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We discuss relations and differences between two methods for the construction of unitarily transformed effective
interactions, the Similarity Renormalization Group (SRG) and Unitary Correlation Operator Method (UCOM).
The aim of both methods is to construct a soft phase-shift equivalent effective interaction which is well suited for
many-body calculations in limited model spaces. After contrasting the two conceptual frameworks, we establish
a formal connection between the initial SRG-generator and the static generators of the UCOM transformation.
Furthermore we propose a mapping procedure to extract UCOM correlation functions from the SRG evolution.
We compare the effective interactions resulting from the UCOM-transformation and the SRG-evolution on the
level of matrix elements, in no-core shell model calculations of light nuclei, and in Hartree-Fock calculations
up to 208Pb. Both interactions exhibit very similar convergence properties in light nuclei but show a different
systematic behavior as function of particle number.
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I. INTRODUCTION

In the past few years several methods for the construction of
phase-shift equivalent soft interactions starting from modern
realistic potentials have been proposed and applied. The com-
mon goal of these methods is to adapt realistic QCD-motivated
interactions like the ones extracted from chiral effective
field theory [1,2] or more phenomenological high-precision
potentials like the Argonne V18 [3] to the limited model
spaces typically available in many-body calculations. Apart
from approaches providing effective interactions tailored for a
specific model space, e.g., the Lee-Suzuki transformation [4]
widely used in the ab initio no-core shell model [5,6], there are
several schemes to derive model-space independent effective
interactions, e.g., the Vlowk approach providing a universal
low-momentum interaction [7].

We focus on two alternative schemes, the Unitary Corre-
lation Operator Method (UCOM) [8–10] and the Similarity
Renormalization Group (SRG) [11,12], which both use phase-
shift conserving unitary transformations. The physical picture
behind these two formulations is different: The UCOM starts
out from a coordinate-space representation of the short-range
correlations induced by the central and tensor components of
the realistic nuclear interaction. On this basis ansatze for the
generators of unitary transformations describing central and
tensor correlations are formulated which allow for the explicit
inclusion of these correlations in simple model spaces. The
SRG, on the other hand, aims at the prediagonalization of a
matrix representation of the Hamiltonian in a chosen basis by
means of a renormalization group flow evolution. The resulting
band-diagonal interaction is also well-suited for small model
spaces.

We discuss the formal relations and the practical differences
between these two approaches in detail. After reviewing
the formalism of the SRG and discussing examples for the
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evolution of matrix elements and two-body wave functions
in Sec. II, we put the UCOM approach in perspective. In
Sec. III we discuss the formal connections between SRG
and the generators of the UCOM transformation. Based on
these structural relations, we propose a mapping scheme to
extract UCOM correlation functions from the SRG evolution
in Sec. IV. Following a comparison of matrix elements of the
SRG and UCOM-transformed interactions, we compare their
behavior in different many-body calculations. In Sec. V we
present no-core shell model calculations for 3H and 4He and
Hartree-Fock calculations for closed shell nuclei up to 208Pb
for the different transformed interactions.

II. SIMILARITY RENORMALIZATION GROUP

A. Concept and formalism

The basic idea of the Similarity Renormalization Group
(SRG) approach in the formulation of Wegner [11,12] is to
transform the initial Hamiltonian H of a many-body system
into a diagonal form with respect to a given basis. The
renormalization group flow equation governing the evolution
of the Hamiltonian is of the form

dHα

dα
= [ηα,Hα] , (1)

where α is the flow parameter and Hα the evolved Hamiltonian
with H0 = H . Analogous equations can be formulated for the
operators of all observables one is interested in. In general
terms the anti-hermitian generator ηα of the flow can be written
as

ηα = [diag(Hα),Hα] , (2)

where diag(Hα) refers to the diagonal part of the Hamiltonian
in a given basis. This choice can be understood in intuitive
terms: if the Hamiltonian commutes with its diagonal part
with respect to a given basis, then the generator vanishes and
the evolution has reached a fix point. Apart from trivial cases
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this does only happen if the Hamiltonian is actually diagonal
in the given basis.

Formally one can integrate this flow equation defining a
unitary operator Uα of the transformation

Hα = UαHU †
α. (3)

Due to the nontrivial α-dependence of the generator, the
unitary operator is not simply given by an exponential of the
generator. Nevertheless, from Eqs. (3) and (1) we can construct
a differential equation for the operator Uα ,

dUα

dα
= ηαUα , (4)

with the initial condition U0 = 1, whose formal solution can
be written as a Dyson series. Hence, for a given generator ηα

one either has to solve the flow equation (1) for all operators
of interest or one determines the unitary operator via Eq. (4)
and transforms all operators via Eq. (3).

So far this concept is generic and independent of the
properties of the particular physical system, the Hamiltonian,
or the basis under consideration. If considering an A-body
system, then all the aforementioned relations refer to the
operators in A-body space. One of the consequences is
that even a simple initial Hamiltonian, containing two-body
operators at most, acquires up to A-body terms in the course of
the evolution. For practical applications of the SRG approach
in the nuclear structure context one therefore has to simplify the
scheme by confining the evolution to two or three-body space,
thus discarding higher-order contributions in the evolved
interaction. Furthermore, instead of using the diagonal part
of the Hamiltonian in the definition of the generator, one can
use the operator that defines the eigenbasis with respect to
which the Hamiltonian shall be diagonalized.

A simplified scheme suggested by Szpigel and Perry [13]
and applied by Bogner et al. [14,15] confines the evolution to
two-body space and uses the generator

ηα = [Trel,Hα] =
[

q2

2µ
,Hα

]
, (5)

containing the relative kinetic energy Trel = 1
2µ

q2 in the two-
body system. The square of the two-body relative momentum
operator can be decomposed into a radial and an angular part,

q2 = q2
r + L2

r2
, qr = 1

2

(
q · r

r
+ r

r
· q

)
. (6)

The obvious fix point of the evolution with the explicit
generator (5) is a two-body Hamiltonian Hα that commutes
with q2

r and L2/r2. Hence, in a partial-wave momentum-space
basis |q(LS)JT 〉 this generator drives the matrix elements
〈q(LS)JT | Hα |q ′(L′S)JT 〉 toward a band-diagonal structure
with respect to relative momentum (q, q ′) and orbital angular
momentum (L,L′). Though we will only use this generator in
the following, one should note that there are other physically
motivated choices for ηα . An evident alternative for the
operator q2 is the single-particle Hamiltonian of the harmonic
oscillator.

