Carlo integration over the phase space. The sequential decay, respectively, of 70, 20, and 5% through 8Be(0+)
is removed. Labels are as in Table I.
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Their decay properties also vary substantially, e.g., the
percentage of sequential decay through 8Be(0+); see Table I.
The lowest state almost exclusively decays sequentially,
whereas the other two mostly decay directly. In Fig. 4 we
see that the direct parts give very broad distributions. For
the second 2+ resonance all three α particles emerge with
large probability with similar kinetic energies. For the third 2+
resonance the distribution is more diffuse and the energies are
more unevenly divided, resulting in a structured but relatively
broad distribution.

We continue with the 1− state. Both Dalitz plots and
one-dimensional projections are shown in Fig. 5 for the 30%
decaying directly into the three-body continuum. A similar
triangular structure as for the second 0+ resonance is seen,
although substantially more smeared out, resulting in two
overlapping broad peaks after projection on the x axis.

Both the 3− resonance and the lowest of the two 4+
resonances are almost completely dominated by sequential
decay. The second of the 4+ resonances gives a rather diffuse
distribution of kinetic energy of the α particles; see Fig. 5.
It resembles somewhat the distribution from the third 2+
resonance except that the small probability holes in the Dalitz
plot now also are smeared out. This distribution is again almost
the opposite of the sequential decay distribution with one
high- and two low-energy particles. The 6+ resonance has
a symmetric distribution extending about 1 MeV around a
central region where all energies are roughly equal.

We now turn to the other type of information found in
the angular distributions that exhibit the correlated directions
of emergence. Obviously the sequential decay through the
8Be(0+) state must be with the third α particle in the opposite
directions of 8Be. The only information here is then about the
partial wave component (y) of that third particle relative to
8Be. Angular-momentum conservation then requires the total
angular momentum J = y . Thus the most interesting new
information is contained in the directly decaying parts shown
in Fig. 6. These distributions also vary from state to state
reflecting the structure in terms of partial waves as discussed
in Ref. [18].

The distribution corresponding to 0+
2 state is essentially

from the isotropic distribution of y = 0 modified by a
smaller contribution from y = 2 with maxima at π/4 and
3π/4 separated by zero probability at π/2. The distribution
corresponding to 1− shows two peaks separated by a small
minimum at π/2. The largest partial waves are here y =
1, 3. The angular distributions of both the second and third
2+ resonance seem to contain a narrow peak on top of a
broader one. These structures are due to large contributions
from y = 0 supplemented by contributions from y = 2 and
y = 4, respectively. Finally, the distributions from 4+

2 and 6+
both exhibit one smooth, and for 6+ also relatively narrow,
peak around π/2. The partial wave structures of these states
are mainly y = 2 and y = 2, 4, respectively.

We again attempt to extract the geometric structure of the
dominating triangular decay configurations. The results for the
ratio between one pair of particles and their center of mass and
the third particle are shown in Fig. 7. They are all rather similar
with a relatively broad peak around 1, but for 1− and 2+

3 with
more structure at a larger ratio, suggesting another peak. As

FIG. 6. The angular distributions of the directions between two
particles and their center-of-mass and the third particle for the
(0+

2 , 1−, 2+
2 , 2+

3 , 4+
2 , 6+) resonances in Figs. 4 and 5. We have

performed a Monte Carlo integration over the phase space. The
sequential part is removed as in Figs. 4 and 5. Labels are as in
Table I.

in Fig. 3 the peaks must cover overlapping distributions to
correspond to an almost equilateral triangle. In the case of 0+

FIG. 7. The distributions of the ratio of the distances between
two particles and their center-of-mass and the third particle for the
(0+

2 , 1−, 2+
2 , 2+

3 , 4+
2 , 6+) resonances in Fig. 4. The sequential part is

removed as in Figs. 4 and 5. Labels are as in Table I.
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a very broad peak appears around 3, and the other two peaks
are around 0.8. This gives rise to an obtuse triangle with side
ratios 1.7:1:1.

IV. SUMMARY AND CONCLUSIONS

We have computed the α-particle momentum distribu-
tions of 14 three-body decaying low-lying 12C many-body
resonances with 10 different angular momenta and parities.
The results are exhibited as single-α energy distributions and
energy correlations of Dalitz plots. We assume that the decays
of the resonances are independent of their formation as for
compound nuclear reactions. We use a three-α cluster model
to describe all states even at small distances where the cluster
model sometimes fails badly and the many-body structure is
indispensable for a structure computation. The idea is the same
as that for the classical α emission, that three α particles must
be formed at small or intermediate distances as they emerge
at large distances after the decay. Thus the small distance
properties should supply only boundary conditions and impose
energy and angular-momentum conservation. This we mock
up in the 3α cluster model by a three-body interaction adjusted
to reproduce the resonance energy. Again a simple analogy is
found in the preformation factors in α emission.

An extreme example is the isospin 1 state that cannot be
formed by α clusters. Its α-decay width is consequently very
small but still the resulting distributions are with the present
assumptions predicted to be essentially the same as the 1+
isospin 0 state.

For three-body decays the interest, and the complication, is
how the energy is shared between the three particles. This is
determined by the “dynamic evolution” of the resonances, i.e.,
by the change in structure from small to large distances. To
a large extent the decisive properties are symmetries from
angular momentum and parity conservation. The resulting
momentum distributions carry information about both initial

resonance state and the intermediate configurations (decay
mechanisms). The only energetically allowed two-body struc-
ture is the ground state of 8Be. Sequential decay through this
state is dominating for natural-parity states for the lowest
resonance of a given angular momentum. The momentum
distributions for the fractions decaying directly are predicted
for all resonances below the proton separation threshold.

Whenever possible we give a geometric description of the
parts decaying directly to the three-body continuum. This is
expressed as side ratios of the α particles emerging in a triangle.

The Dalitz plots and α-energy distributions differ from
state to state. A complementary observable is the correlation
between the direction of one particle and the center-of-
mass of the other two. These distributions could be used
to assign spin and parity to these decaying states as soon
as sufficiently accurate experimental data become available.
The directly measured angular distribution must contain
information about the angular momentum of one particle with
respect to the center-of-mass of the other two particles at large
distances. Because several partial waves may contribute, this
information is not unique and may have to be supplemented
with other information. Furthermore, the uncertainty remains
of how the measured large-distance properties reflect the
small and intermediate-distance structures of the resonance
wave function. Only a theoretical model can provide this
connection.

In conclusion, we provide systematic and detailed decay
information (fraction of sequential decay, Dalitz plots, single-
α energy distributions, momentum-direction correlations),
which can be compared to upcoming experimental data, for
each of the 14 lowest 12C resonances decaying by 3α emission.
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Nucl. Phys. A618, 55 (1997).
[6] P. Descouvemont, Nucl. Phys. A709, 275 (2002).
[7] T. Neff and H. Feldmeier, Nucl. Phys. A738, 357 (2004).
[8] S. I. Fedotov, O. I. Kartavtsev, V. I. Kochkin, and A. V. Malykh,

Phys. Rev. C 70, 014006 (2004).
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[30] R. Álvarez-Rodrı́guez, A. S. Jensen, D. V. Fedorov, H. O. U.
Fynbo, and E. Garrido, J. Phys. G: Conf. Series, 111, 012017
(2008).

[31] D. P. Balamuth, R. W. Zurmühle, and S. L. Tabor, Phys. Rev. C
10, 975 (1974).

[32] F. Azjenberg-Selove, Nucl. Phys. A506, 1 (1990).
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