
PHYSICAL REVIEW C 77, 064002 (2008)

Parity-violating nucleon-nucleon interaction from different approaches
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Two-pion exchange parity-violating nucleon-nucleon interactions from recent effective field theories and
earlier fully covariant approaches are investigated. The potentials are compared with the goal of obtaining better
insight into the role of low-energy constants appearing in the effective field theory approach and its convergence
in terms of a perturbative series. The results are illustrated by considering the longitudinal asymmetry of polarized
protons scattering off protons, �p + p → p + p, and the asymmetry of the photon emission in radiative capture
of polarized neutrons by protons, �n + p → d + γ .
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I. INTRODUCTION

Effective field theory (EFT) underlies most recent de-
velopments in the domain of the nucleon-nucleon (NN )
strong interaction [1–4]. The approach is mainly motivated
by the fact that a large part of the short-range interaction is
essentially unknown. Its detailed description may not be really
relevant at low energy and a schematic one, represented by
contact interactions with low-energy constants (LECs), could
be sufficient. Moreover, such an approach could account for
important properties in relation to QCD dynamics (i.e., chiral
symmetry). Implementing these properties can be done with
chiral perturbation theory [5]. One is thus led to distinguish
contributions at different orders. Beyond the one-pion ex-
change (OPE), which appears at leading order (LO), two-pion
exchange (TPE), which is relevant at next-to-next-to-leading
order (NNLO), has been considered.1 Higher order terms are
also considered, contributing to a successful description of the
strong interaction.

Naturally, the EFT approach has been applied to the
weak, parity-violating (PV) NN interaction [6], superposing
on earlier phenomenological works in the 1970s [7–9] a
systematic perturbation scheme in terms of an expansion pa-
rameter characterizing the theory. Thus, a one-pion-exchange
contribution appears at LO whereas the two-pion-exchange
contribution is part of those at NNLO. It was claimed that
effects from the TPE contribution could be potentially large.
Estimates have been made for various observables [10,11] and,
although they do not contradict this expectation, they have
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1There are different conventions to denote orders. We use the one
in agreement with what has been used in the parity-violating case.

evidenced a large range of uncertainty [10]. This points to
the role of a contact term present in the operators, which has to
be completed in any case by a LEC contribution and cannot be
therefore considered as physically relevant by itself. The PV
TPE contribution was considered in the 1970s in several works,
starting from a covariant formalism and based on Feynman
diagrams [12] or dispersion relations [13–15]. Originally, these
works were motivated by the expectation that the TPE could
play a role in the PV case as important as in the strong
interaction one, but this was actually disproved by the studies.
A similar motivation has recently been addressed within
the EFT approach with some attention to the contribution
involving the � excitation [16] (see also Refs. [17,18] with
regard to this last respect). Interestingly, the TPE contribution
in various processes turned out to be well determined but rather
small [13,15,19] and, in particular, unessential in comparison
with other uncertainties (PV couplings constants, nuclear-
structure description, etc.). This last feature largely explains
its omission in later works. In view of different conclusions,
we believe that a comparison of both the recent and earlier
works is useful. Some preliminary results were presented in
Ref. [20].

These studies could be relevant because, in contrast to
the strong interaction, it is not possible to determine at
present the LECs owing to the lack of sufficient and accurate
enough experimental data. On the one hand, they could tell
us about the role of contact interactions in making the two
approaches as close as possible. The contributions of these
contact interactions can be ascribed to the LEC or the “finite”
range part, depending on the subtraction scheme. On the other
hand, they could provide information on the convergence of the
perturbative expansion of the potential in the EFT approach,
which is limited to NNLO so far. In the field of the strong
NN interaction [21] or weak semi-leptonic interactions [22],
there are hints for non-negligible corrections.

The plan of this paper is as follows. In Sec. II, results
relative to the TPE contribution from a covariant approach are
recalled (isovector part). All components of this interaction
and their convergence properties in particular are discussed.
Section III is devoted to results in the EFT approach, completed
by those obtained from the contribution of time-ordered
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diagrams as a check. In Sec. IV, we examine similarities and
differences between results of these approaches and those from
an expansion of the covariant one at the lowest nonzero order in
the inverse of the nucleon mass, 1/M . A numerical comparison
concerning a few aspects of potentials so obtained is given in
Sec. V. Estimates of the effects in two selected processes,
proton-proton scattering and radiative neutron-proton capture
at thermal energy, are finally given in Sec. VI. These two
processes allow one to illustrate the two types of PV effects
that are expected from the TPE interaction at low energy.
Section VII contains the conclusion. This is completed by
appendices concerning the removing of the iterated OPE and
the EFT approach.

II. TWO-PION EXCHANGE FROM A COVARIANT
FORMALISM

We consider here the isovector PV TPE contribution to the
NN interaction obtained from a fully covariant formalism. It
is induced by an elementary PV pion-nucleon coupling, most
often denoted by h1

π . As this coupling also determines the
strength of the PV OPE interaction, we give the corresponding
expression in terms of both the momentum transfer, �q, and the
relative momenta, �p and �p′:

Vπ (�q) = igπNNh1
π

2
√

2M
(�τ1 × �τ2)z

(�σ1 + �σ2) · ( �p′ − �p)

m2
π + q2

= − igπNNh1
π

2
√

2M
(�τ1 × �τ2)z

(�σ1 + �σ2) · �q
m2

π + q2
. (1)

Because of possible ambiguity, we further specify the notation
for momenta:

�p = 1
2 ( �p1 − �p2), �p′ = 1

2 ( �p′
1 − �p′

2),
(2)�q = ( �p1 − �p′

1) = −( �p2 − �p′
2) = ( �p − �p′),

where the primed and nonprimed momenta refer to those of
particles appearing, respectively, in the bra and ket states. In
configuration space, the interaction thus recovers its standard
form

Vπ (�r) = igπNNh1
π

2
√

2M
(�τ1 × �τ2)z(�σ1 + �σ2) ·

[
�p,

e−mπ r

4πr

]

= −gπNNh1
π

2
√

2M
(�τ1 × �τ2)z(�σ1 + �σ2) · ( �r1 − �r2)

× e−mπ r (1 + mπr)

4πr3
, (3)

with r = | �r1 − �r2|. The first studies of the isovector PV TPE
contribution were made in the early 1970s [12–15], being
partially motivated by the underestimation of some observed
PV effects using the standard PV NN interaction available
at that time. Similarly to the strong-interaction case, where
the TPE contribution is quantitatively more important than the
OPE one, it was believed that the TPE contribution could also
play an essential role in the PV case.

Various studies roughly agree with each other, after mis-
takes are corrected in some cases [12,14]. Differences involve
in particular the formalism (calculations using Feynman dia-
grams or dispersion relations), nonrelativistic approximations
in external nucleon lines, or the removal of the OPE-iterated
contribution in the box diagram. The choice of the Green’s
function in the last ingredient was rather unimportant owing to
the introduction of cutoffs in applications. It could however be
important in unrestricted calculations. The point is of relevance
with respect to a comment made in Ref. [6] about the absence
of convergence in earlier calculations. It will be discussed in
more detail in the following when expressions for the TPE
contribution are given.