Starting from an initial two-body Hamiltonian H composed
of relative kinetic energy Trel and two-body interaction V it is

convenient to decompose the SRG-evolved Hamiltonian Hα

in a similar way

Hα = Trel + Vα. (7)

All flow-dependence is absorbed in the SRG-evolved two-
body interaction Vα defined by this relation. Rewriting of the
flow equation (1) using the generator (5) explicitly for the
evolved interaction Vα leads to

dVα

dα
= [ηα, Trel + Vα] = [[Trel, Vα], Trel + Vα]. (8)

Even in this simplified form a direct solution of the operator
equation is far from trivial. For practical applications we
therefore resort to the level of matrix elements. Given the
ansatz (5) for the generator, it is convenient to work in
momentum space. Using the partial-wave momentum-space
basis |q(LS)JT 〉 the flow equation (8) translates into a set of
coupled integro-differential equations for the matrix elements

V (JLL′ST )
α (q, q ′) = 〈q(LS)JT | Vα |q ′(L′S)JT 〉 , (9)

where the projection quantum numbers M and MT have been
omitted for brevity. In a generic form, the resulting evolution
equation reads

d

dα
Vα(q, q ′)

= − 1

(2µ)2
(q2 − q ′2)2 Vα(q, q ′)

+ 1

2µ

∫
dQQ2 (q2 + q ′2 − 2Q2) Vα(q,Q)Vα(Q, q ′).

(10)

For noncoupled partial waves with L = L′ = J , the matrix
elements entering into this equation are simply

Vα(q, q ′) = V (JJJST )
α (q, q ′). (11)

For coupled partial waves with L,L′ = J ± 1, the Vα(q, q ′)
are understood as 2 × 2 matrices of the matrix elements for
the different combinations of the orbital angular momenta L =
J − 1 and L′ = J + 1

Vα(q, q ′) =
V (JLLST )

α (q, q ′) V (JLL′ST )
α (q, q ′)

V (JL′LST )
α (q, q ′) V (JL′L′ST )

α (q, q ′)

 . (12)

Each noncoupled partial wave and each set of coupled partial
waves evolves independently of the other channels of the
interaction. This is a direct consequence of the choice of
the generator—the evolution toward a diagonal in momentum
space is done in an optimal way for each individual partial
wave.

As mentioned earlier, analogous evolution equations have
to be solved for all observables in order to arrive at a
consistent set of effective operators. The evolution of these
operators, e.g., the multipole operators necessary for the
evaluation of transition strengths or the one-body density
operators employed for the computation of the momentum
distribution, is coupled to the evolution of the Hamiltonian
via the generator ηα . Hence we have to solve these evolution
equations simultaneously.
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An alternative approach is to determine the matrix elements
of the unitary operator Uα explicitly by solving Eq. (4).
The evolved matrix elements of all observables can then be
obtained by a simple matrix transformation using the same uni-
tary transformation matrix. In the case of the momentum-space
partial-wave matrix elements of the unitary transformation
operator,

U (JLL′ST )
α (q, q ′) = 〈q(LS)JT | Uα |q ′(L′S)JT 〉 , (13)

the operator equation (4) leads to a coupled set of integro-
differential equations

d

dα
Uα(q, q ′)

= 1

2µ

∫
dQQ2 (q2 − Q2) Vα(q,Q)Uα(Q, q ′), (14)

where we assume that the evolution equation (10) is solved
simultaneously providing the Vα(q, q ′). The generic notation
defined in Eqs. (11) and (12) for noncoupled and coupled par-
tial waves, respectively, applies here as well. This differential
equation provides direct access to the matrix elements of the
unitary operator, which maps the initial operators onto any
particular point of the flow trajectory.

Note that the concept of the SRG discussed so far is inde-
pendent of the particular physical system and the properties
of the Hamiltonian under consideration. The only restriction
concerns the basis with respect to which the Hamiltonian shall
be diagonalized. This is different from the motivation of the
Unitary Correlation Operator Method discussed in the Sec. III.

B. Numerical examples

In order to illustrate the impact of the flow evolution on the
properties of the SRG interaction, we discuss the momentum-
space matrix elements for selected partial waves as well as
the deuteron solution obtained with these matrix elements. We
start out from the Argonne V18 (AV18) potential [3] as an
example for interactions with a strongly repulsive core.

The numerical solution of the evolution equations (10)
and (14) for the matrix elements is straightforward. For
convenience we absorb the mass factors into a rescaled flow
parameter ᾱ = α/(2µ)2 given in units of fm4 and rescaled
interaction matrix elements V̄α(q, q ′) = (2µ) Vα(q, q ′) given
in units of fm. After discretizing the momentum variables,
the coupled set of first-order differential equations can be
solved with standard methods, e.g., an adaptive Runge-Kutta
algorithm. The numerical solution is robust against changes of
the discretization pattern. However, one has to make sure that
the momentum range covered by the grid is sufficiently large
such that the matrix elements of the initial potential are zero
at and beyond the boundaries.

Based on the SRG evolved momentum-space matrix
elements, we can solve the two-body problem in a given
partial wave in momentum space using the same discretized
momentum grid as before. In addition to the bound deuteron
solution we obtain discretized continuum states resulting from
the boundary conditions. The eigenvalues of the two-body
problem provide an additional check for the accuracy of the

numerical scheme. Since in two-body space the evolution
equations (10) correspond to the complete unitary transfor-
mation, the spectrum of the Hamiltonian is preserved. All
energy eigenvalues resulting for any two-body system have
to be independent of α. In our numerical calculation this is
fulfilled to an relative accuracy of better than 10−6. Of course,
the eigenstates obtained for the two-body system do depend
on the flow parameter α. After transformation to coordinate
space, the resulting wave functions provide a direct illustration
of the interaction-induced correlations and their reduction
throughout the SRG evolution.

Figure 1 illustrates the effect of the SRG evolution in the
deuteron channel. The 3D plots in the upper two rows show the
momentum-space matrix elements for the 3S1 and 3S1 − 3D1

partial waves. The plots in the lower row depict the S- and
D-wave component of the radial deuteron wave function in
coordinate representation obtained from the solution of the
two-body problem for the evolved interaction. Each column
of plots corresponds to a different value of the flow parameter
starting from ᾱ = 0 fm4, i.e., the initial AV18 potential, to ᾱ =
0.04 fm4, which is a typical value for the later applications. The
matrix elements clearly show how the flow evolution drives
the matrix toward band-diagonal structure. The initial AV18
matrix elements in the 3S1 channel have large off-diagonal
contributions ranging to very high momentum differences
|q − q ′|. In the course of the SRG evolution, the off-diagonal
matrix elements are suppressed, any high-momentum compo-
nents are concentrated along the diagonal, and the attractive
low-momentum part is enhanced. Similarly, in the 3S1 − 3D1

partial wave, the strong off-diagonal contributions caused by
the tensor interaction are eliminated outside of a band along
the diagonal. Analogous effects are observed in all other partial
waves.

