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Three-nucleon bound state in a spin-isospin dependent three dimensional approach
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A spin-isospin-dependent three-dimensional approach based on momentum vectors for formulation of the
three-nucleon bound state is presented in this article. The three-nucleon Faddeev equations with two-nucleon
interactions are formulated as a function of vector Jacobi momenta, specifically the magnitudes of the momenta
and the angle between them with the inclusion of the spin-isospin quantum numbers, without employing a partial
wave decomposition. As an application the spin-isospin-dependent Faddeev integral equations are solved with
Bonn-B potential. Our result for the Triton binding energy with the value of −8.152 MeV is in good agreement
with the achievements of the other partial wave based methods.

DOI: 10.1103/PhysRevC.77.064005 PACS number(s): 21.45.−v, 21.10.Hw, 21.30.−x, 27.10.+h

I. INTRODUCTION

During the past several years, several methods have
been developed to solve the nonrelativistic Schrödinger
equation accurately for few-nucleon bound states by using
realistic nuclear potentials. These methods are the coupled-
rearrangement-channel Gaussian-basis variational (CRCGV)
[1], the stochastic variational (SV) [2], the hyperspherical
harmonic variational (HH) [3], the Green’s function Monte
Carlo (GFMC) [4], the no-core shell model (NCSM) [5],
the effective interaction hyperspherical harmonic (EIHH) [6]
and the Faddeev. These calculational approaches are mostly
based on a partial-wave (PW) decomposition. Stochastic
and Monte Carlo methods, however, are performed directly
using the position vectors in the configuration space. One
of the most viable approaches appears to be the Faddeev
method.

The calculations based on the Faddeev approach are
performed after a PW expansion with phenomenological
potentials either in the momentum space [7–12] or in the
configuration space [13–18]. Recent bound-state calculations
with the Faddeev approach have been done with the chiral
potentials in the momentum space [19–22]. Experience in
three-nucleon calculations shows that the standard treatment
based on a PW decomposition is quite successful but also rather
complex, because each building block related to involved
operators requires extended algebra. The Faddeev calculations
based on a PW decomposition, which includes the spin-isospin
degrees of freedom, after truncation leads to a set of a
finite number of coupled equations in two variables for the
amplitudes and one needs a large number of partial waves to get
converged results. In view of this large number of interfering
terms it appears natural to give up such an expansion
and work directly with the vector variables. On this basis
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three- and four-body bound states have recently been studied
in a three-dimensional (3D) approach where the spin-isospin
degrees of freedom have been neglected in the first attempt
[23–27]. In the case of three-body bound state the Faddeev
equations have been formulated for three identical bosons as
a function of vector Jacobi momenta, with the specific stress
upon the magnitudes of the momenta and the angle between
them. Adding the spin-isospin to the 3D formalism is a major
additional task, which will increase more degrees of freedom
into the states and therefore will lead to a strictly finite number
of coupled equations [28]. In this article we have attempted to
implement this task by including the spin-isospin degrees of
freedom in the 3N bound-state formalism. To this end we
have formulated the Faddeev equations for the 3N bound
state with the advantage of using the realistic NN forces.
The presented 3D formalism in this article in comparison
with the traditional PW formalism avoids the highly involved
angular-momentum algebra occurring for the permutation
operators. According to the spin-isospin states that have been
taken into account, we have obtained the 8, 12, 16, and 24
coupled equations for a description of the 3N bound state,
i.e., 3H and 3He. In this way, we solve the Faddeev integral
equations for calculation of the Triton binding energy with
Bonn-B potential. The input to our calculations is the two-body
t matrix that has been calculated in an approach based on
a helicity representation and depends on the magnitudes
of the initial and final momenta and the angle between
them [29].

This manuscript is organized as follows. In Sec. II we
present the formalism. Meaning that we have derived the
Faddeev equations and the 3N wave function in a realistic
3D scheme both as a function of Jacobi momenta vectors
and the spin-isospin quantum numbers. Also the novel 3D
representation of the Faddeev equations is contrasted with the
corresponding traditional PW representation. In Sec. III we
present our results for the triton binding energy and compare
them with the results obtained from the PW calculations. To
test our calculations the calculated expectation values of the
Hamiltonian operator are compared to the obtained eigenvalue
energies. Finally in Sec. IV a summary and an outlook will
be presented.
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II. FORMULATION FOR 3N BOUND STATE IN
A 3D FADDEEV SCHEME

A. The Faddeev equations

The bound state of three pairwise-interacting nucleons is
described by the Faddeev equation [11]:

|ψ〉 ≡ |ψ12,3〉 = G0tP |ψ〉, (1)

where G0 is the free 3N propagator, t denotes the NN transi-
tion matrix determined by a two-body Lippman-Schwinger
equation, and P = P12P23 + P13P23 is the sum of cyclic
and anticyclic permutations of the three nucleons. The total
3N wave function |�〉 is composed of the three Faddeev
components as:

|�〉 = (1 + P )|ψ〉. (2)

The antisymmetry property of |ψ〉 under exchange of the
interacting particles 1 and 2 guarantees that |�〉 is totally
antisymmetric. To solve Eq. (1) in the momentum space we
introduce the 3N basis states in a 3D formalism as (see
Fig. 1):

|pq α〉 ≡ | pq αSαT 〉, (3)

the basis states involve two standard Jacobi momenta p and
q [11], and |α〉 is the spin-isospin parts of the basis states,
where the spin part is defined as:

|αS〉 ≡ |[(s1 s2)s12 s3]SMS〉 ≡ |
(

s12
1

2

)
SMS〉, (4)

and the isospin part |αT 〉 is similar to the spin part. As indicated
in Fig. 1 the angular dependence explicitly appears in the
Jacobi vector variables, whereas in a standard PW approach the
angular dependence leads to two orbital angular-momentum
quantum numbers, i.e., l12 and l3 [11]. It indicates that in the
present 3D formalism there is no coupling between the orbital
angular momenta and the corresponding spin quantum num-
bers. Therefore we couple the spin quantum numbers s12 and s3

to the total spin S and its third component MS as |(s12 s3)SMS〉.
For the isospin quantum numbers similar coupling scheme
leads to the total isospin T ,MT as |(t12 t3)T MT 〉.