The crossed and noncrossed box diagrams that enter the
isovector TPE contribution of interest here are represented in
Fig. 1, where the intermediate hadron on the upper line can
be a nucleon as well as a resonance [�(1232), N∗(1440), or
N∗(1518)]. For our purpose and also for simplicity, we only
retain the nucleon. Altogether, the corresponding contribution
to the isovector interaction involves six different terms.
Following the notation of Ref. [15], we can write it quite
generally in momentum space as

V ( �p′, �p) = V44 + V34 + V56 + V75 + V66 + V85

= i(�τ1 + �τ2)z(�σ1 × �σ2) · ( �p′ − �p)v44(q, . . .)

+ (�τ1 + �τ2)z(�σ1 − �σ2) · ( �p′ + �p)v34(q, . . .)

+ i(�τ1 × �τ2)z(�σ1 + �σ2) · ( �p′ − �p)v56(q, . . .)

+ (�τ1 − �τ2)z(�σ1 + �σ2) · ( �p′ + �p)v75(q, . . .)

+ (�τ1 × �τ2)z[�σ1 · �q �σ2 · ( �p′ + �p) × �q
+ (�σ1 ↔ �σ2)]v66(q, . . .)

+ −

FIG. 1. Two-pion exchange in the covariant approach: These diagrams represent the contributions of the crossed box, the noncrossed box,
and the iterated OPE that has to be subtracted from the previous one. The continuous line represents a baryon and the dashed one a pion.
The contributions with nucleon and nucleon resonances in the intermediate state have been considered in the literature. Only the first one is
retained here but the role of the other ones will also be mentioned. The PV meson-nucleon vertex is marked with a cross (×). The last diagram
on the right represents the iterated OPE, with the backslash indicating that the corresponding nucleon is on-mass shell. Further diagrams with
a different order of the parity-violating and parity-conserving meson-nucleon vertices on the same nucleon line (not shown here) are also
considered.
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− i(�τ1 − �τ2)z[�σ1 · ( �p′ + �p)�σ2 · ( �p′ + �p) × �q
+ (�σ1 ↔ �σ2)]v85(q, . . .). (4)

Functions vij (q, . . .) assume a dispersion-relation form

vCOV
ij (q, . . .) = 1

π

∫ ∞

4m2
π

dt ′
gij (t ′, . . .)√
t ′(t ′ + q2)

, (5)

and dots represent possible extra dependence on �p′ and �p
(kinetic energy in particular).

The configuration-space PV TPE potential is obtained from
the standard relation

v(r) =
∫

d �q
(2π )3

e−i �q·�rv(q). (6)

Its expression thus reads

V (r, �p′, �p)

= i(�τ1 + �τ2)z(�σ1 × �σ2) · [ �p, v44(r, . . .)]

+ (�τ1 + �τ2)z(�σ1 − �σ2) · { �p, v34(r, . . .)}
+ i(�τ1 × �τ2)z(�σ1 + �σ2) · [ �p, v56(r, . . .)]

+ (�τ1 − �τ2)z(�σ1 + �σ2) · { �p, v75(r, . . .)}
+ 2i(�τ1 × �τ2)z

(
�σ1 ·

[
�p, �σ2 · �l 1

r

d

dr
v66(r, . . .)

]

+ (�σ1 ↔ �σ2)

)
− 2(�τ1 − �τ2)z

×
(

�σ1 ·
{

�p, �σ2 · �l 1

r

d

dr
v85(r, . . .)

}
+ (�σ1 ↔ �σ2)

)
, (7)

where �l = �r × �p and

vCOV
ij (r, . . .) = 1

4π2

∫ ∞

4m2
π

dt ′gij (t ′, . . .)
e−r

√
t ′

r
√

t ′
(8)

and �p′ and �p, which dots account for, now have an operator
character and should be placed, respectively, on the left and
the right, in accordance with our conventions.

The terms V44, V34, V56, and V75 appear at the first order
in a p/M expansion of the Lorentz invariants appearing in
the expression of the interaction. The two other terms, V66

and V85, appear at the third order in p/M . They can therefore
be considered as relativistic corrections. Moreover, they only
contribute when going beyond the transitions between lowest
partial wave states (i.e., S to P ), which generally dominate at
low energy (where most PV data are available). For these two
reasons, the corresponding terms were discarded in the past,
which we also do here. We however stress that these higher
order terms are necessary to get a full mapping of the NN

interaction, especially to discriminate transitions involving
higher partial waves such as 3P1–3D1 and 3P2–3D2,

3D2–3F2

and 3D3–3F3, etc. It is also noticed that this nonrelativistic
expansion only involves the nucleon external lines, as done in
other approaches. No expansion is made for internal nucleon
lines where big effects could arise. As our results presented in
this paper only retain part of the full relativistic structure, they
will be denoted “covariant” to avoid overstating this property.

We now consider the expressions of the V44, V34, V56, and
V75 terms. It is first noticed that V44 and V34 only receive
contributions from the crossed diagram whereas V56 and V75

also get some from the noncrossed one. In this case, one
therefore has to worry about the removal of the iterated
OPE and, especially, about the choice of the Green’s function
that enters the calculation. In Ref. [13], the Green’s function
(2E0 − 2E)−1 was used, by taking into account that the
Schrödinger equation is linear in the energy of the system,
E0, and assuming moreover that the kinetic energy of particles
retains its relativistic form (E =

√
M2 + p2 in the c.m. frame).

In later works [14,15], a Green’s function more in agreement
with a nonrelativistic Schrödinger equation, E/(p2

0 − p2),
was instead used. The difference, a factor of 2E/(E0 + E),
had minor numerical effects in the past calculations where
cutoffs were introduced in the dispersion integrals [Eq. (5)].
The difference however matters in unrestricted calculations.
Dispersion-relation integrals diverge in the first case but
they converge in the second one. The corresponding Green’s
function for the latter case can be written in the form E/(E2

0 −
E2), which rather evokes an equation with a quadratic-mass
operator. Such an equation is known to provide solutions with
a behavior in the relativistic domain better than the linear
one [23]. This is the choice made here. Taking into account
that the kinetic-energy dependence is small and that we are
interested in low-energy processes, we can set the momentum
in functions g(q, . . .) to 0. In a similar way as Ref. [13] (with
details given in Appendix A1), the closed expressions for these
functions are then obtained. If we omit dots (which are no
longer justified), they read

g44(t ′) = K̃
1

2M

[
4qπ

χ2
+ H

M2
− G

(
1

M2
+ 1

χ2

)]
,

g34(t ′) = K̃
1

2M3

(
G − Hx2

x2 + 4M2q2
π

)
,

g56(t ′) = −K̃
1

2M

Hx

x2 + 4M2q2
π

− K̃
x

M2m2
π

arctan

(
m2

π

2Mqπ

)

+K̃

∫ k2
+

k2−

dk2√
k2t ′ − (

m2
π + k2

)2

1

2E(E + M)

×
(

x

M2
+ k2

M(E + M)

)
,

g75(t ′) = K̃
4x2

M2m2
π t ′

arctan

(
m2

π

2Mqπ

)
+ K̃

2G

Mt ′

−K̃

∫ k2
+

k2−

dk2√
k2t ′ − (

m2
π + k2

)2

2

E(E + M)

×
(

x2

M2t ′
+ 2Ex

Mt ′
− k2

M(E + M)