The impact of this prediagonalization in momentum space
on the ground state wave function of the deuteron in coor-
dinate representation (bottom row in Fig. 1) is remarkable.
The two distinct manifestations of short-range correlations—
the suppression of the relative wave function at small inter-
particle distances (as a result of the short-range repulsion)
and the presence of the D-wave admixture (as a result of the
strong tensor interaction)—are gradually eliminated during
the flow evolution. Already for very small flow parameters
α, the structures at the shortest distances, corresponding to
large momenta, are removed. The transformed interaction
Vα for ᾱ >∼ 0.01 fm4 does not generate a correlation hole in
the wave function anymore. With increasing flow parameter,
structures at larger and larger radii and thus smaller and smaller
momenta are suppressed. In this way the D-wave admixture is
systematically eliminated starting from small r . For the flow
parameters ᾱ ≈ 0.04 fm4 the D-wave function consists only of
a weak contribution around r ≈ 2 fm. The quadrupole moment
is conserved despite the elimination of the D-wave component,
since the quadrupole operator itself has to be transformed
and acquires a more complicated structure. Obviously, a
consistent evolution of the Hamiltonian and all observables is
mandatory.

The simple example of the deuteron shows the connection
between off-diagonal contributions of the interaction and cor-
relations in coordinate space, providing a first link between the
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FIG. 1. (Color online) Illustration of the SRG evolution of the momentum-space matrix elements and the deuteron wave function starting
from the Argonne V18 potential. The four columns correspond to different values of the flow parameter: (a) ᾱ = 0 fm4, (b) 0.001 fm4, (c)
0.01 fm4, and (d) 0.04 fm4. The upper two rows depict the matrix elements Vα(q, q ′) for the 3S1 and the 3S1 −3 D1 partial waves, respectively,
in units of MeVfm3. The bottom row shows the radial coordinate-space wave functions φL(r) of the deuteron ground state obtained with the
respective SRG-evolved matrix elements: (blue line) L = 0, (red dashed line) L = 2.

SRG and the Unitary Correlation Operator Method discussed
in the following.

III. UNITARY CORRELATION OPERATOR METHOD

A. Concept and formalism

The idea of the Unitary Correlation Operator Method
(UCOM) [8,16] is to include the most important short-range
correlations induced by realistic nuclear interactions with
an explicit unitary transformation described by a so-called
correlation operator C. This unitary operator can be used
to imprint the short-range correlations onto an uncorrelated
many-body state |�〉, leading to a correlated state

|�̃〉 = C |�〉. (15)

Alternatively, it can be used to define transformed or correlated
operators for all observables of interest. The unitary transfor-
mation of the initial Hamiltonian H leading to the correlated
Hamiltonian H̃ reads

H̃ = C†HC. (16)

In contrast to the SRG approach, we choose an explicit
ansatz for the unitary correlation operator C which is motivated
by physical considerations on the structure of the correlations
induced by realistic nuclear interactions. First of all, we

distinguish the correlations caused by the short-range repul-
sion in the central part of the interaction—so-called central
correlations—and those induced by the tensor part—so-called
tensor correlations. The correlation operator is written as a
product of two unitary operators C� and Cr accounting for
tensor and central correlations, respectively, each formulated
via an exponential ansatz

C = C�Cr = exp

−i
∑
j<k

g�,jk

 exp

−i
∑
j<k

gr,jk

 .

(17)

Explicit expressions for the Hermitian generators g� and gr

are constructed based on the physical mechanism responsible
for the correlations, as discussed in detail in Refs. [8,16].

The central correlations induced by the short-range repul-
sion are revealed through the suppression of the two-body
density at short distances. Pictorially speaking, the interaction
pushes close-by nucleons apart and thus out of the region of
the mutual repulsion. This kind of distance-dependent radial
shift is described by the generator

gr = 1
2 (qrs(r) + s(r)qr ) (18)

with the radial component of the relative momentum operator
defined in Eq. (6). The tensor correlations caused by the tensor
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part of the interaction connect the spin and angular degrees
of freedom and result in the mixing of states with orbital
angular momentum L and L ± 2. This can be created with the
generator

g� = ϑ(r)S12(r, q�)

= ϑ(r) 3
2 ((σ 1 · q�)(σ 2 · r) + (σ 1 · r)(σ 2 · q�)), (19)

where q� = q − qr
r
r
. The strengths and distance-dependencies

of the two transformations are described by the functions s(r)
and ϑ(r) that depend on the potential under consideration. In
general we will amend the generators by projection operators
on two-body spin S and isospin T in order to allow for a
spin-isospin dependence of the unitary transformation.

As for the SRG transformation, the correlated Hamiltonian
will contain irreducible contributions to all particle numbers
up to A even if the initial Hamiltonian contains only two-
body terms. Analogously, we restrict the discussion to two-
body space thus discarding any higher-order contributions
of the cluster expansion of correlated operators. Again, we
decompose the correlated Hamiltonian H̃ into the relative
kinetic energy Trel and the correlated interaction VUCOM

[cf. Eq. (7)]

H̃ = C†HC = Trel + VUCOM. (20)

As one of the benefits of the explicit formulation of the
correlation operator, we can derive an explicit operator form
of the correlated interaction VUCOM as well as analytic
expressions for the transformed matrix elements. We will not
discuss these aspects in detail but refer to Refs. [8–10,16].

B. UCOM from an SRG perspective

One can consider the UCOM generators (18) and (19) also
from an SRG perspective. Though the aforementioned physical
picture originally gave rise to the formulation of the UCOM
[8–10], one can obtain the same operator structures in the
framework of the SRG [15]. We assume an initial interaction
composed of central, spin-orbit and tensor part,

V =
∑

p

vp(r) Op (21)

with Op ∈ {1, (σ 1 · σ 2), (L · S), S12( r
r
, r

r
), ...} ⊗ {1, (τ 1 ·

τ 2)}. By evaluating the commutator (5) explicitly for α = 0
using this operator form we obtain

η0 = i

2
(qrS(r) + S(r)qr ) + i�(r)S12(r, q�). (22)

The operator-valued functions S(r) and �(r) contain the radial
dependencies of the different terms of the interaction

S(r) = − 1

µ

( ∑
p

v′
p(r)Op

)
, �(r) ≡ − 2

µ

vt (r)

r2
. (23)

Thus, the initial SRG generator has the same operator structure
as the UCOM generators gr and g� that were constructed based
on the physical picture of central and tensor correlations [15].