To evaluate the transition and the permutation operators we
need the free 3N basis states |p q γ 〉, where

|γ 〉 ≡ |γSγT 〉, |γS〉 ≡ ∣∣ms1ms2 ms3

〉
. (5)

The quantities msi
(i = 1, 2, 3) are the third components of

the spins of the three nucleons. The isospin part of the basis
states |γT 〉 is similar to the spin part. To achieve this aim
when changing the 3N basis states |α 〉 to the free 3N basis

states |γ 〉 we need to calculate the following Clebsch-Gordan
coefficients (see Appendix A):

〈γ |α〉 = gγα ≡ gS
γαgT

γα =
〈
ms1ms2ms3

∣∣∣∣
(

s12
1

2

)
SMS

〉

×
〈
mt1mt2 mt3

∣∣∣∣
(

t12
1

2

)
T MT

〉
. (6)

The introduced basis states are complete and normalized
as: ∑

ξ

∫
d3p

∫
d3q |pq ξ 〉 〈pqξ | = 1, 〈pq ξ | p′q′ξ ′〉

= δ3(p − p′) δ3(q − q′) δξ ξ ′ , (7)

where ξ indicates α and γ quantum number sets. Now we can
represent the Eq. (1) with respect to the basis states that have
been already introduced in Eq. (3):

〈p qα |ψ〉 =
∑
α′

∫
d3p′

∫
d3q ′〈p qα |G0tP |p′ q′α′ 〉

× 〈p′ q′α′|ψ〉. (8)

For evaluating the Eq. (8), we need to evaluate the
matrix elements of 〈p qα|G0tP |p′ q′α′〉, toward this aim, it
is convenient to insert the free 3N completeness relations as:

〈p qα|G0tP |p′ q′α′〉
=

∑
γ

∑
γ ′

〈α|γ 〉〈p q γ |G0tP |p′ q′γ ′〉〈γ ′|α′〉

=
∑
γ,γ ′

gαγ gγ ′α′ 〈p qγ |G0tP |p′ q′γ ′〉. (9)

For evaluating the matrix elements 〈p q γ |G0tP |p′ q′γ ′〉 we
should insert again a free 3N completeness relation between
the between the two-nucleon t matrix and the permutation
operators as:

〈p qγ |G0tP | p′ q′γ ′〉

= 1

E − p2

m
− 3q2

4m

∑
γ ′′

∫
d3p′′

∫
d3q ′′

× 〈p qγ |t |p′′ q′′γ ′′〉〈p′′ q′′γ ′′|P |p′ q′γ ′〉, (10)

where the matrix elements of the two-body t matrix and the
permutation operator P are evaluated separately as:

〈p qγ |t |p′′ q′′γ ′′〉
= δ3(q − q′′) δms3 m′′

s3
δmt3 m′′

t3

〈
pms1ms2mt1mt2

∣∣t(ε)

× ∣∣p′′m′′
s1
m′′

s2
m′′

t1
m′′

t2

〉
, (11)

FIG. 1. Definition of the 3N basis states
in the 3D approach in comparison with the
corresponding basis states in the PW approach.
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〈p′′ q′′γ ′′ |P |p′ q′γ ′〉

= δ3

(
p′′ + 1

2
p′ + 3

4
q′

)
δ3

(
q′′ − p′ + 1

2
q′

)

× δm′′
s1

m′
s2
δm′′

s2
m′

s3
δm′′

s3
m′

s1
δm′′

t1
m′

t2
δm′′

t2
m′

t3
δm′′

t3
m′

t1

+ δ3

(
p′′ + 1

2
p′ − 3

4
q′

)
δ3

(
q′′ + p′ + 1

2
q′

)

× δm′′
s1

m′
s3

δm′′
s2

m′
s1
δm′′

s3
m′

s2
δm′′

t1
m′

t3
δm′′

t2
m′

t1
δm′′

t3
m′

t2
, (12)

where the two-body subsystem energy in the NN t matrix is
ε = E − 3q2

4m
.

In order to evaluate the matrix elements of the permutation
operator P we have used the relation between the Jacobi
momenta in the different 3N systems (312), (231), and (123).
Inserting Eqs. (11) and (12) into Eq. (10) leads to:

〈p qγ |G0tP |p′ q′γ ′〉

= 1

E − p2

m
− 3q2

4m

[
δ3

(
q − p′ + 1

2
q′

)
δms3 m′

s1
δmt3 m′

t1

× 〈
pms1ms2mt1mt2

∣∣t(ε)

∣∣∣∣−1

2
q − q′m′

s2
m′

s3
m′

t2
m′

t3

〉

+ δ3

(
q + p′ + 1

2
q′

)
δms3 m′

s2
δmt3 m′

t2

〈
pms1ms2mt1mt2

∣∣t(ε)

×
∣∣∣∣1

2
q + q′m′

s3
m′

s1
m′

t3
m′

t1

〉 ]
. (13)

Inserting Eq. (13) into Eq. (9) and consequently inserting
into Eq. (8) and integrating over p′ variable yields:

〈p qα|ψ〉 = 1

E − p2

m
− 3q2

4m

∑
γ,γ ′,α′

gαγ gγ ′α′

∫
d3q ′

×
[〈

pms1ms2mt1mt2

∣∣t(ε)

∣∣∣∣−1

2
q − q′m′

s2
m′

s3
m′

t2
m′

t3

〉

× δms3 m′
s1
δmt3 m′

t1

〈
q + 1

2
q′ q′ α′

∣∣∣∣ψ
〉

+ 〈
pms1ms2mt1mt2

∣∣t(ε)

∣∣∣∣1

2
q + q′m′

s3
m′

s1
m′

t3
m′

t1

〉

× δms3 m′
s2

δmt3 m′
t2

〈
−q − 1

2
q′ q′α′

∣∣∣∣ψ
〉]

. (14)

Applying the permutation operator P12 action on the
Faddeev component, the space, and the spin-isospin parts of
the basis states results in:

P12|ψ〉 = −|ψ〉,
P12|p q〉 = |−p q〉,

P12|α〉 = (−)s1+s2−s12 (−)t1+t2−t12 |α〉 = (−)s12+t12 |α〉,
P12|γ 〉 = |ms2ms1ms3 mt2mt1mt3〉, (15)

and consequently the following relations would be concluded:

〈p qα |ψ〉
= −(−)s12+t12〈−p q α |ψ〉, 〈pms1ms2mt1mt2

∣∣t(ε)

× ∣∣p′m′
s1
m′

s2
m′

t1
m′

t2

〉
= 〈

pms1ms2mt1mt2

∣∣t(ε)P12

∣∣−p′m′
s2
m′

s1
m′

t2
m′

t1

〉
. (16)

Therefore, we can rewrite Eq. (14) as:

〈p qα|ψ〉 = 1

E − p2

m
− 3q2

4m

∑
γ,γ ′,α′

gαγ gγ ′α′

∫
d3q ′

×
{〈

pms1ms2mt1mt2

∣∣t(ε)