− k4

M(E + M)t ′

)
, (9)

where

K̃ = g3
πNNh1

π

32π
√

2
, qπ =

√
t ′

4
− m2

π ,

χ2 = M2 − t ′

4
, x = t ′

2
− m2

π ,
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H = 2

√
x2 + 4M2q2

π

t ′
ln

(√
x2 + 4M2q2

π + qπ

√
t ′√

x2 + 4M2q2
π − qπ

√
t ′

)
,

G = 2x

χ
arctan

(
2qπχ

x

)
[for, χ2 � 0],

= x√
−χ2

ln

(
x + 2qπ

√
−χ2

x − 2qπ

√
−χ2

)
[for, χ2 � 0],

k2
± = x ± qπ

√
t ′, E =

√
M2 + k2. (10)

Looking at the asymptotic behavior of the functions gij (t ′)
for large t ′, we notice that the dominant contributions of
individual terms, ∝ t ′1/2, as well as the constant ones, cancel
(see Appendix A2 for details). One is thus left with the
following contributions:

g44(t ′)t ′→∞ = K̃
2

M
√

t ′

[
ln

(
t ′

M2

)
− 1

]
,

g34(t ′)t ′→∞ = K̃
2

M
√

t ′

[
ln

(
t ′

M2

)
− 1

]
,

(11)

g56(t ′)t ′→∞ = −K̃
1

M
√

t ′

[
5

8
ln

(
t ′

M2

)
+ 15

8
− 3

2
ln(2)

]
,

g75(t ′)t ′→∞ = K̃
1

M
√

t ′

[
9

4
ln

(
t ′

M2

)
− 1

4
+ ln(2)

]
.

In all cases, the functions gij (t ′) behave asymptotically as
t ′−1/2, up to log terms, ensuring the convergence of the integrals
given in Eq. (5). This result is important as it allows one
to consider the dispersion approach as a benchmark, thus
providing information about contributions that are ascribed
to LECs as well as possible higher order corrections in other
approaches.

III. TWO-PION EXCHANGE FROM THE EFT APPROACH

A. EFT approach

The PV TPE at NNLO has been calculated in the EFT
approach by Zhu et al. [6]. It contains two components that
involve functions C̃2π

2 (q) and C2π
6 (q) and correspond here to

the components V44 and V56 of the more complete interaction
given by Eq. (4). The contributions being accounted for
correspond to the diagrams shown in Fig. 2. Their expressions
for the finite-range part and the associated contact term have
been obtained in the maximal-subtraction (MX) scheme. By
factoring out the spin-isospin dependence and taking into
account corrections made since then [10], they read2

vEFT
44 (q) = −4

√
2π

h1
π

�3
χ

(
g3

AL(q)
)
,

(12)

vEFT
56 (q) = −

√
2π

h1
π

�3
χ

(
gAL(q) − g3

A

(
3L(q) − H (q)

))
,

2We have followed our own conventions, as the conventions used
to present the final results in Ref. [6] differ from that ones defined by
the same authors at an earlier stage.

where the scale �χ is roughly given by �χ = 4πfπ 	
4πgAM/gπNN 	 1 GeV and the L(q) and H (q) functions
are defined as

L(q) =
√

q2 + 4m2
π

q
ln

(√
q2 + 4m2

π + q

2mπ

)

=
√

q2 + 4m2
π

2q
ln

(√
q2 + 4m2

π + q√
q2 + 4m2

π − q

)
, (13)

H (q) = 4m2
π

q2 + 4m2
π

L(q).

The details of the contributions corresponding to diagrams (b),
(c), and (d) in Fig. 2 can be found in Appendix B. The terms
entering the interaction should be completed by contact terms

vCT
44 = C44,

(14)
vCT

56 = C56.

The contributions from TPE to these contact terms are also
given in Appendix B, where it is seen that they require
some renormalization. The sum of the EFT TPE and contact
contributions should be well determined, but how it is split
between the two terms is not. In the minimal-subtraction (MS)
scheme,3 the part of the contact term that is proportional to
1 + ln(µ/mπ ) (see Appendix B) is shifted to the EFT TPE
part. In such a case, the term “1” cancels the function L(q) at
q = 0 and the log term, for µ � mπ , changes the overall sign
of the potential in the low-q range.

B. Relation to the time-ordered-diagram approach

When integrating the EFT expressions of the TPE inter-
action over the time component of the integration variable
entering some loop, it is expected that one should recover
expressions obtained from considering time-ordered (TO)
diagrams in the nonrelativistic limit (�v → 0, where �v is the
nucleon velocity �v 	 �p/M). As this check was quite useful
in determining the correct expressions given in the previous
section, we give in the following the raw expressions obtained
from the contribution of these time-ordered diagrams, which
are shown in Fig. 3. Starting from the elementary πNN

interaction, gπNN �σ · �k/(2M
√

ωk) (with ωk = √
m2

π + k2 ),
one gets

vTO
44 (q) = g3

πNNh1
π

4
√

2M3

∫
d�k

(2π )3

k2 − (�k · q̂)2

ωiωj

(
1

ω2
i (ωi + ωj )

+ 1

(ωi + ωj )ω2
j

+ 1

ωi(ωi + ωj )ωj

)
,

3The scheme we denoted by MN in a previous work [10] actually
corresponds to the MS scheme, so we change the name as adopted
here.
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(a)

+

(b)

+

(c)

+

(d)

+

(e)

FIG. 2. One- and two-pion exchange in the EFT approach showing the contributions from the OPE (a), from the triangle TPE (b), from the
crossed TPE (c), from the noncrossed TPE (d), and from the contact term (e). See the caption of Fig. 1 for further comments.

vTO
56 (q) = g3

πNNh1
π

4
√

2M3

[
1

2

∫
d�k

(2π )3

1

ωiωj (ωi + ωj )

−1

2

∫
d�k

(2π )3

k2 − q2

4

ωiωj

(
1

ω2
i (ωi + ωj )

+ 1

(ωi + ωj )ω2
j

+ 1

ωi(ωi + ωj )ωj

)]
, (15)

where ωi =
√
m2

π + (�k + �q/2)2 and ωj =
√
m2

π + (�k − �q/2)2.
The three integrals involve the contributions successively
from the crossed diagrams (the first line of Fig. 3), Z-type
ones (the second line of Fig. 3), and both crossed and
noncrossed diagrams (the first and third lines of Fig. 3). The
Z-type diagrams are calculated by assuming a pseudo-scalar
coupling, consistently with the dispersion-relation approach
used independently, and retaining the lowest nonzero term
in a 1/M expansion. As is known, the contribution alone
violates chiral symmetry (see, for instance, Ref. [24]). The
expected symmetry is restored by further contributions, which
can be calculated in the same formalism (see details in
Sec. IV B). Contributions of all diagrams in Fig. 3 diverge
but they contain a well-defined part that can be analytically
calculated. Interestingly, the expressions so obtained can be
cast into the form of dispersion integrals. This property stems
from considering a complete set of topologically equivalent
time-ordered diagrams. This writing is interesting as it greatly
facilitates the comparison with the expressions obtained from
a covariant approach, which evidences the same form. It is

thus found that the different integrals in Eqs. (15) read∫
d�k k2 − (�k · q̂)2

ωiωj

(
1

ω2
i (ωi + ωj )