First of all, this formal connection shows that both ap-
proaches address the same physics of short-range correlations,
although starting from quite different backgrounds. Moreover,

it proves that the set of UCOM generators covers the most
relevant terms. Although there are other operators appearing in
the initial interaction, e.g., the spin-orbit operator, they do not
require separate generators—their effect on the correlations is
absorbed in the operator-valued function S(r).

At this point UCOM uses a simplified strategy. The
correlation functions s(r) and ϑ(r) are chosen to depend on
spin S and isospin T only, they do not depend on orbital
and total angular momentum. Formally one could drop this
restriction and work with separate correlation functions for
each partial wave and thus mimic the flexibility of the
SRG generator. In practice this does not seem necessary or
advantageous.

Although there is the direct relation between UCOM and
initial SRG generators, this does not allow us to identify the
UCOM correlation functions directly. In the language of SRG,
a single UCOM transformation encapsulates a whole flow
evolution up to a certain flow parameter α. In order to extract
UCOM correlation functions, we therefore have to solve the
flow equation with the dynamical SRG generator. The initial
SRG generator alone does not provide this information.

C. Correlated two-body states

One aspect of the UCOM formalism of relevance for the
following is the behavior of two-body states under the unitary
transformation. The action of the central correlator Cr on the
relative component |�〉 of a two-body state |�〉 = |�〉 ⊗
|�c.m.〉 can be evaluated directly in coordinate representation

〈r|Cr |�〉 =
√

R′−(r)
R−(r)

r
〈R−(r)|�〉, (24)

where the correlation function R−(r) as well as its inverse
R+(r) are connected to s(r) by the integral equation∫ R±(r)

r

dξ

s(ξ )
= ±1 . (25)

Hence the application of Cr corresponds to a simple coordinate
transformation r 	→ R±(r) with the transformation function
R±(r).

The action of the tensor correlator C� on a relative two-body
state with definite angular momentum |�〉 = |φ(LS)JT 〉 can
also be evaluated explicitly [8,10,16]. States with L = J are
invariant under transformation with the tensor correlation
operator

C� |φ(JS)JT 〉 = |φ(JS)JT 〉. (26)

States with L = J ± 1 acquire an admixture of a component
with L′ = J ∓ 1 with a modified radial dependence

C� |φ(J ± 1, 1)JT 〉 = cos θJ (r) |φ(J ± 1, 1)JT 〉
∓ sin θJ (r) |φ(J ∓ 1, 1)JT 〉, (27)

where

θJ (r) = 3
√

J (J + 1) ϑ(r). (28)

One can easily combine these two transformations obtaining a
closed expression for a correlated two-body state in coordinate
representation.
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IV. UCOM CORRELATORS DERIVED FROM SRG
SOLUTIONS

Based on the elements introduced in Secs. II and III we now
devise a scheme to extract UCOM correlation functions from
an SRG evolution of a given initial interaction. So far, the
UCOM correlation functions have been determined through
a variational calculation in the two-body system using simple
parametrizations of the functions R+(r) and ϑ(r) [16]. The use
of the SRG as a tool to construct UCOM correlation function
has several conceptual advantages as will be discussed later
on. In order to avoid confusion, we note from the outset that
the UCOM transformation using SRG-generated correlation
functions is not equivalent to the SRG transformation.

The scheme for the construction of SRG-generated UCOM
correlation functions consists of three steps: (i) We solve
the SRG evolution equations for a given initial interaction
up to a flow parameter α, obtaining the momentum space
matrix elements Vα(q, q ′) for a certain partial wave. (ii) Using
the evolved matrix elements the two-body problem is solved
leading to a set of coordinate-space wave functions. (iii) The
UCOM correlation functions s(r) and ϑ(r) are determined
such that they map a selected two-body eigenstate of the SRG
evolved interaction onto the corresponding two-body state of
the initial interaction in the respective partial wave. Steps (i)
and (ii) have already been illustrated for the deuteron channel
in Sec. II B. Step (iii) is discussed in the following.

A. Mapping solution

Consider two eigenstates |�(0)〉 and |�(α)〉 with the same
energy eigenvalue resulting from the solution of the two-
body problem for the initial and the SRG-evolved potential,
respectively, in a given coupled or noncoupled partial wave.
We can define a UCOM correlation operator C that maps the
two states onto each other

|�(0)〉 = C |�(α)〉 = C�Cr |�(α)〉. (29)

Based on this formal definition we can derive equations
that determine the correlation functions R−(r) and ϑ(r) that
characterize the correlation operator.

For noncoupled partial waves with L = J only the central
correlator appears. With the two-body solutions

|�(0)〉 = |φ(0)(LS)JT 〉,
(30)|�(α)〉 = |φ(α)(LS)JT 〉,

for the initial and the SRG-evolved interaction, respectively,
we obtain from Eqs. (29) and (24) a relation connecting the
known radial wave functions φ(0)(r) and φ(α)(r) via a yet
unknown correlation function R−(r):

φ(0)(r) = R−(r)

r

√
R′−(r) φ(α)(R−(r)). (31)

Here and in the following we assume real-valued wave
functions. The relation (31) can be viewed as a differential
equation for the correlation function R−(r). After formal

integration we arrive at an implicit integral equation for R−(r)

[R−(r)]3 = 3
∫ r

0
dξ ξ 2 [φ(0)(ξ )]2

[φ(α)(R−(ξ ))]2
, (32)

which can be solved easily in an iterative fashion. We
end up with a discretized representation of the correlation
function R−(r) for the partial wave under consideration. By
construction it maps a selected SRG-evolved two-body state
onto the corresponding initial state. In general, R−(r) will
depend on the pair of states, e.g., the ground states or a pair
of excited states, we have selected. We will show later on that
this dependence is very weak.

For coupled partial waves with L = J − 1 and L′ = J + 1
central and tensor correlators act simultaneously. Using the
two-body eigenstates

|�(0)〉 = ∣∣φ(0)
L (LS)JT

〉 + ∣∣φ(0)
L′ (L′S)JT

〉
,

(33)|�(α)〉 = ∣∣φ(α)
L (LS)JT

〉 + ∣∣φ(α)
L′ (L′S)JT

〉
of the initial interaction and the evolved interaction, re-
spectively, we can extract a unique set of central and
tensor correlation functions. After multiplying the mapping
equation (29) with 〈r(LS)JT | and 〈r(L′S)JT |, respectively,
and using Eqs. (27) and (24), we obtain a system of two
equations(

φ
(0)
L (r)

φ
(0)
L′ (r)

)
= R−(r)

r

√
R′−(r)

(
cos θJ (r) sin θJ (r)

− sin θJ (r) cos θJ (r)

)

×
(

φ
(α)
L (R−(r))

φ
(α)
L′ (R−(r)),

)
(34)

from which the correlation functions R−(r) and ϑ(r) can be
determined.