∣∣∣∣−1

2
q − q′m′

s2
m′

s3
m′

t2
m′

t3

〉

× δms3 m′
s1
δmt3 m′

t1

〈
q + 1

2
q′ q′α′

∣∣∣∣ψ
〉

+ 〈
pms1ms2 mt1mt2

∣∣t(ε)P12

×
∣∣∣∣−1

2
q − q′m′

s1
m′

s3
m′

t1
m′

t3

〉
δms3 m′

s2
δmt3 m′

t2

×[−(−)s
′
12+t ′12 ]

〈
q + 1

2
q′ q′ α′

∣∣∣∣ψ
〉}

= 1

E − p2

m
− 3q2

4m

∑
γ,γ ′,α′

gαγ gγ ′α′ δms3 m′
s1
δmt3 m′

t1

×
∫

d3q ′〈pms1ms2mt1mt2

∣∣t(ε)(1 − P12)

×
∣∣∣∣−1

2
q − q′m′

s2
m′

s3
m′

t2
m′

t3

〉〈
q + 1

2
q′q′α′

∣∣∣∣ψ
〉
.

(17)

The final derivation of Eq. (17) is made by the exchange of
labels m′

s1
,m′

t1
to m′

s2
,m′

t2
and reverse of it in the second term

as well as the following relation;

gγ ′α′ = (−)s
′
12+t ′12

〈
m′

s2
m′

s1
m′

s3

∣∣∣∣
(

s ′
12

1

2

)
S ′M ′

S

〉

×
〈
m′

t2
m′

t1
m′

t3

∣∣∣∣
(

t ′12
1

2

)
T ′M ′

T

〉
. (18)

By introducing the physical representation of the two-body
t matrix follows (see Appendix B);

a〈pms1ms2mt1mt2 |t(ε)|p′m′
s1
m′

s2
m′

t1
m′

t2
〉a

= 〈pms1ms2mt1mt2 |t(ε)(1 − P12)|p′ m′
s1
m′

s2
m′

t1
m′

t2
〉, (19)

the three-dimensional Faddeev integral equations can be
obtained as:

〈p qα|ψ〉 = 1

E − p2

m
− 3q2

4m

∑
γ,γ ′,α′

gαγ gγ ′α′δms3 m′
s1
δmt3 m′

t1

×
∫

d3q ′
a

〈
pms1ms2mt1mt2

∣∣t(ε)

×
∣∣∣∣−1

2
q − q′m′

s2
m′

s3
m′

t2
m′

t3

〉
a

〈
q + 1

2
q′ q′α′

∣∣∣∣ψ
〉
.

(20)
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The Faddeev component 〈p qα|ψ〉 is given as a function of
Jacobi momenta vectors, p and q, and also quantum number
sets, α, as a solution of the spatial three-dimensional integral
equations, Eq. (20). To solve this equation directly and without
employing the PW projections, we have to define a coordinate
system. It is convenient to choose the spin polarization
direction parallel to the z axis and express the momentum
vectors in this coordinate system. By these considerations we
can rewrite Eq. (20) as:

ψα(p q xpq) = 1

E − p2

m
− 3q2

4m

∫ ∞

0
dq ′q ′2

∫ +1

−1
dxq ′

∫ 2π

0
dϕq ′

×
∑
α′

Tαα′(p, π̃, xpπ̃ ; ε)ψα′
(π q ′ xπq ′ ), (21)

where

Tαα′ (p, π̃, xpπ̃ ; ε) =
∑
γ,γ ′

gαγ gγ ′α′ δms3 m′
s1

δmt3 m′
t1

× ta
m′

s2
m′

s3
m′

t2
m′

t3
ms1 ms2 mt1 mt2

(p, π̃, xpπ̃ ; ε), (22)

xpq = xpxq +
√

1 − x2
p

√
1 − x2

q sin(φp − φq),

xpq ′ = xpxq ′ +
√

1 − x2
p

√
1 − x2

q ′ sin(φp − φq ′ ),

xqq ′ = xqxq ′ +
√

1 − x2
q

√
1 − x2

q ′ sin(φq − φq ′),

π̃ =
√

1

4
q2 + q ′2 + qq ′xqq ′ , (23)

xpπ̃ =
1
2qxpq + q ′xpq ′

π̃
,

π =
√

q2 + 1

4
q ′2 + qq ′xqq ′ ,

xπq ′ = qxqq ′ + 1
2q ′

π
.

In a standard PW approach, Eq. (21) is replaced by a set
of an infinite number of coupled two-dimensional integral
equations for the amplitudes with the kernels containing
relatively complicated geometrical expressions:

ψα(p q) = 1

E − p2

m
− 3q2

4m

∫ ∞

0
dq ′q ′2

∫ +1

−1
dxq ′

×
∑
l′′12,α

′

t
s12j12t12

l12l
′′
12

(p, π̃ ; ε)

π̃ l′′12
Gαα′ (q, q ′, xq ′ )

ψα′
(π q ′)
πl′′12

,

(24)

where, as is shown in Fig. 1, the spin space as well as the isospin
parts of the basis states in the PW decomposition are |α〉 ≡
|((l12s12)j12(l3s3)j3)JMJ (t12t3)T MT 〉. Gαα′ (q, q ′, xq ′ ) is com-
posed of Legendre functions, powers of q and q ′, and purely
complicated geometrical quantities like Clebsch-Gordan co-
efficients and 6j symbols. The comparison of Eqs. (21) and
(24) shows that new 3D formalism avoids the highly involved
angular-momentum algebra occurring for the permutations

and additionally it will be more efficient especially for the
three-body forces [30].

B. The 3Nwave function

The representation of the total wave function, Eq. (2), with
respect to the basis states that have been introduced in Eq. (3),
reads as follows:

〈pq α|�〉 = 〈pq α|(1 + P )|ψ〉
= 〈pq α |ψ〉 + 〈pq α |P12P23|ψ〉

+ 〈pq α|P13P23|ψ〉, (25)

where the first Faddeev component

〈pq α|ψ〉 ≡ 3〈pq α |ψ〉 ≡ ψα(p, q) ≡ ψα(p q xpq ), (26)

is given explicitly as a three-dimensional integral equation,
Eq. (21). Here the subscript 3 of the bra basis states stands
for the three-body subsystem (12, 3), which as matter of
convenience, is called subsystem 3. For the second and third
components we need to evaluate the action of the cyclic and
the anticyclic permutation operators P12P23 and P13P23 on the
first component as:

〈pq α|P12P23|ψ〉 ≡ 3〈p q α|P12P23|ψ〉
=

∑
α′

∫
d3p′

∫
d3q ′

3〈p qα|P12P23|p′q′α′〉3

× 3〈p′ q′α′|ψ〉
=

∑
α′

∫
d3p′

∫
d3q ′

3〈p qα|p′ q′α′ 〉1

× 3〈p′ q′ α′|ψ〉, (27)

〈pq α|P13P23|ψ〉 ≡ 3〈p q α|P13P23|ψ〉
=

∑
α′

∫
d3p′

∫
d3q ′

3〈p qα|P13P23|p′ q′α′〉3

× 3〈p′ q′α′|ψ〉
=

∑
α′

∫
d3p′

∫
d3q ′

3〈 p qα|p′ q′α′ 〉2

× 3〈p′ q′α′ |ψ〉,
the space as well as the spin-isospin parts of the coordinate
transformations 3〈|〉1 and 3〈|〉2 can be evaluated as:

3〈p qα|p′ q′α′ 〉1 = 3〈p q|p′ q′ 〉1 3〈α|α′ 〉1

= δ3

(
p′ + 1

2
p + 3

4
q
)

δ3

(
q′ − p + 1

2
q
)

× δMSM ′
S
δSS ′ δMT M ′

T
δT T ′ C∗

S(αS, s
′
23)

×C∗
T (αT , t ′23), (28)

3〈p qα|p′ q′α′ 〉2 = 3〈p q|p′ q′ 〉2 3〈α|α′ 〉2

= δ3

(
p′ + 1

2
p − 3

4
q
)

δ3

(
q′ + p + 1

2
q
)

× δMSM ′
S
δSS ′ δMT M ′

T
δT T ′ C∗∗

S (αS, s
′
31)

×C∗∗
T (αT , t ′31), (29)
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where the spin coefficients C∗
S and C∗∗

S are given as:

C∗
S(αS, s

′
23) = (−)s

′
23+2s1+s2+s3

{
s1 s2 s12

s3 S s ′
23

}
,

(30)

C∗∗
S (αS, s

′
31) = (−)s

′
31+2s2+s3+s1

{
s1 s2 s12

s3 S s ′
31

}
,

and the isospin coefficients C∗
T and C∗∗

T are similar to the
corresponding spin coefficients. By these considerations we
obtain the second and third Faddeev components as:

〈pq α|P12P23|ψ〉 =
∑
s ′

23,t
′
23

C∗
S (αS, s

′
23)C∗

T (αT , t ′23)

×ψα∗
(

−1

2
p − 3

4
q, p − 1

2
q
)

≡
∑
s ′

23,t
′
23

C∗
S(αS, s

′
23) C∗

T (αT , t ′23)

×ψα∗
(π1 π2 xπ1π2 ),

〈p q α|P13P23|ψ〉 =
∑
s ′

31,t
′
31

C∗∗
S (αS, s

′
31)C∗∗

T (αT , t ′31)

×ψα∗∗
(

−1

2
p + 3

4
q,−p − 1

2
q
)

≡
∑
s ′

31,t
′
31

C∗∗
S (αS, s

′
31) C∗∗

T (αT , t ′31)

×ψα∗∗
(�1 �2 x�1�2 ), (31)

where

|α∗〉 =
∣∣∣∣
(

s ′
23

1

2

)
SMS

(
t ′23

1

2

)
T MT

〉
,

π1 =
√

1

4
p2 + 9

16
q2 + 3

4
pq xpq,

π2 =
√

p2 + 1

4
q2 − pqxpq,

xπ1π2 = 1

π1π2

(
−1

2
p2 + 3

8
q2 − 1

2
pqxpq

)
, (32)

|α∗∗〉 =
∣∣∣∣
(

s ′
31

1

2

)
SMS

(
t ′31

1

2

)
T MT

〉
,

�1 =
√

1

4
p2 + 9

16
q2 − 3

4
pq xpq,

�2 =
√

p2 + 1

4
q2 + pqxpq,

x�1�2 = 1

�1�2

(
1

2
p2 − 3

8
q2 − 1

2
pqxpq

)
. (33)

C. Comparison of coupled Faddeev equations
in both 3D and PW schemes

In this section we discuss the number of coupled equations
in both 3D and PW approaches. In a standard PW approach the
infinite set of coupled integral equations, given in Eq. (24), is

TABLE I. The number of PW channels
which compose the Triton wave function when
the NNt matrix acts up to different total two-
nucleon angular momenta jmax

12 . Total isospin is
restricted to T = 1

2 . The number of channels
for jmax

12 = 1, namely Nα = 5, is related to only
positive-parity states.

jmax
12 1 2 3 4 5

Nα 5 18 26 34 42

truncated in the actual calculations at sufficiently high values
of the angular-momentum quantum numbers. If one assumes
that the NN t matrix acts only in very few partial waves then the
number of the coupled equations are correspondingly small. As
shown in Table I, if NN t matrix acts up to jmax

12 = 1, 2, 3, 4,
and 5, then the number of channels will be 5, 18, 26, 34, and
42. This is while the total isospin is restricted to T = 1

2 [31].
In Table II we list all the spin-isospin states which compose

the 3N , i.e., 3H and 3He, wave function and consequently in
Tables III and IV we present the number of spin-isospin states
for the 3N bound states as well as the number of coupled

TABLE II. Quantum numbers of the spin-isospin states that
compose 3H or 3He wave function.

Channel
(
s12

1
2

)
S MS

(
t12

1
2

)
T MT (S − T )