+ 1

(ωi + ωj )ω2
j

+ 1

ωi(ωi + ωj )ωj

)

= 4π (1 − L(q)) +
∫

d�k k2

ω5
k

= π

∫ ∞

4m2
π

dt ′
2
√

t ′ − 4m2
π√

t ′(t ′ + q2)
,

∫
d�k 1

ωiωj (ωi + ωj )

= 2π (1 − L(q)) + 1

2

∫
d�k 1

ω3
k

= π

∫ ∞

4m2
π

dt ′
√

t ′ − 4m2
π√

t ′(t ′ + q2)
,

∫
d�k k2 − q2

4

ωiωj

(
1

ω2
i (ωi + ωj )

+ 1

(ωi + ωj )ω2
j

+ 1

ωi(ωi + ωj )ωj

)

= 2π (3(1 − L(q)) + H (q)) + 3

2

∫
d�k k2

ω5
k

= π

∫ ∞

4m2
π

dt ′
3
(
t ′ − 4m2

π

) + 4m2
π√

t ′
√

t ′ − 4m2
π (t ′ + q2)

. (16)

Owing to the divergent character of these integrals, these
equalities hold up to some constant. This does not however
affect the q2-dependent part. One can thus remove an infinite
contribution so that the interaction takes a definite value at

+ + + + +

+ + + + +

+ + + −

FIG. 3. Two-pion exchange in the time-ordered diagram approach showing the contributions from the crossed diagrams (the first line),
from the Z-type contributions (the second line, identified as triangle diagrams in a different approach), and from the noncrossed diagrams (the
diagrams on the third line). The last two diagrams differ in that the first of them involves a meson propagator with off-energy shell contributions,
which are omitted in the other one (indicated by a backslash on the meson lines). This last contribution, which arises from the iterated OPE, has
to be subtracted from the previous one. The discrepancy involves a factor E0 − k2/M , which cancels a similar factor entering the denominator
of the Green function (where �k can be identified as the loop momentum). See the caption of Fig. 1 for further comments.
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some q2. A particularly interesting choice is to subtract a
part so that the remaining one, which contains the most
physically relevant part, cancels at q2 = 0. By looking at
this quantity, one can usefully compare different approaches.
To some extent the slope with respect to q2 at q2 = 0
provides information on the sign and the strength of the
interaction at finite distances. The L(q) function in these
equalities thus points to a configuration-space interaction with
an opposite sign at finite distances. The divergent part is
not without interest however. It tells us in which direction
the (short-range) subtracted interaction is likely to contribute.
By integrating out the contribution t ′ � �̃2 on the right-hand
side of Eqs. (16) in the small-q limit, one successively gets
the approximate factors 4π ln(�̃/2mπ ), 2π ln(�̃/2mπ ), and
6π ln(�̃/2mπ ). This suggests two observations. On the one
hand, for large enough �̃, the right-hand side has a sign
opposite to that given by the L(q) term at the left-hand side,
confirming the observation in configuration space. On the other
hand, this factor allows one to make some relation with the
EFT interaction calculated in the minimal-subtraction scheme,
which involves similar log terms (with �̃ replaced by µ).

Comparing these expressions, Eqs. (16), with the previous
EFT ones, Eqs. (12), we find that the q2 dependencies are
very similar. By assuming the choice �χ = 4πgAM/gπNN ,
an identity is actually found for the potential, v44(q), as well
as the second term for the other potential, v56(q). For the first
term in v56(q), which can be associated with a triangle-type
diagram, the time-ordered diagram approach used here gives a
factor g3

A instead of gA as directly obtained from the Weinberg-
Tomozawa term. This discrepancy points to the fact that the
approach misses some contribution. As already mentioned,
this will be discussed in more detail in Sec. IV B when making
a comparison with the expressions obtained from the covariant
formalism.

IV. RELATION OF THE EFT APPROACH TO THE
COVARIANT ONE

We discuss here similarities and differences between the
expressions obtained from the full covariant approach and the
EFT one presented in Secs. II and III, respectively.

A. Similarities (large-M limit)

To make a comparison of the EFT and time-ordered-
diagram approaches with the covariant one, the first step is
to derive expressions in the large-M limit for the last case.
Taking this limit in the simplest minded way for the H and G

functions given in Eq. (10), one gets

HM→∞ = 4qπ = 2
√

t ′ − 4m2
π ,

(17)

GM→∞ =
(
t ′ − 2m2

π

)
M

(
π

2
− x

2qπM

)
	 π

x

M
.

Inserting these limits in Eqs. (9), one finds

g44(t ′)M→∞ = K̃
4qπ

M3
= K̃

2
√

t ′ − 4m2
π

M3
,

g34(t ′)M→∞ = K̃
π

M4

x

2
= K̃

π

M4

t ′ − 2m2
π

4
,

g56(t ′)M→∞ = −K̃
x

qπM3
= −K̃

(
t ′ − 2m2

π

)
M3

√
t ′ − 4m2

π

,

g75(t ′)M→∞ = K̃
π

M4

(
t ′ − 4m2

π

16
+ 3

2

t ′ − 2m2
π

4

)
. (18)

In obtaining these expressions, one has taken into account
that the integral in Eq. (9) for g56(t ′) has a higher 1/M

order (1/M4). The case of g75(t ′) is more complicated as
individual contributions of 1/M2 and 1/M3 order cancel. In
any case, we notice that the large-M limit does not commute
with the large-t ′ limit [compare with the results given in
Eq. (11)]. Differences from the “covariant” results are there-
fore expected when considering short distances, where the
last limit is relevant. The insertion of these limits in the
dispersion-relation integrals, Eqs. (5), allows one to recover
the expressions of the time-ordered-diagram approach at the
lowest order, 1/M3, for interactions V44 and V56:

v44(q)M→∞ = g3
πNNh1

π

16
√

2π2M3

∫ ∞

4m2
π

dt ′
√

t ′ − 4m2
π√

t ′(t ′ + q2)
,

v56(q)M→∞ = − g3
πNNh1

π

32
√

2π2M3

∫ ∞

4m2
π

dt ′
(
t ′ − 2m2

π

)
√

t ′
√

t ′ − 4m2
π (t ′ + q2)

.

(19)

For the interaction V56, it is noticed that the two terms
involving integrands proportional to −(t ′ − 4m2

π ) and 3(t ′ −
4m2

π ) + 4m2
π in Eq. (15) [together with Eq. (16)] combine to

give the factor proportional to (t ′ − 2m2
π ) appearing in the

large-M-limit expression of g56(t ′), Eq. (18).
Expressions for both V44 and V56 can be cast into a form that

facilitates the comparison with Zhu et al.’s work [6]. In this
order, a factor g3

πNN/(4πgAM)3, which can be identified as the
1/�3

χ factor in their work, is partly factored out. One ascribes
the infinities present in the dispersion integrals temporarily to
LECs, knowing that these ones should be finite in practice. We
thus have

v44(q)M→∞ = vLM
44 (q) + C ′

44,

v56(q)M→∞ = vLM
56 (q) + C ′

56,

with

vLM
44 (q) = −4

√
2π

g3
πNNh1

π

(4πgAM)3
g3

AL(q),
(20)

vLM
56 (q) = −

√
2π

g3
πNNh1

π

(4πgAM)3

(
g3

AL(q) − g3
A(3L(q) − H (q))

)
.