Since the central correlation function acts on both orbital
components in the same way and since the transformation
matrix in Eq. (34) is unitary, we can determine R−(r) without
knowing ϑ(r). By considering the sum of the squares of the
two orbital components we obtain from Eq. (34) the identity

[
φ

(0)
L (r)

]2 + [
φ

(0)
L′ (r)

]2 = [R−(r)]2

r2
R′

−(r)
([

φ
(α)
L (R−(r))

]2

+ [
φ

(α)
L′ (R−(r))

]2)
. (35)

which corresponds to Eq. (31) for the noncoupled case. The
correlation function R−(r) can then be determined iteratively
from the integral equation

[R−(r)]3 = 3
∫ r

0
dξ ξ 2

[
φ

(0)
L (ξ )

]2 + [
φ

(0)
L′ (ξ )

]2[
φ

(α)
L (R−(ξ ))

]2 + [
φ

(α)
L′ (R−(ξ ))

]2 .

(36)

Once R−(r) is known, the system (34) reduces to a set of
two nonlinear equations for θJ (r) = 3

√
J (J + 1) ϑ(r), which

can be solved numerically for each r . Eventually, we obtain
discretized correlation functions R−(r) and ϑ(r) also for the
coupled partial waves.
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B. SRG-generated correlation functions for the AV18

We use this mapping scheme to determine a set of
correlation functions for the AV18 potential. In line with
the previous applications of the UCOM approach we allow
for different correlation functions in the different spin-isospin
channels. An explicit angular-momentum dependence of the
correlation functions is not included. Therefore, the lowest
partial wave for each spin-isopin channel is used to fix the
correlation functions.

As an example for a noncoupled channel, we discuss the
1S0 partial wave. In this partial wave the potential does not
support a bound state, so all discrete eigenstates correspond
to continuum states with a discretization resulting from the
boundary conditions employed for the numerical solution. The
correlation function R−(r) obtained from Eq. (32) is inverted
numerically in order to provide the correlation function R+(r),
which is used in all subsequent calculations. Figure 2 depicts
the radial wave functions of the lowest eigenstate for different
values of the flow parameter ᾱ as well as the correlation
functions R+(r) resulting from the mapping.

The shape of the correlation functions R+(r) is characteris-
tic and can be understood intuitively in terms of a coordinate
transformation as mentioned in Sec. III C. At short distances
the quantity R+(r) − r , which can be viewed as a radial
shift distance, is positive. Thus, keeping the transformation
(24) in mind, probability amplitude is shifted from small
toward larger relative distances. At some distance, R+(r) − r

changes sign and becomes negative, corresponding to a shift
toward smaller r . The change of sign appears right within
the most attractive region of the potential, i.e., the probability
amplitude is concentrated there. It is worthwhile noting, that
all correlation functions automatically have finite range, which
warrants that initial and transformed potential are phase-shift
equivalent.

0

0.05

0.1

0.15

0.2

0
(r

φ
)

[a
rb

.
un

it
s] (a)

0 1 2 3 4 5 6
r [fm]

0

0.1

0.2

R
+
(r

)
r

[fm
] (b)

FIG. 2. (Color online) Radial wave function φ0(r) and resulting
correlation function R+(r) − r for the 1S0 partial wave for different
flow parameters: ᾱ = 0.02 fm4 (blue line), 0.04 fm4 (red dashed line),
0.06 fm4 (green dot-dashed line), 0.08 fm4 (violet dotted line). The
thin solid curve in panel (a) shows the corresponding wave function
for the initial potential used for the mapping.

For the different SRG parameters ᾱ used in Fig. 2 the
short-range part of the correlation function R+(r) does not
change. These short-range and high-momentum correlations
are removed in the initial stages of the SRG evolution and
are unaffected by the further evolution (also see Fig. 1). Only
the long-range part of the correlation functions depends on
the flow parameter—with increasing ᾱ correlations of longer
and longer range are removed through the SRG transformation
leading to correlation functions of increasing range. Thus, the
SRG parameter ᾱ and the range of the UCOM correlation
functions are directly connected.

As an example for a coupled channel, we consider the
3S1 − 3D1 partial waves and the two-body ground state of
the deuteron. From the S and D-wave component of the
wave function the central and tensor correlation functions
are extracted by solving Eq. (34). The input wave functions
and the resulting correlation functions R+(r) and ϑ(r) are
depicted in Fig. 3. The central correlation functions show
the same structure as in the 1S0 channel with a short-range
component independent of the flow parameter. The tensor
correlation functions ϑ(r) also exhibit positive and negative
contributions, with a dominant positive section at short ranges.
The dependence on ᾱ is stronger than for the central correlation
function. With increasing ᾱ the decreasing slope of ϑ(r) as a
whole is shifted toward larger r which also effects the behavior
around r ≈ 1 fm. The tensor correlations do not show the clear
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FIG. 3. (Color online) Radial wave functions of the S and D-wave
component, φ0(r) and φ2(r) and resulting central correlation function
R+(r) − r as well as the tensor correlation function ϑ(r) for the
3S1 − 3D1 partial waves for different flow parameters: ᾱ = 0.02 fm4

(blue line), 0.04 fm4 (red dashed line), 0.06 fm4 (green dot-dashed
line), 0.08 fm4 (violet dotted line). The thin solid curve in panel (a)
shows the corresponding wave functions for the initial potential used
for the mapping.
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FIG. 4. (Color online) Central correlation functions R+(r) − r

derived from the ground state (blue line), the second (red dashed
line), the fourth (green dot-dashed line), and the sixth excited states
(violet dotted line) in the 1S0 partial wave for the flow parameter
ᾱ = 0.04 fm4. The correlation functions are plotted only up to the
position of the first zero of the radial wave functions.

separation of short- and long-range effects that was observed
for the central correlations.

So far, only the two-body ground state for the given partial
wave has been used to extract the correlation functions. In
principle, any other state of the two-body spectrum can be used
as well. It is therefore important to check the sensitivity of the
resulting correlation functions on the choice of the eigenstate.
In Fig. 4 we report the correlation functions R+(r) extracted
from four different 1S0 eigenstates spanning a range of two-
body energies from 0 to 20 MeV. The correlation functions are
surprisingly stable in this energy range, showing only a slight
tendency toward longer-ranged correlators for larger excitation
energies. The same holds true for the other partial waves and
the tensor correlation functions. This is another indication that
the generator of the UCOM method encapsulates the relevant
physics of short-range correlations in a simple explicit operator
transformation. In the following we will always use the lowest
state of the two-body spectrum to fix the UCOM correlation
functions.