1
(
0 1

2

)
1
2

+1
2

(
0 1

2

)
1
2

+1
2 /−1

2

(
1
2 − 1

2

)
2

(
0 1

2

)
1
2

−1
2

(
0 1

2

)
1
2

+1
2 /−1

2

(
1
2 − 1

2

)
3

(
1 1

2

)
1
2

+1
2

(
0 1

2

)
1
2

+1
2 /−1

2

(
1
2 − 1

2

)
4

(
1 1

2

)
1
2

−1
2

(
0 1

2

)
1
2

+1
2 /−1

2

(
1
2 − 1

2

)
5

(
0 1

2

)
1
2

+1
2

(
1 1

2

)
1
2

+1
2 /−1

2

(
1
2 − 1

2

)
6

(
0 1

2

)
1
2

−1
2

(
1 1

2

)
1
2

+1
2 /−1

2

(
1
2 − 1

2

)
7

(
1 1

2

)
1
2

+1
2

(
1 1

2

)
1
2

+1
2 /−1

2

(
1
2 − 1

2

)
8

(
1 1

2

)
1
2

−1
2

(
1 1

2

)
1
2

+1
2 /−1

2

(
1
2 − 1

2

)
9

(
0 1

2

)
1
2

+1
2

(
1 1

2

)
3
2

+1
2 /−1

2

(
1
2 − 3

2

)
10

(
0 1

2

)
1
2

−1
2

(
1 1

2

)
3
2

+1
2 /−1

2

(
1
2 − 3

2

)
11

(
1 1

2

)
1
2

+1
2

(
1 1

2

)
3
2

+1
2 /−1

2

(
1
2 − 3

2

)
12

(
1 1

2

)
1
2

−1
2

(
1 1

2

)
3
2

+1
2 /−1

2

(
1
2 − 3

2

)
13

(
1 1

2

)
3
2

+3
2

(
0 1

2

)
1
2

+1
2 /−1

2

(
3
2 − 1

2

)
14

(
1 1

2

)
3
2

+1
2

(
0 1

2

)
1
2

+1
2 /−1

2

(
3
2 − 1

2

)
15

(
1 1

2

)
3
2

−1
2

(
0 1

2

)
1
2

+1
2 /−1

2

(
3
2 − 1

2

)
16

(
1 1

2

)
3
2

−3
2

(
0 1

2

)
1
2

+1
2 /−1

2

(
3
2 − 1

2

)
17

(
1 1

2

)
3
2

+3
2

(
1 1

2

)
1
2

+1
2 /−1

2

(
3
2 − 1

2

)
18

(
1 1

2

)
3
2

+1
2

(
1 1

2

)
1
2

+1
2 /−1

2

(
3
2 − 1

2

)
19

(
1 1

2

)
3
2

−1
2

(
1 1

2

)
1
2

+1
2 /−1

2

(
3
2 − 1

2

)
20

(
1 1

2

)
3
2

−3
2

(
1 1

2

)
1
2

+1
2 /−1

2

(
3
2 − 1

2

)
21

(
1 1

2

)
3
2

+3
2

(
1 1

2

)
3
2

+1
2 /−1

2

(
3
2 − 3

2

)
22

(
1 1

2

)
3
2

+1
2

(
1 1

2

)
3
2

+1
2 /−1

2

(
3
2 − 3

2

)
23

(
1 1

2

)
3
2

−1
2

(
1 1

2

)
3
2

+1
2 /−1

2

(
3
2 − 3

2

)
24

(
1 1

2

)
3
2

−3
2

(
1 1

2

)
3
2

+1
2 /−1

2

(
3
2 − 3

2

)
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TABLE III. The number of spin-isospin states for 3N bound sates, i.e., 3H and 3He, in a realistic 3D
formalism. NS and NT are the number of spin and isospin states, respectively.

(s12
1
2 )S MS S = 1

2 S = 3
2 S = 1

2 , 3
2 (t12

1
2 )T MT T = 1

2 T = 3
2 T = 1

2 , 3
2

(0 1
2 ) 1

2
±1
2 2 0 2+0 (0 1

2 ) 1
2

+1
2 /−1

2 1 0 1+0

(1 1
2 ) 1

2
±1
2 2 0 2+0 (1 1

2 ) 1
2

+1
2 /−1

2 1 0 1+0

(1 1
2 ) 3

2
±1
2

±3
2 0 4 0+4 (1 1

2 ) 3
2

+1
2 /−1

2 0 1 0+1

NS 4 4 8 NT 2 1 3

Faddeev equations in realistic 3D formalism presented in this
article. It is clear that MT = +1

2 refers to 3He and MT =
−1
2 refers to 3H. Because the angular-momentum quantum

numbers, i.e., l12, l3, do not appear explicitly in our formalism,
the number of coupled equations that are fixed according
to the spin-isospin states are strongly reduced. This is an
indication that the present formalism automatically considers
all partial waves without any truncation on the space part.
Considering the spin-isospin degrees of freedom for both
3H and 3He states yields the same number of coupled equations
and it leads to 8, 12, 16, and 24 coupled equations for
different combinations of the total spin-isospin states S − T :
( 1

2 − 1
2 ), ( 1

2 − 3
2

∗
), ( 3

2
∗ − 1

2 ) and ( 3
2

∗ − 3
2

∗
), respectively. The

star superscript indicates all the spin or isospin states that
we have taken into account up to a specific value. It is clear
that in the 3D formalism, e.g., for a fully charge dependent
calculation, there are only 24 coupled equations, whereas
in the PW approach after truncation of the Hilbert space
to T = 1

2 there are 42 coupled equations. Therefore our 3D
formalism leads to a small number of coupled equations in
comparison with the very large number of coupled equations in
the truncated PW formalism. However, it should be mentioned
that our formulation leads to coupled equations in three
variables for the amplitudes, whereas the PW formulation
after truncation leads to a finite number of coupled equations
in two variables for the amplitudes. So the 3D formulation
leads to a lesser number of coupled integral equations in three
dimensions and the PW formulations leads to more coupled
integral equations in two dimensions. Thus, the price for the
smaller number of equations is the higher dimensionality of
the integral equations. In other words, algebraic simplification
is achieved by a more involved numerical scheme.

TABLE IV. The number of coupled Faddeev equations for the
3N bound state, i.e., 3H and 3He, in a realistic 3D formalism
according to the spin-isospin states (S − T ). N = NS × NT is the
total number of coupled Faddeev equations. The star superscript
indicates all the spin or isospin states that one can take into account
up to a specific value.

(S − T ) ( 1
2 − 1

2 ) ( 1
2 − 3

2

∗
) ( 3

2

∗ − 1
2 ) ( 3

2

∗ − 3
2

∗
)

NS 4 4 8 8
NT 2 3 2 3
N 8 12 16 24

III. NUMERICAL RESULTS FOR 3H

A. Triton binding energy

To be able to test our realistic 3D formalism for the 3N
bound state we solve the three-dimensional Faddeev integral
equations, Eq. (21). We calculate the triton binding energy
by solving eight coupled Faddeev equations for ( 1

2 − 1
2 )

spin-isospin states and compare our results with the other
PW results. In this respect, we use Bonn one-boson-exchange
(OBE) potential in the parametrization of Bonn-B [31] and
in an operator form that can be incorporated in the 3D
formalism [29]. In the numerical treatment, the dependence
of Faddeev components to the continuous momentum and
the angle variables, should be replaced by a dependence on
certain discrete values. For this purpose we use the Gaussian
quadrature grid points.