The only significant discrepancy with Zhu et al.’s work,
Eqs. (12), concerns the first term of V56, which contains a
factor g3

A instead of gA, confirming the observation already
made in the time-ordered-diagram approach.

B. Differences

After having shown how the expressions of the EFT (or
the time-ordered-diagram) approach can be obtained from the
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covariant ones for the gross features, we now examine the
differences.

The first difference concerns the convergence properties
of the integral expressions for the potentials vij (q), Eqs. (5).
Although those for the EFT do not converge (infinite LECs),
those components produced by the crossed-box diagram, V44

and V34, in the covariant approach always converge. This
also holds for the crossed-box part of the other components,
V56 and V75, but, in these cases, one has to consider a
further contribution from the noncrossed box diagram. The
convergence crucially depends on the way the iterated OPE is
calculated but there is one choice, quite natural actually, that
provides convergence as good as for the crossed-box diagram.
Though it does not really make sense physically to integrate
dispersion integrals over t ′ up to ∞, expressions so obtained
provide a reliable benchmark, as far as the same physics is
implied.

The second difference concerns the number of components.
The covariant approach involves many more than the EFT one
at NNLO (six instead of two). The extra ones imply some
recoil effect and have a nonlocal character. They are of higher
order in a 1/M expansion but, instead, in the large-t ′ limit,
they compare to the others [see Eqs. (11)].

The third difference has to do with the large-M limit of
the covariant approach, Eqs. (9), which allows one to recover
the structure of the EFT results. The way this limit is taken
in the H or G functions, or in the factor multiplying the first
quantity, is quite rough. It assumes approximations like x2 +
4M2q2

π 	 4M2q2
π (2qπM � x). Actually, owing to the small

but finite value of the pion mass, there is a very little range of t ′
values (t ′ − 4m2

π � m4
π/M2) where this approximation is not

valid. The correction, which disappears in the chiral limit (zero
pion mass), could affect the long-range part of the interaction.

The fourth difference involves chiral symmetry and related
properties. Contrary to what is sometimes thought, fulfilling
these properties in calculating the TPE contribution in the
covariant approach is possible. This however supposes some
elaboration, requiring that a description of the NN̄ → ππ

transition amplitude entering the dispersion relations is con-
sistent with chiral symmetry. In the instance of the Paris model
for the NN strong interaction [25], this amplitude could be
related to experimental data. For the NN weak interaction, the
strong amplitude was instead modeled from the contribution
of a few nucleon resonances in the s channel [15]. This
can be essentially achieved by adding the contribution of
the �(1232 MeV) resonance to the nucleon intermediate state
retained here. This one, in the dispersion-relation formalism,
suppresses the low-energy Nπ ↔ Nπ strong-transition am-
plitude, otherwise dominated by a well-known large Z-type
contribution inconsistent with chiral symmetry. This part,
which involves two pions in an isosinglet state (with the
σ -meson quantum numbers), is irrelevant here however. Its
contribution is suppressed, in accordance with the Barton
theorem [26], which states that the exchange of scalar and
pseudo-scalar neutral mesons does not contribute to the PV
NN interaction (assuming CP conservation). This feature
largely explains why the PV TPE contribution has not been
found as important as originally expected, on the basis of the
strong-interaction case [15]. There is another part that is of

interest here. It decreases the Z-type contribution [the first
term of V56(q) in Eq. (15)] by an amount that corresponds to
changing the factor g3

A into gA in the first term of V56(q) in
Eq. (20). This can be checked in the simplest nonrelativistic
quark model according to the relation

g2
πNN − 2g2

πN�

9
=

(
1 − 16

25

)
g2

πNN = 9

25
g2

πNN = g2
πNN

g2
A

,

(21)

which shows that the contribution of nucleon resonances
to the πN scattering amplitude can be accounted for by
dividing the intermediate nucleon contribution by the factor
g2

A. A somewhat different but better argument is based on the
Adler-Weisberger sum rule [27]. This one, which does not
involve any nonrelativistic limit, can be cast into the form
1 − ∫ · · · = 1/g2

A, where the integral involves the off-mass-
shell pion-proton total cross sections. For simplicity, here we
did not retain the � contribution, which is possibly improved
for other resonances. We nevertheless keep in mind from
the previous considerations that the discrepancy between the
EFT and the covariant approaches, which was noticed for the
contribution of the triangle diagram in the former one (a factor
of gA instead of g3

A), could be removed by completing the latter
one. The corresponding contribution, considered in Ref. [15],
amounts to 10–20% of the one retained here.

A last remark concerns the comparison of the TPE with
the ρ-meson exchange. The former was discarded in the past
because of possible double counting with the latter one. In
this respect, we notice that the ratio of the V44 and V34

components, which could contribute to PV effects in pp

scattering (1S0–3P0 transition amplitude), is very much like the
ratio of the local and nonlocal parts of a standard ρ-exchange
contribution. There is some relationship between this result
and the fact that the pion cloud produces a contribution to the
anomalous magnetic moment of the nucleon, which compares
to the physical one. The problem is different for the other PV
transition, 3S1–3P1, where the V56 component could contribute.
The corresponding charged-ρ exchange of interest in this case
is governed by the PV coupling h′1

ρ , which was predicted to
vanish in the DDH work [28]. A small value (−0.7 × 10−7)
was obtained by Holstein [29] by considering a pole model.
A larger value [−(2–3) × 10−7] was obtained later by Kaiser
and Meissner [30] using a soliton model. In any case, these
values lead to negligible effects. We however observe that
the PV πNN coupling constant h1

π is also small in the same
models, with most of its possible larger predicted value being
due to the contribution of strange quarks [31]. Sizable values
of h′1

ρ could thus be expected. On the basis of a dynamical
model considering the ρ meson as a two-pion resonance, one
cannot exclude values of h′1

ρ in the range of (5–10)
√

2h1
π , a

relation that the results of Kaiser and Meissner roughly verify.
In contrast to the previous values, the last ones could lead to
some double counting and it is likely that the h′1

ρ contribution to
PV effects is then largely accounted for by the TPE considered
in this work. It is conceivable that a similar conclusion holds
for the other isovector coupling, h1

ρ , which contributes to the
PV effects in pp scattering as discussed earlier. Another aspect
of the comparison with a ρ exchange concerns the range of
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the TPE, which was presented in Ref. [6] as a medium one.
This could apply to the exchange of two pions in a S wave (σ
meson), which contributes to the strong NN interaction but
is absent in the weak case, as already mentioned. The TPE of
interest here involves two pions in a P wave with the quantum
numbers of the ρ meson. Owing to a centrifugal barrier factor,
the TPE contribution is shifted to values of t ′ higher than for
a S wave, making the range of its contribution closer to a
ρ-exchange one. Some numerical illustration is given in the
next section.