This construction can be repeated for each partial wave
leading to a different set of correlation functions for each
combination of angular momenta, spin, and isospin. In the
standard UCOM framework we restrict ourselves to a set of
correlation functions depending on spin and isospin alone,
i.e., there are four different central correlation functions R+(r)
for the different combinations of S = 0, 1 and T = 0, 1 and
two different tensor correlation functions ϑ(r) for S = 1 and
T = 0, 1. They are determined from a mapping in the lowest
partial wave for each S and T . As a result of this restriction
the UCOM transformation is not specifically optimized for the
higher partial waves. However, since the centrifugal barrier
suppresses the short-range part of the relative wave functions
in higher partial waves, the impact of short-range correlations
is reduced in any case. Eventually, any residual correlations
not covered explicitly by the UCOM transformation have to be
described by the many-body method, which uses the UCOM
interactions as input.

C. Comparison with variationally-optimized correlators

The set of SRG-generated UCOM correlation functions
can be compared to the correlation functions used in previous
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FIG. 5. (Color online) Central correlation functions R+(r) − r

for different spin and isospin channels obtained from an energy
minimization (blue line) and from the SRG-mapping (red dashed
line).

UCOM calculations. Those were extracted within a variational
scheme using simple parametrizations of the correlation func-
tions R+(r) and ϑ(r), whose parameters were determined from
a minimization of a single momentum space matrix element
of the correlated interaction—the diagonal q = q ′ = 0 matrix
element. In this approach the tensor correlation functions are
subject to a constraint on the range defined via the volume
integral

Iϑ =
∫

dr r2ϑ(r) (37)

in order to isolate the short-range component of the two-body
correlations. A detailed discussion of this scheme including
the parametrizations and optimal parameters can be found in
Ref. [16]. There is a correspondence between the range param-
eter Iϑ and the flow parameter α. Both define the separation
scale between short-range and long-range correlations, where
the short range component is eliminated by the UCOM or
SRG-transformation. For the variationally optimized correla-
tors this separation scale is mainly determined by the range
of the tensor correlators, which is controlled directly via the
integral constraint Iϑ .

In Figs. 5 and 6 the central and tensor correlation functions,
respectively, resulting from energy minimization and the
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r [fm]
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0.04
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(a) T = 0

0 1 2 3 4
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(b) T = 1

FIG. 6. (Color online) Tensor correlation functions ϑ(r) obtained
from an energy minimization (blue line) and from the SRG-mapping
(red dashed line).
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(a) VAV18 (b) VSRG (c) VUCOM(SRG gen.) (d) VUCOM(var. opt.)

FIG. 7. (Color online) Momentum-space matrix elements 〈q(LS)JT | ◦ |q ′(L′S)JT 〉 (in units of MeV fm3) for the 1S0 partial wave obtained
from (a) the initial AV18 potential, (b) the SRG-evolved interaction (ᾱ = 0.03 fm4), (c) the UCOM-transformed interaction using the SRG-
generated correlators (ᾱ = 0.04 fm4), and (d) the UCOM-transformed interaction using the variationally optimized correlators.

SRG-mapping are compared. The range constraint Iϑ,even =
0.09 fm3 and the flow parameter ᾱ = 0.04 fm4, respectively,
are chosen such that the binding energy of 4He resulting
from a converged no-core shell model calculation is in
agreement with experiment (cf. Sec. V A). In the dominant
even channels the short-range behavior of the correlation
functions R+(r) agrees very well, as depicted in Fig. 5.
The long-range behavior of the SRG-generated correlators is
dominated by the negative section in R+(r) − r , which was
not considered in the parametrizations used for the previous
determination. For the triplet-even tensor correlator, the shape
of the correlation functions is slightly different, but the gross
behavior agrees, as seen from Fig. 6. The deviations in the
singlet-odd channel result from an additional range-constraint
imposed for the variational construction of R+(r), since the
interaction is purely repulsive in this channel. In the triplet-odd
channel the tensor correlation function was switched-off for
the variational determination, i.e., Iϑ,odd = 0 fm3, which also
induces a different central correlation function.

Aside from these small quantitative differences, the SRG-
mapping is conceptionally superior to the variational con-
struction. There is a single well-defined parameter, the flow
parameter ᾱ, that unambiguously spans a family of correlation
functions. For the variational optimization, one always has
the freedom to choose different parametrizations and different
ways to constrain the correlator ranges, which complicates a
consistent and unambiguous treatment.

D. Comparison of matrix elements

It is important to realize that the UCOM-transformation
using SRG-generated correlators is not equivalent to a direct
SRG-evolution. For the construction of the UCOM correlators
only a single eigenstate from the low-energy part of the two-
body spectrum of the SRG-evolved interaction is used. This
contains the essential information on the decoupling of low-
momentum from high-momentum modes. However, this does
not guarantee a decoupling among high-momentum modes.

This difference is illustrated in Fig. 7 using momentum-
space matrix elements 〈q(LS)JT | ◦ |q ′(L′S)JT 〉 for the 1S0

partial wave. Here and in the following comparisons of
SRG-evolved and UCOM-transformed interactions we fix
the parameters such that the 4He binding energy obtained
in the no-core shell model for each of the transformed

interactions is in agreement with experiment. For the SRG-
evolved interaction this leads to ᾱ = 0.03 fm4, for UCOM
with SRG-generated correlators we obtain ᾱ = 0.04 fm4, and
for UCOM with variationally optimized correlators we use
Iϑ,even = 0.09 fm3. The momentum-space matrix elements of
the UCOM-transformed interaction are computed using the
analytic form discussed in [16].

In comparison to the initial AV18 interaction, all the
unitarily transformed interactions exhibit a strong reduction
of the off-diagonal matrix elements and an enhancement of
the low-momentum sector. In the high-momentum regime,
the SRG-evolved interaction by construction shows a narrow
band-diagonal structure, i.e., the decoupling is effective at all
momenta. The UCOM-transformed interactions for both, the
SRG-generated correlators and the ones determined variation-
ally, exhibit larger off-diagonal contributions connecting dif-
ferent high-momentum states. The SRG-generated correlators
lead to a broad band of non-vanishing matrix elements along
the diagonal at high momenta—much broader than for the
SRG-evolved interaction.