The coupled Faddeev equations represent a set of three-
dimensional homogenous integral equations, which after dis-
creatization turns into a huge matrix eigenvalue equation. The
huge matrix eigenvalue equation requires an iterative solution
method. We use a Lanczos-like scheme that is proved to be very
efficient for nuclear few-body problems [32]. The momentum
variables have to cover the interval [0,∞]. In practice we
limit the intervals to suitable cutoffs and their values are
chosen large enough to achieve cut-off independence. The
functional behavior of the kernel of eigenvalue equation is
determined by the anti-symmetrized two-body t matrix. We
also solve the Lippman-Schwinger equation for the fully
off-shell two-body t matrix in an approach based on a helicity
representation directly as a function of the Jacobi vector
variables (see Appendix B). For antisymmetrized two-body
t matrix calculations 40 grid points for the Jacobi momentum
variables, 32 grid points for the spherical angle variables,
and 20 grid points for the polar angle variables have been
used, respectively. Because the coupled integral equations
require a very large number of interpolations, we use the
cubic Hermitian splines of Ref. [33] for its accuracy and high
computational speed.

In Table V we show the convergence of the triton binding
energy as function of the number of the grid points for Bonn-B
potential in the 3D approach. As demonstrated in this table,
the calculation of triton binding energy converges to a value
of Et = −8.152 MeV. The results of the Faddeev equations
with different PW based methods are presented in Table VI to
compare them with our calculations. The overall agreement
is quite satisfactory. As we can see from this comparison
our result provides the same accuracy while the numerical
procedure is actually easier to implement.
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TABLE V. The calculated binding energy
Et of the three-dimensional Faddeev integral
equations as function of the number of the
grid points in the Jacobi momenta Njac and the
spherical angles Nsph. The number of the grid
points in polar angles is 20. The calculations
are based on the Bonn-B potential.

Njac Nsph Et (MeV)

32 20 −8.154
32 24 −8.153
36 20 −8.153
36 24 −8.152
40 20 −8.152
40 24 −8.152

B. Expectation value of the Hamiltonian operator

In this section we investigate the numerical stability of the
presented algorithm and the 3D formalism of the Faddeev
equations. With the binding energy Et and the Faddeev
component |ψ〉 available, we are able to calculate the total
wave function |�〉 from Eq. (2) by considering the choice of
coordinate system that is used in representation of Eq. (21).
So we can evaluate the expectation value of the Hamiltonian
operator H and compare this value to the previously calculated
binding energy of the eigenvalue equation. Explicitly we
evaluate the following expression:

〈�|H |�〉 = 〈�|H0|�〉 + 〈�|V |�〉
= 3 〈ψ |H0|�〉 + 3 〈�|V12|�〉, (34)

TABLE VI. A list of triton binding
energy calculations ordered according to
jmax

12 by different authors using slightly
different numerical methods. All results
for binding energies are related to the total
isospin T = 1

2 .

jmax
12 Ref. Et (MeV)

1
[34] −8.14

[35,36] −8.17
[37] −8.165

[7,38] −8.16
2

[39,40] −8.088
[41] −8.100
[39] −8.101
[37] −8.103

3
[42] −8.14

4
[31,43] −8.13
[7,44] −8.14

where

〈ψ |H0|�〉 =
∑

α

∫
d3p

∫
d3q

∑
α′

∫
d3p′

∫
d3q ′

× 〈ψ |p qα〉〈p qα|H0|p′ q′α′〉〈p′ q′α′|�〉

=
∫ ∞

0
dpp2

∫ ∞

0
dqq2

(
p2

m
+ 3q2

4m

) ∫ +1

−1
dxp

×
∫ 2π

0
dϕp

∫ +1

−1
dxq

∫ 2π

0
dϕq

×
∑

α

ψα(p q xpq) �α(p q xpq), (35)

〈�|V12|�〉 =
∑

α

∫
d3p

∫
d3q

∑
α′

∫
d3p′

∫
d3q ′〈�|p qα〉

× 〈p qα|V12|p′ q′ α′〉〈p′ q′α′|�〉. (36)

As is well known, the rotational, parity, and time-reversal
invariance restricts any NN potential V12 to be formed of six
independent terms [45] as

V12(p, p′) = 〈p|V12|p′〉 =
6∑

i=1

vi(p, p′, xpp′ ) Wi, (37)

here vi(p, p′, xpp′ ) are scalar spin-independent functions,
which depend on the magnitudes of the Jacobi momenta p, p′
and the angle between them, xpp′ ≡ p̂.p̂′, and Wi (i = 1 to 6)
are operators to the spin states of the two-nucleon such that

V12ms1 ms2 m′
s1

m′
s2

(p, p′)

= 〈pms1ms2 |V12|p′m′
s1
m′

s2
〉

=
6∑

i=1

vi(p, p′, xpp′ ) 〈ms1ms2 |Wi |m′
s1
m′

s2
〉, (38)

so the matrix elements of NN potential can be evaluated as:

〈p qα|V12|p′ q′α′〉 = δ3(q − q′)〈αT |V T
12|α′

T 〉〈pαS |V12|p′α′
S〉,
(39)

where V T
12 is the isospin part of the potential, it is unity for the

isospin-independent terms and τ1.τ2 for the isospin-dependent
terms. So it can be easily evaluated as

〈αT |V T
12|α′

T 〉 = TδαT α′
T
,

T =
{

1, isospin-independent terms;

2t2
12 − 3, isospin-dependent terms.

(40)

The spin-space part of the potential can be evaluated as:

〈pαS |V12|p′ α′
S〉 =

∑
γS

∑
γ ′

S

〈αS |γS〉〈γ ′
S |α′

S〉〈pγS |V12|p′γ ′
S〉

=
∑
γS

∑
γ ′

S

gS
αγ gS

α′γ ′ 〈pγS |V12|p′γ ′
S〉
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=
∑
γS

∑
γ ′

S

gS
αγ gS

α′γ ′δms3 m′
s3

× 〈
pms1ms2

∣∣V12

∣∣p′m′
s1
m′

s2

〉
=

∑
γS

∑
γ ′

S

gS
αγ gS

α′γ ′δms3 m′
s3

×V12ms1 ms2 m′
s1

m′
s2

(p, p′), (41)

inserting Eqs. (40) and (41) into Eq. (39) yields:

〈p qα|V12|p′ q′α′〉 = δ3(q − q′)TδαT α′
T

∑
γS

∑
γ ′

S

gS
αγ gS

α′γ ′δms3 m′
s3

×V12ms1 ms2 m′
s1

m′
s2

(p, p′), (42)

by these considerations the expectation value of the NN

potential, Eq. (36), can be rewritten as:

〈�|V12|�〉 =
∑

α

∑
α′

TδαT α′
T

∑
γS

∑
γ ′

S

gS
αγ gS

α′γ ′δms3 m′
s3

×
∫ ∞

0
dpp2

∫ +1

−1
dxp

∫ 2π

0
dϕp

∫ ∞

0
dp′p′2

×
∫ +1

−1
dx ′

p

∫ 2π

0
dϕ′

pV12ms1 ms2 m′
s1

m′
s2

(p,p′,xpp′ )

×
∫ ∞

0
dqq2

∫ +1

−1
dxq

∫ 2π

0
dϕq

×�α(p q xpq) �α′
(p′ q xp′q), (43)

where

xpp′ ≡ p̂.p̂′ = xpxp′ +
√

1 − x2
p

√
1 − x2

p′ sin(φp − φp′ )

and

xp′q ≡ p̂′.q̂ = xp′xq +
√

1 − x2
p′

√
1 − x2

q sin(φp′ − φq).