V. NUMERICAL COMPARISON OF POTENTIALS

We consider in this section various numerical aspects of
the potentials presented in the previous one. They succes-
sively concern the spectral functions, gij (t ′), the potentials in
momentum space, vij (q), and the potentials in configuration
space, vij (r). In most cases, we directly compare the results
of the covariant approach (COV) with those obtained from
it in the large-M limit (LM) [Eqs. (20)]. This comparison
is more meaningful than the one with the EFT potential
(EFT) [Eqs. (12)] as it is not biased by the choice of the
factor �χ and by the difference of a factor gA, instead of
g3

A, in part of the contribution to V56, the origin of which
is understood in any case. Before entering into details, we
notice that the various components of the interaction have a
local character for some of them (V44 and V56) and a nonlocal
one for the others (V34 and V75). At low energy, however, it
turns out that one of the contributions involving the factor
�p or �p′ in their expression, Eq. (7), is small. Moreover,
with our conventions, the spin-isospin factors give the same
values for the z component. The various components can
then be usefully compared, independently of their local or
nonlocal character, which is what we do here. In our numerical
results we assume the following values: gπNN = 13.45, gA =
1.2695,M = 938.919 MeV,mπ = 138.039 MeV, and mρ =
771.1 MeV.

We begin with the first four spectral functions gij (t ′)
entering potentials V44, V34, V56, and V75. Their t ′ dependence
is shown for a range of t ′1/2 going from threshold to about
5 GeV in Fig. 4(a) to roughly evidence the relative weight
of various components at small and high t ′. At first sight,
different potentials have comparable sizes. The small-t ′ range
is physically more relevant in the sense that the regime

beyond 1 GeV2 is expected to involve the contribution of other
multimeson exchanges. The higher t ′ range is more appropriate
to illustrate convergence properties. At low values of t ′, one
can see some significant differences as expected from the 1/M

expansion, Eq. (18). For t ′1/2 � 0.5 GeV, the spectral functions
entering the local potentials V44 and V56 dominate those of the
nonlocal ones, V34 and V75. All of them increase in the lower
t ′ range (except in a very small t ′ range for V56) and one
has to go to much higher values of this variable to observe
some saturation and ultimately some decrease. The maximum
is roughly reached around t ′1/2 = 2M , which, apart from the
pion mass, is the only quantity entering the calculations. The
decrease, roughly given by t ′−1/2, up to log terms, ensures good
convergence properties for potentials vij (q), Eq. (5) (which
would not be the case for the other Green function mentioned
in the text; see details in Appendix A2). The validity of the 1/M

expansion for the spectral functions g44(t ′) and g56(t ′), which
allows one to recover the EFT results for the essential part,
can be checked by examining Fig. 4(b), where the “covariant”
and approximate results are shown for a t ′ range extending
to 1 GeV2. It is observed that the dominant term in the 1/M

expansion tends to overestimate the more complete results
both at very low and high values of t ′. In the first case, the
threshold behavior [q3

π for g44(t ′) and arctan(m2
π/qπM) for

g56(t ′)] is missed (see the observation on the 1/M expansion
in the previous section). In the second case, the overestimation,
which is roughly given by a factor of t ′/M2, tends to increase
with t ′, preventing one from getting convergent results.

In Fig. 5(a), we show the potentials vij (q) up to q = 1 GeV
(together with the OPE one, which has a strong dependence
on q and is divided by 10 to fit the figure). As expected from
examination of the spectral functions, the TPE potentials have
roughly the same size and there is no strong evidence that
some of them should be more important than others. It is
also noticed that their decrease in the range q = 0–1 GeV is
slower than the standard ρ-exchange one, given by 1/(m2

ρ +
q2), indicating they roughly correspond to a shorter range
interaction. The comparison of the potentials v44(q) and v56(q)
with the corresponding EFT ones, Eqs. (12), can be made by
looking at Fig. 5(b). The choice of �χ in the EFT results
(�χ = 4πgAM/gπNN ) is suggested by the large-M limit of the
“covariant” expression [see Eqs. (20)] to make the comparison
as meaningful as possible. A striking feature appears here: The
EFT potentials have a sign opposite to the “covariant” ones but
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FIG. 4. Spectral functions g(t ′) in units of
GeV−2, with the coefficient K̃ factored out,
and represented as a function of t ′1/2 to better
emphasize the low-t ′ range, for (a) t ′1/2 from
threshold to 5 GeV for all functions, to show the
relative importance of the various components
and the beginning of the onset of the asymptotic
behavior, t ′−1/2 and (b) from threshold to 1 GeV
for functions g44(t ′) and g56(t ′) together with
their large-M limits, to check the validity of
this approximation.
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FIG. 5. Potentials v44(q), v34(q), v56(q), and
v75(q) (together with the OPE one divided by 10)
for q ranging from 0 to 1 GeV (a) and their EFT
counterpart for v44(q) and v56(q) (b). Ingredients
entering the EFT results are specified in the text.
Notice that the EFT and “covariant” versions of
a given component of the potential have opposite
signs.

the q dependence is roughly the same. This feature suggests
that the LEC part could play an important role.

To make a more significant comparison, we subtracted a
constant from both potentials so that they vanish at q2 =
0. This procedure amounts to using subtracted dispersion
relations, which leads to convergence in all cases. Moreover, in
configuration space, this part of the interaction determines the
long-range component of the potential, which is physically the
most relevant one. Results are shown in Fig. 6. The “covariant”
and LM results now have the same sign. It is however noticed
that the present LM results tend to overestimate the “covariant”
ones. In the limit q → 0, the overestimate reaches a factor
1.6 for V44 and a factor 1.3 for V56. This points in this case
to the role of higher 1/M-order corrections. Actually, the
discrepancy vanishes in the limit mπ/M → 0, showing that
the nonzero pion mass has some effect. The discrepancy tends
to slowly increase with q (by factors of 1.9 and 1.5 at q =
1 GeV for V44 and V56, respectively), pointing to the role of
ln(q) corrections appearing in the large-M limit. Altogether,
these results are in accordance with the overestimate already
noticed for spectral functions in this approximation. From a
different viewpoint, these results confirm the expectation that
the discrepancy between the EFT and “covariant” approaches
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FIG. 6. Subtracted potentials v44(q) and v56(q) for q ranging
from 0 to 1 GeV, comparing the large-M limit approach [LM,
Eqs. (20)] with the covariant one. The asymptotic q dependence of
the “covariant” results is a constant one whereas the one for large-M
limit results has an extra ln (q) dependence.

shown in Fig. 5(b) can be ascribed to contact terms. A rough
agreement would be obtained with the effective potential
obtained in the MS together with a dimensional-regularization
scale µ ranging from 3mπ to 6mπ , depending on how this
is made (see the definition of this scheme at the end of
Appendix B).

The Fourier transforms of the vij (q) quantities, vij (r), are
shown in Fig. 7(a) for small distances and in Fig. 7(b) for
intermediate distances. We call them potentials though they
are dimensionless quantities, the energy dimension being given
by the extra operators �p. They are multiplied by a factor r2 to
emphasize the range that is relevant in practice for calculations.
At small distances, the comparison of various components
roughly reflects the one for spectral functions or potentials
in momentum space. Examination of these results at large
distances evidences some significant differences. They have a
better agreement with expectations from the 1/M expansion
or from the very low t ′ behavior of spectral functions. Thus,
the local potentials, v44(r) and v56(r), have a range larger
than the other two components, v34(r) and v75(r), do. The
differences appear only in the range where potentials have
small contributions to PV effects.