The difference is even more pronounced when going from
momentum-space to the harmonic oscillator basis that will
be used for the following many-body calculations. In Fig. 8
we present the relative harmonic-oscillator matrix elements
〈n(LS)JT | ◦ |n′(L′S)JT 〉 for the same 1S0 partial wave
and the same interactions. The UCOM matrix elements are
computed directly in the harmonic oscillator basis following
Ref. [16], whereas the SRG matrix elements result from an
evolution in momentum space and a subsequent transformation
into the oscillator basis. Although the SRG-evolution is
tailored for a prediagonalization in momentum space, the
harmonic oscillator matrix elements also show a narrow
band-diagonal structure for all radial quantum numbers n.
The UCOM-transformed interactions have more off-diagonal
contributions at large n and thus a stronger coupling between
high-lying states. However, the behavior at small n and the
decoupling of states with small n from those with large n is
very similar.

The matrix elements show that UCOM is as efficient as SRG
in decoupling low- and high-lying states, but has a different
structure in the high-q or large-n regime. The former is most
relevant for the convergence properties of the interaction,
the latter influences the behavior when going to heavier
systems.
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(a) VAV18 (b) VSRG (c) VUCOM(SRG gen.) (d) VUCOM(var. opt.)

FIG. 8. (Color online) Relative harmonic-oscillator matrix elements 〈n(LS)JT | ◦ |n′(L′S)JT 〉 (in units of MeV) for an oscillator frequency
h̄� = 20 MeV in the 1S0 partial wave obtained with the same interactions as in Fig. 7.

V. FEW- AND MANY-BODY CALCULATIONS

As a first application and test of the SRG-generated UCOM
correlators we discuss No-Core Shell Model (NCSM) calcu-
lations for the ground states of 3H and 4He and Hartree-Fock
calculations for heavier closed-shell nuclei. These calculations
shed light on the similarities of and differences between
SRG and UCOM-transformed interactions relevant for nuclear
structure.

A. No-core shell model for 3H and 4He

For light nuclei the NCSM provides detailed insight into
the convergence behavior of the different interactions and
thus allows to disentangle the effects of short- and long-range
correlations. For a given Nmaxh̄� model space of the NCSM we
diagonalize the translationally invariant many-body Hamilto-
nian consisting of intrinsic kinetic energy and two-body SRG-
or UCOM-transformed interaction directly. No additional
Lee-Suzuki transformation is employed. All calculations were
performed with the Jacobi-coordinate NCSM code of Navrátil
[17].

We will use only the two-body terms of the transformed
interactions in these calculations and discard three-body and
higher-order contributions that are inevitably generated by the
unitary transformation. We are thus treating the transformed

two-body terms as a new realistic interaction, which is
phase-shift equivalent to the initial AV18 potential. The
energy eigenvalues obtained with these two-body interactions
in a many-body system are different from the eigenvalues
of the initial potential—only if all many-body terms of
the transformed Hamiltonian were included, unitarity would
guarantee invariance of the eigenvalues. As pointed out in
Refs. [16,18,19] we can use this fact to choose a unitary
transformation that requires minimal many-body forces for the
description of the ground-state energy of a selected nucleus.
For the following discussion we fix the parameter controlling
the SRG or UCOM-transformation such that the converged
NCSM ground-state energy of 4He is in agreement with
experiment, i.e., we minimize the contribution of three- and
four-body interactions to the 4He ground-state energy. As men-
tioned earlier, this condition is fulfilled for the SRG-evolved
potential with ᾱ = 0.03 fm4 [20], the UCOM-transformed
potential using the SRG-generated correlation functions with
ᾱ = 0.04 fm4, and the UCOM-transformed potential using the
variationally optimized correlation functions with Iϑ,even =
0.09 fm3.

In Figs. 9 and 10 we present the ground-state energies
of 3H and 4He, respectively, as function of the oscillator
frequency h̄� for different model space sizes Nmax. First
of all, the systematics of the Nmax-dependence reveals the
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FIG. 9. (Color online) Convergence behavior of the ground-state energy of 3H obtained in no-core shell model calculations as function of h̄�

for different potentials. The various curves correspond to different Nmaxh̄� model spaces in the range Nmax = 6, 12, 18, . . . , 48 as indicated by
the labels. The different potentials are (a) untransformed AV18 potential (note the different energy scale). (b) SRG-evolved AV18 potential for
ᾱ = 0.03 fm4. (c) UCOM-transformed AV18 potential using the SRG-generated correlators for ᾱ = 0.04 fm4. (d) UCOM-transformed AV18
potential using the standard correlators constructed by energy minimization. The dashed horizontal line indicates the experimental ground-state
energy.
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FIG. 10. (Color online) Convergence behavior of the ground-state energy of 4He obtained in no-core shell model calculations as function
of h̄� for different potentials. The various curves correspond to different Nmaxh̄� model spaces in the range Nmax = 0, 2, 4,..., 16 as indicated
by the labels. The different potentials are as described in Fig. 9.

huge difference in the convergence behavior of the initial
AV18 interaction and the different transformed interactions
(note the different energy scales). The transformed interactions
lead to a self-bound ground state within a 0h̄� model space
already. For 4He the 0h̄� space consists of a single Slater
determinant which cannot describe any correlations. Thus
the large change of the 0h̄� energy proves that the unitary
transformations have eliminated the components of the AV18
interaction that induce short-range correlations in the many-
body states. These are the components that generate large
matrix elements far-off the diagonal which couple low-lying
and high-lying basis states. The residual correlations resulting
from near-diagonal matrix elements can be described in model
spaces of moderate size. Hence the transformed interactions
show a rapid convergence—for 4He at Nmax >∼ 10—where the
initial AV18 is still far from the converged result.

The comparison of the results obtained with the three
transformed interactions reveals a few subtle but important
differences. The convergence properties of the SRG-evolved
interaction and the UCOM-transformed interaction for the
SRG-generated correlators, shown in Figs. 9(b) and 9(c) and
in Figs. 10(b) and 10(c), is very similar. Both exhibit a very
regular convergence pattern. As function of the oscillator
frequency there is a single minimum, which flattens rapidly
with increasing Nmax leading to a converged ground-state
energy which is constant over an extended range of frequencies
h̄�. These similarities indicate that the obvious differences of
the matrix elements in the high-q or large-n sector, as discussed
in Sec. IV D, are irrelevant for the convergence in light nuclei.