The expectation values of the kinetic energy 〈H0〉, the two-
body interaction 〈V 〉, and the Hamiltonian operator 〈H 〉 are
listed in Table VII for Bonn-B potential calculated in the 3D
scheme as a function of the number of the grid points in the

TABLE VII. The expectation values of the kinetic energy
〈H0〉, the NN interaction 〈V 〉, and the Hamiltonian operator 〈H 〉
calculated in the 3D scheme as a function of the number of the grid
points in the Jacobi momenta Njac and the spherical angles Nsph

for the triton. The number of the grid points in polar angles is 20.
The calculations are based on the Bonn-B potential. Additionally
the expectation values of the Hamiltonian operator are compared
with the triton binding energy results from the three-dimensional
Faddeev integral equations. All energies are given in MeV.

Njac Nsph 〈H0〉 〈V 〉 〈H 〉 Et

32 20 +39.222 −47.356 −8.134 −8.154
32 24 +39.222 −47.356 −8.134 −8.154
36 20 +39.222 −47.357 −8.135 −8.153
36 24 +39.222 −47.357 −8.135 −8.152
40 20 +39.223 −47.358 −8.135 −8.152
40 24 +39.223 −47.358 −8.135 −8.152

Jacobi momenta Njac and the spherical angles Nsph. In the same
table, the triton binding energies calculated in the 3D scheme
are also shown to compare with the expectation values of the
Hamiltonian operator. One can see that the energy expectation
value and the eigenvalue energies Et agree with good accuracy.

IV. SUMMARY AND OUTLOOK

In this article we have introduced the three-dimensional
Faddeev integral equations for the calculation of the triton
binding energy with the spin-isospin dependent potential. In
comparison with the PW approach, as is commonly used, this
direct approach has greater advantages. The pertinent results
can be summarized as follows:

(i) The 3D formalism leads only to a strictly finite number
of coupled three-dimensional integral equations to be
solved, whereas in the PW case after truncation one
has a set of finite number of coupled equations with
kernels containing relatively complicated geometrical
expressions. So the 3D formalism avoids the highly
involved angular-momentum algebra occurring for the
permutations and also automatically consider all the
partial waves without any truncation on the space part.
However, the 3D formulation leads to a lesser number
of coupled integral equations in three dimensions and
the PW formulations leads to more coupled integral
equations in two dimensions.

(ii) Our result for the triton binding energy with Bonn-B
potential is in good agreement with the pervious values
calculated with the standard PW approach. The stability
of present algorithm and the 3D formalism of Faddeev
components as presented in this article have been
achieved with the calculation of the expectation value
of the Hamiltonian operator and we have reached to
a resonable agreement between the obtained energy
eigenvalue and expectation value of the Hamiltonian
operator. The 3N bound state calculations with AV18
potential is also potentially valuable and the numerical
results with this potential will be reported in the future.

(iii) We predict that the incorporation of three-nucleon force
probably will be less cumbersome in a realistic 3D
approach. This is very promising and nourishes our hope
that four-nucleon bound state formulation and calcula-
tions with realistic two and three-nucleon forces in a
realistic 3D approach will be more easily implemented
than the traditional partial wave based method.

The calculations of three-nucleon bound state, with the
phenomenological Tucson-Melbourne (TM) 2π exchange
three-nucleon potential, and the formulation of the four-
nucleon bound state is currently underway and they will be
reported before long [30].
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APPENDIX A: gγα CLEBSCH-GORDAN COEFFICIENTS

In the usual coupling scheme, for the three identical
particles with spin 1

2 , to completely classify the states of
definite total spin the quantum numbers

|γS〉 ≡ ∣∣s1ms1s2ms2s3ms3

〉 ≡ ∣∣ms1 ms2ms3

〉
, (A1)

are replaced by the set

|αS〉 ≡ ∣∣[(s1 s2)s12 s3]SMS〉 ≡
∣∣∣∣
(

s12
1

2

)
SMS

〉
. (A2)

The 3N basis states |αS〉 can be obtained from free 3N basis
states |γS〉 as:


∣∣(1 1
2

)
3
2 + 3

2

〉 ≡ | ↑↑↑ 〉∣∣(1 1
2

)
3
2 + 1

2

〉 ≡ 1√
3
{| ↓ ↑↑〉 + | ↑↓↑〉 + | ↑↑↓〉}∣∣(1 1

2

)
3
2 − 1

2

〉 ≡ 1√
3
{| ↑↓↓〉 + | ↓↑↓〉 + | ↓↓↑〉}∣∣(1 1

2

)
3
2 − 3

2

〉 ≡ | ↓↓↓〉∣∣(1 1
2

)
1
2 + 1

2

〉 ≡ 1√
6
{| ↑↓↑〉 + | ↑↑↓〉 − 2| ↓ ↑↑〉}∣∣(1 1

2

)
1
2 − 1

2

〉 ≡ 1√
6
{| ↓↑↓〉 + | ↓↓↑〉 − 2| ↑ ↓↓〉}∣∣(0 1

2

)
1
2 + 1

2

〉 ≡ 1√
2
{| ↑↑↓〉 − | ↑↓↑〉}∣∣(0 1

2

)
1
2 − 1

2

〉 ≡ 1√
2
{| ↓↑↓〉 − | ↓↓↑〉}.

(A3)

If one considers all total spin states, i.e., S = 1
2 and

S = 3
2 , the relevant Clebsch-Gordan coefficients gS

γα are

1, 1√
3
, 1√

6
,−

√
2
3 , 1√

2
,− 1√

2
. As indicated in Sec. II C the

isospin states are similar to the spin states, but the third
component of total isospins is restricted to MT = +1

2 for
3He and MT = −1

2 for 3H. Thus for a fully charge-
dependent calculation the necessary isospin coefficients gT

γα

are 1√
3
, 1√

6
,−

√
2
3 , 1√

2
,− 1√

2
. Because in our calculations for

the triton binding energy we consider only the total spin-
isospin states (S − T ) = ( 1

2 − 1
2 ), therefore we only use the

following Clebsch-Gordan coefficients 1√
6
,−

√
2
3 , 1√

2
,− 1√

2
.