The comparison with the LM potentials is given in Fig. 8
for the local components (V44 and V56). It is noticed that these
last potentials should be completed by contact terms, which
have a sign opposite to the corresponding curves. Because
of the difficulty of representing these terms in a simple way,
they have not been drawn in this figure. Moreover, they are
not distinguishable from the LEC contributions and thus have
an arbitrary character (i.e., they depend on the subtraction
scheme). Considering first potentials at intermediate (or long)
distances, where they can be the most reliably determined, one
finds that the LM and “covariant” potentials have the same sign
despite their having opposite sign in momentum space. This
result is in complete accordance with the subtracted potentials
shown in Fig. 6. Indeed, the slope of the corresponding results
is, up to a minus sign, a direct measure of the square radius
of the potential weighted by its strength. The negative slope
for the potential V44 thus indicates that its configuration-
space representation is positive at intermediate distances (the
opposite for V56). Quantitatively, the significant dominance of
the LM results over the “covariant” ones (by factors of 1.7
and 1.4 for V44 and V56, respectively, at r = 0.8 fm) confirms
what is found for subtracted potentials in momentum space.
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FIG. 7. Potentials v44(r), v34(r), v56(r), and
v75(r) at (a) small and (b) intermediate distances.
The results shown in the figure represent these
potentials multiplied by a phase factor of r2 (in
units of GeV−2) to better emphasize the most
relevant range for applications.

Considering now the very short range domain, one finds that
the product of the LM potentials with r2, which are shown
in Fig. 8(a), diverge like 1/r when r → 0, up to log factors.
The contribution of this part alone to the plane-wave Born
amplitude is thus logarithmically divergent. This contribution
turns out to be canceled by the zero-range one, mentioned
previously, so that the sum is finite. Thus, there is no principle
difficulty with this peculiar behavior of the LM potentials in
configuration space but, of course, some care is required in
estimating their contribution.

Naively, it could be thought that the TPE is a medium-range
interaction, as already mentioned. In Fig. 9, we compare
potentials v44(r) and v56(r) to a standard rho-exchange one
normalized so that they have the same volume integral.
This quantity determines the low-energy plane-wave Born
amplitude (up to a factor of �p, which can be factored out).
At very large distances, the effect of the longer-range TPE tail
is evident but this occurs in a domain where the potential is
quite small and will not contribute much. At intermediate or
even at small distances, however, the TPE roughly compares
to the ρ exchange. Actually, it turns out to have a shorter
range. This reflects the fact that the two-pion continuum has
an unlimited mass (with the integration over t ′ extending to
infinity). Moreover, it is slightly more singular at very small
distances, as a result of the extra ln(r) dependence of the TPE
potential. This last effect is typical of relativistic effects. Both
long- and short-distance effects can be traced back to the g(t ′)
function, which, in the TPE case, extends to both small and
large values of t ′ with a maximum around t ′ = 4M2, whereas

it is concentrated around t ′ = m2
ρ for the ρ-exchange one

[a δ(t ′ − m2
ρ) function in the zero-width limit].

For simplicity, we did not consider explicitly the contribu-
tion from nucleon resonances in the two-pion box diagrams,
which was accounted for in the 1970s in a “covariant”
approach [15] or recently in an EFT [16,17] or a TO one [18].
As already mentioned, part of it is contained in the EFT
approach by relying on the Weinberg-Tomozawa description
of the πN scattering amplitude. It only contributes to the
V56 component and could represent 10–20% of the total
contribution, depending on the range and how it is estimated.
On top of it, there are further contributions that affect both V44

and V56 components. In the case of V44, they amount to an
extra 30–40% contribution around 1 fm in the “covariant”
calculation [15] and roughly twice as much in the EFT
approach [16,17] or the TO one [18]. For the case of V56,
it is more complicated, as the aforementioned contribution
relative to the description of the πN scattering amplitude
has to be disentangled first for the “covariant” calculation.
When this is done, the extra contribution from resonances
decreases and could represent 30–40% of the contribution with
nucleons only [15]. This is slightly less than what is obtained
in the EFT approach [16]. By taking into account that the
EFT results overestimate the “covariant” ones for the nucleon
intermediate state, it thus appears that the overestimate for the
resonance intermediate state is significantly larger. This feature
points to corrections of order p2/[M(M� − M)] affecting the
resonance propagator (dispersion effects), which are known to
be important, whereas corrections in relation with the large-M
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FIG. 8. Potentials v44(r) and v56(r) at (a)
small and (b) intermediate distances, comparing
the “covariant” calculations with their large-M
limits; other definitions or comments are as in
Fig. 7. The curves corresponding to the large-M
limit in (a) tend to ∞ when r → 0 and have a
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small and (b) intermediate distances, comparing
the “covariant” calculations with a standard
rho-exchange potential normalized to the same
volume integral; other definitions or comments
are as in Fig. 7.

limit are of order p2/M2. This reinforces the conclusion of
Ref. [16] that, in contrast to the strong-interaction case, the
role of resonances, especially the �(1232 MeV) one, plays a
negligible role in the PV NN interaction.

VI. ESTIMATES OF PV EFFECTS IN TWO PROCESSES

The TPE potentials considered here have an isovector
character. At low energy, they can contribute to two different
transitions, 1S0–3P0, which involves identical particles such
as two protons or two neutrons, and 3S1–3P1, which involves
different particles. The interactions V44 and V34 contribute in
the first case while the interactions V56 and V75 contribute in
the other. Two processes of current interest where the TPE
potentials matter, are, respectively, proton-proton scattering
and radiative neutron-proton capture at thermal energy. In the
first case, a helicity dependence of the cross section, AL(E),
has been measured at different energies [32–34]. In the second
case, an asymmetry in the direction of the photon emission
with respect to the neutron polarization, Aγ , has been looked
for at LANSCE [35] (and the experiment is now running at
SNS). The TPE contribution to these effects is discussed in
the following. The calculations have been performed with
the NN -strong-interaction model, Av18 [36], which is local
wave by wave. Vertex form factors are ignored. On the one
hand, the dispersion-relation formalism assumes on-mass-
shell particles, with the contribution from form factors in
other approaches being generated by what is included in the
dispersion relations. On the other hand, the role of form factors
was already examined within the EFT approach [10,11],
partly with the motivation of regularizing a potential that is
badly behaved at short distances, ∝ [r−3 − cδ(�r)], where c

is infinite and “determined” so that the integral over �r has a
well-defined value. There is no principle difficulty to work
with this potential, however,4 and we will therefore use it here.
This will facilitate the comparison with the “covariant” results.

As a side remark, we notice that form factors different from
those mentioned here have been used in the context of applying
effective field theories to the strong NN interaction [4]. They
involve a separable dependence of the relative momentum in

4The trick is to separate in the integrands a part determined by wave
functions at the origin, of which the integral over �r is known, from
the remaining part, which is well behaved at the origin.

the initial and final states, �p and �p′, instead of �q = �p − �p′.
Their effect is to smooth out wave functions at short distances
in accordance with the idea that the corresponding physics,
partly unknown, should be integrated out and accounted for
by LECs. For such form factors, it would be more convenient
to work in momentum space. However, in the case where
configuration space is chosen, the methods we used for dealing
with the badly behaved potential could be useful there too.