The two UCOM-transformed interactions, using the SRG-
generated and the variationally optimized correlation func-
tions, respectively, show slightly different convergence pat-
terns as seen in Figs. 9(c) and 9(d) and in Figs. 10(c) and
10(d). Overall, the SRG-generated correlators lead to lower
energies in small model spaces and to a faster and more
regular convergence. For 3H in particular, the variationally
optimized correlators develop a double-minimum structure for
model spaces around Nmax = 24, which disturbs the smooth
convergence. Eventually, at large Nmax the minimum shifts to
large values of h̄�. The appearance of the second minimum
indicates that the correlation functions do not describe certain
features of the interparticle correlation properly. The NCSM

corrects for these deficiencies as soon as the model space
is sufficiently large to resolve the relevant length scales. If
the defects are well localized with respect to the interparticle
distance, then huge model spaces are required to resolve
them. The fact that the SRG-generated correlators work much
better, can be traced back to the negative sections in the
correlation functions R+(r) − r , which pull in probability
amplitude from larger interparticle distances into the attractive
region of the interaction. This localized modification of the
two-body density can be described in the NCSM only with
large model spaces, leading to a change in the convergence
pattern.

B. Hartree-Fock for heavier nuclei

In order to highlight the differences among the trans-
formed interactions emerging in heavier nuclei, we present
simple Hartree-Fock (HF) calculations for selected nuclei
with closed j -shells throughout the nuclear chart. We use
the HF implementation discussed in detail in Ref. [21] based
on the intrinsic Hamiltonian Hint = T − Tc.m. + V including
all charge dependent and electromagnetic terms of the SRG-
and UCOM-transformed AV18 potential. The single-particle
states are expanded in the harmonic oscillator basis with an
oscillator parameter selected via a minimization of the HF
energy. All calculations were performed with a basis including
13 major oscillator shells which warrants convergence of the
HF ground-state energies.

Of course, the HF many-body state, being a Slater de-
terminant, cannot describe any correlations by itself. Thus
compared to the NCSM calculation in the previous section,
HF can only provide results at the level of a 0h̄� space. The
energy gain observed in the NCSM by increasing the size of
the model space resulting from residual correlations cannot
be obtained in HF. To recover the effect of these residual
correlations, extensions beyond HF, e.g., in the framework
of many-body perturbation theory, have to be considered.
Nonetheless, the HF solution provides valuable information
on the systematics of ground-state energies and rms radii. For
the following conclusions we solely rely on the fact that the
HF energies provide a variational upper bound for the exact
ground-state energies and that residual correlations, in the case
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FIG. 11. (Color online) Hartree-Fock ground-state energies per
particle and charge radii obtained with the SRG-evolved AV18 poten-
tial (blue circle), the UCOM-transformed AV18 using SRG-generated
correlators (red square), and the UCOM-transformed interaction
using the variationally optimized correlators (green diamond). The
parameters of all transformed interactions are the same as in the
NCSM calculations. Experimental data are represented by black
bars [22,23].

of the UCOM interactions, change the binding energies per
particle by an almost constant amount [21].

In Fig. 11 we summarize the HF results for ground-
state energies and charge rms radii for a range of nuclei
from 4He to 208Pb. We use the same transformed inter-
actions as for the NCSM calculations: the SRG-evolved
interaction (ᾱ = 0.03 fm4), the UCOM-transformed interac-
tion using SRG-generated correlators (ᾱ = 0.04 fm4), and the
UCOM-tranformed interaction using variationally optimized
correlators (Iϑ,even = 0.09 fm3), all derived from the AV18
potential.

A systematic difference is observed between the SRG-
evolved and the UCOM-transformed interactions. In the case
of the UCOM-transformed interactions, the energies per
nucleon are almost constant as function of mass number A.
They resemble the systematics of the experimental binding
energies up to a constant energy shift. The inclusion of the
effect of residual correlations on the energy, e.g., by means of
many-body perturbation theory, will shift the HF energies right
into the region of the experimental data as was demonstrated
in Ref. [21] for the UCOM interaction with variationally
optimized correlators. In contrast, the SRG-evolved interaction
shows a systematic linear increase of the binding energy
per nucleon with A [20], leading to a dramatic overbinding
for heavier nuclei already on the HF level. The inclusion
of correlations beyond HF will lead to even more drastic
deviations.

The charge radii also reflect this difference. The SRG-
evolved interaction predicts very small charge radii for heavy
nuclei, for 208Pb its about 1.8 fm smaller than the experimental
value. The two UCOM-transformed interactions generate radii
which are also too small, but much closer to the experimental
values. It is interesting to note that the difference in the radii
predicted with the UCOM interactions is rather large, those
obtained with the SRG-generated correlators are significantly
closer to experiment.

One can interpret the different systematics in terms of the
impact of three-body interactions which have been omitted
here. For the SRG-transformed interaction there is a clear
need for a strongly repulsive three-body interaction. Given the
huge effect on binding energies and charge radii the structure
of the states will be changed completely by the additional
three-body force. For the UCOM-transformed interactions a
supplementary three-body force will have a much smaller
effect. One might expect a small correction to the systematics
of the charge radii due to three-body forces, for the energies
the systematics is already reproduced by the two-body force.

VI. CONCLUSIONS

The Unitary Correlation Operator Method and the Sim-
ilarity Renormalization Group are two methods to tackle
short-range correlations in the nuclear many-body problem by
means of unitary transformations. Though both methods start
from a different conceptual background—coordinate-space
picture of short-range correlations and pre-diagonalization
via a flow evolution, respectively—both lead to a decoupling
of low-momentum and high-momentum modes. Moreover,
there are certain formal connections, e.g., regarding the initial
structure of the generators, and we have shown how to
use the SRG-scheme to construct correlation functions for
the UCOM transformation by means of a mapping of two-
body eigenstates. These SRG-generated UCOM correlation
functions provide an alternative to the previous correlation
functions obtained by a variational procedure and will be
explored further.

The resulting phase-shift equivalent effective interactions
show similarities but also differences. Because of the de-
coupling of low-q or small-n states from high-q or large-n
states, both the SRG-evolved and the UCOM-transformed
interactions lead to a rapid convergence of NCSM calculations
for light nuclei. However, the behavior of matrix elements
in the high-q or large-n sector is quite different. The SRG-
evolution causes a pre-diagonalization at all momentum scales,
i.e. it also leads to a decoupling among the high-q or
large-n states. The UCOM-transformed interaction generates
a stronger coupling among high-lying states, i.e., the prediag-
onalization in the high-q or large-n regime is not as perfect.
This difference, together with the independence of the UCOM
transformation on angular momentum, seems crucial when
going to heavier systems. Simple HF calculations with a pure
two-body UCOM-transformed and SRG-evolved interactions
reveal a different systematic behavior of the binding energies
as function of mass number. The SRG-interactions lead to a
systematic overbinding for heavier nuclei already at the HF
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level, whereas the UCOM-transformed interaction result in a
constant energy per particle. From this observation one might
conclude that three-body interactions have to have a large
effect in the SRG scheme, whereas their impact in the UCOM
framework is much smaller.
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