APPENDIX B: ANTISYMMETRIZED N NT -MATRIX AND
CONNECTION TO HELICITY REPRESENTATION

In our formulation of the 3N bound state, we need the
physical representation of NNt-matrix or matrix elements
a〈pms1ms2mt1mt2 |t(ε)|p′m′

s1
m′

s2
m′

t1
m′

t2
〉a . The connection of

these matrix elements to those in the momentum-helicity basis
is given in Ref. [46], here we prepare this connection according
to the notation to be used in our work. First, we introduce the
momentum-helicity basis states for the total spin s12 and the
relative momentum p of the two nucleons as:

|p; p̂s12λ〉, (B1)

where λ is the eigenvalue of the helicity operator s12.p̂ . By
introducing parity operator P and the two-nucleon isospin

states |t12mt12〉, the antisymmetrized two-nucleon basis states
are given as:

|p; p̂s12λ; t12〉πa ≡ 1√
2

(1 − ηπ (−)s12+t12 )|t12〉|p; p̂s12λ〉π ,

(B2)

with the parity eigenvalues ηπ = ±1 and eigenstates
|p; p̂s12λ〉π = 1√

2
(1 + ηπP )|p; p̂s12λ〉. Based on these basis

states the NNt-matrix element is defined as:

t
πs12t12
λλ′ (p, p′; ε) ≡πa 〈p; p̂s12λ; t12|t(ε)|p′; p̂′s12λ

′; t12〉πa.

(B3)

As shown in Ref. [46], the selection of p′ parallel to the z

axis allows, together with the properties of the potential, that
the angular dependencies of the NNt-matrix elements can be
simplified as:

t
πs12t12
λλ′ (p, p′; ε) = e−iλ�pp′ t

πs12t12
λλ′ (pn̂pp′ , p′ẑ; ε)

= e−iλ�pp′ eiλ′φpp′ t
πs12t12
λλ′ (p, p′, cos θpp′ ; ε)

≡ ei(λ′φpp′−λ�pp′ )t
πs12t12
λλ′ (p, p′, cos θpp′ ; ε),

(B4)

the direction n̂pp′ can be determined by the spherical and polar
angles ϑpp′ and ϕpp′ , where

cos θpp′ = cos θp cos θp′ + sin θp sin θp′ cos(φp − φp′ ),

sin θpp′eiϕpp′ = − cos θp sin θp′ + sin θp cos θp′ cos(φp − φp′ )

+ i sin θp sin(φp − φp′), (B5)

and the exponential factor ei(λ′φpp′−λ�) is calculated as:

eiλ�pp′ =
∑s12

N=−s12
D

s12
Nλ(φpθp0)Ds12

Nλ′(φp′θp′0)

D
s12
λ′λ(φpp′θpp′ 0)

,

ei(λ′φpp′−λ�pp′ ) =
∑s12

N=−s12
eiN(φp−φp′ )d

s12
Nλ(θp)ds12

Nλ′ (θp′)

d
s12
λ′λ(θpp′)

. (B6)

In the above expressions, D
s12
Nλ(φp θp0) are the

Wigner D functions and d
s12
λ′λ(θ ) are rotation matri-

ces [47]. Finally the connection of the t-matrix ele-
ments a〈pms1ms2mt1mt2 |t(ε)|p′m′

s1
m′

s2
m′

t1
m′

t2
〉a to those in the

momentum-helicity basis, namely t
πs12t12
λλ′ (p, p′; ε), is given as:

a〈pms1ms2mt1mt2 |t(ε)|p′m′
s1
m′

s2
m′

t1
m′

t2
〉a

= 1

4
δmt1 +mt2 ,m′

t1
+m′

t2
e−i(λ0φp−λ′

0φp′ )
∑

s12πt12

(1 − ηπ (−)s12+t12 )

×C

(
1

2

1

2
t12; mt1mt2

)
C

(
1

2

1

2
t ′12; m′

t1
m′

t2

)

×C

(
1

2

1

2
s12; ms1ms2

)
C

(
1

2

1

2
s ′

12; m′
s1
m′

s2

)

×
∑
λλ′

d
s12
λ0λ

(θp)ds12

λ′
0λ

′(θp′ )tπs12t12
λλ′ (p, p′; ε). (B7)

It should be mentioned that t
πs12t12
λλ′ (p, p′, cos θpp′ ; ε) obeys

a set of coupled Lippman-Schwinger equations that for
(S = 0) is a single equation but for (S = 1) is a set of two

064005-9
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coupled equations (Ref. [29]). So the matrix elements of the
antisymmetrized NNt matrix, which explicitly appears in
Eq. (22), is functionally the same as Eq. (B7) and can be
obtained as:

ta
m′

s2
m′

s3
m′

t2
m′

t3
ms1 ms2 mt1 mt2

(p, π̃, xpπ̃ ; ε)

≡a

〈
p ms1ms2mt1mt2

∣∣t(ε)
∣∣πm′

s1
m′

s2
m′

t1
m′

t2

〉
a

= 1

4
δmt1 +mt2 ,m′

t1
+m′

t2
e−i(λ0φp−λ′

0φπ̃ )
∑

s12πt12

(1 − ηπ (−)s12+t12 )

×C

(
1

2

1

2
t12; mt1mt2

)
C

(
1

2

1

2
t ′12; m′

t1
m′

t2

)

×C

(
1

2

1

2
s12; ms1ms2

)
C

(
1

2

1

2
s ′

12; m′
s1
m′

s2

)

×
∑
λλ′

d
s12
λ0λ

(θp)ds12

λ′
0λ

′(θπ̃ )tπs12t12
λλ′ (p, π̃ ; ε), (B8)

with the same variables as Eqs. (B5) and (B6) with π̃ , θπ̃ , φπ̃

instead of p′, θp′ , φp′ .
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[5] P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. C 62, 054311
(2000).

[6] N. Barnea, W. Leidemann, and G. Orlandini, Phys. Rev. C 67,
054003 (2003).

[7] F. Sammarruca, D. P. Xu, and R. Machleidt, Phys. Rev. C 46,
1636 (1992).

[8] Y. Song and R. Machleidt, AIP Conf. Proc. 334, 455 (1995).
[9] A. Stadler, J. Adam, Jr., H. Henning, and P. U. Sauer Phys. Rev.

C 51, 2896 (1995).
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