A. Proton-proton scattering

The first calculation of TPE effects was done by Simonius
[37], with the aim of estimating a measurement of PV effects
in pp scattering (since the Cabibbo model then used was not
contributing to the pp force in its simplest form). Our results,
obtained here for three energies at which the longitudinal
asymmetry AL(E) has been measured, are presented in
Table I.

Examining the “covariant” results, one finds that the
contribution of the local term, V44(COV), dominates over the
nonlocal one, V34(COV), which appears at the next order in
the 1/M expansion. The result could be guessed from looking
at Fig. 7. Their ratio is of the order of the factor 1 + µV =
4.706, which appears in the ρ-exchange potential. There are
reasons to think this result is not accidental (see the end of
Sec. IV). The present results compare to the earlier ones [37]
as well as with the value AL(13.6 MeV) = −0.1h1

π , which has
been used in analyses of PV effects [31]. The closeness can be
attributed to the fact that the Av18 model employed here and
the Reid or Hamada-Johnston models previously used are local
ones and, moreover, evidence a strong short-range repulsion.
Significant departures could occur, instead, with models such
as CD-Bonn [38] or some Nijmegen ones [39], which have

TABLE I. PV asymmetries in pp scattering at three ener-
gies (13.6, 45, and 221 MeV), successively for the potentials
V44(COV), V34(COV), V44(rho-like), and V44(LM), in units of the
h1

π coupling constant.

Energy (MeV) 13.6 45 221

V44(COV) −0.092 −0.154 0.072
V34(COV) −0.022 −0.042 −0.029
V44(rho-like) −0.110 −0.196 0.096
V44(LM) −0.150 −0.252 0.127
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a nonlocal character (see Ref. [40] for a discussion about the
role of nonlocality).

Because of its long-range component, one could infer that
the TPE contribution should be enhanced with respect to the
ρ-exchange one when the effect of short-range repulsion
is taken into account. The comparison of V44(rho-like) and
V44(COV) results shows that this is the other way round. This
can be explained by the fact that the long-range contribution
where the TPE dominates over the ρ-exchange has little
contribution to the asymmetry (a few percent). Instead, the
short-range contribution where the TPE dominates over the
ρ-exchange plays a bigger role. The effect of short-range
repulsion on this contribution will therefore be enhanced,
hence decreasing the total TPE contribution with respect to
the ρ-exchange one.

B. Asymmetry in neutron-proton radiative capture

In contrast to pp scattering, the asymmetry Aγ involves
a nonzero contribution from OPE. Thus, independently of the
value of the coupling h1

π , one can directly compare the TPE and
OPE contributions. The last one has been extensively studied
(see Ref. [41] and earlier references therein and Refs. [10,11,
42] for more recent works). Its contribution is approximately
given by Aγ (OPE) = −0.11h1

π (= −0.112h1
π for the Av18

model used here).
The TPE contributions to Aγ for the “covariant” case are

given by

Aγ [V56(COV)] = 0.0093h1
π ,

(22)
Aγ [V75(COV)] = −0.0040h1

π ,

and those for the rho-like and large-M limit are

Aγ [V56(rho-like)] = 0.0093h1
π , (23)

Aγ [V56(LM)] = 0.0141h1
π . (24)

Considering the “covariant” results, one first notices that the
contribution of the local term, V56(COV), dominates over the
nonlocal one, V75(COV), which appears at the next 1/M order.
The effect is however less important than in pp scattering,
which can be inferred from looking at the corresponding
potentials in Fig. 7. Moreover, in contrast to this process, their
contributions have opposite signs. Thus, the total contribution
represents only −5% of the OPE one. This is good news in
the sense that it confirms that the asymmetry Aγ represents
the best observable to determine the coupling h1

π . The present
results reasonably compare to an earlier one [19]: Aγ (TPE) =
0.008h1

π , which comes from adding up Aγ (V56) = 0.0107h1
π

and Aγ (V75) = −0.0027h1
π . Part of the difference for Aγ (V56)

can be traced back to the omission here of the � resonance
contribution in intermediate states. Recall that this contribution
tends to make the πN -scattering amplitude consistent with the
Weinberg-Tomozawa coupling, resulting in an enhancement of
the V56 interaction (see the discussion in Sec. IV). The main
difference for Aγ (V75) is due to the extension of the integration
over t ′ in the dispersion relation from 50m2

π to ∞ here.
At first sight, the comparison of the TPE and ρ-exchange

results, which are essentially the same, shows features different

from those observed in pp scattering. Examination of Fig. 9
indicates that, in comparison to the V44 potential, the enhance-
ment of the TPE potential, V56(COV), over the ρ-exchange
one, V56(rho-like), is larger at large distances and smaller at
short distances. As a result, the two effects from the short-range
repulsion mentioned for pp scattering tend to cancel here.

C. Results in the large-M limit

For the subtraction of an infinite term, results obtained
in the large-M limit, which can be identified with the EFT
ones for the essential part, cannot be directly compared to
the “covariant” ones. A first look nevertheless shows that the
results, apart from an enhancement by a factor of 1.5 or so,
are very similar. Moreover, from considering the plane-wave
Born approximation, we should have expected opposite signs.
It is therefore appropriate to give some explanation to help
understand these results.

We first checked which range was contributing to PV
asymmetries and found that the role of the range below 0.4–
0.5 fm was rather small (10–20%). The observed enhancement
of the large-M result over the “covariant” one thus reflects
the similar enhancement that can be inferred from the
corresponding potentials in Fig. 8, around 0.8 fm. The small
role of the range below 0.4–0.5 fm is not expected from
considering Fig. 7. Instead, it can be related to the strong
interaction model, Av18, used to calculate wave functions
entering estimates of observables. This model evidences the
effect of a strong repulsion at short distances. As this effect is
much less pronounced with nonlocal models, one can expect
that the use of models such as CD-Bonn or some Nijmegen
ones will show some differences with the present results. We
can anticipate an increase of the magnitude of the “covariant”
results and a decrease of the LM ones (without excluding in this
case a change in sign for the plane-wave Born approximation).

While trying to understand the role of higher 1/M-order
corrections, we face the problem that the corresponding
contributions to potentials are more singular than those for
V44(LM) or V56(LM), requiring some regularization and
introduction of further LECs. Restricting our study to the range
r � 0.4–0.5 fm, which provides most of the contribution to the
PV asymmetries, we found that the contribution at the next
1/M order had a sign opposite to the dominant one, which
it largely cancels in the range around 0.8 fm. The correction,
which is larger than needed, suggests that other corrections are
necessary to ensure reasonable convergence. Among them, one
could involve chiral symmetry breaking. We checked that in
the limit of a massless pion, the “covariant” potential v44(r)
and its large-M limit are significantly closer to each other.
A nonzero pion mass could thus explain a sizable part of
the discrepancy for observables between the “covariant” and
the large-M-limit results. We notice that the comparison of
the EFT and “covariant”approaches in the strong interaction
case evidences features similar to those here (see Ref. [21] and
references therein). As far as we can see, the similarity is only
partial.

The large-M limit of “covariant” potentials assumes a
particular subtraction scheme. In another scheme, the MS
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one, part of the functions L(q) appearing in Eqs. (20), are
replaced by L(q) − 1 − ln(µ/mπ ) (see Appendix B). Because
of the effect of short-range repulsion in the Av18 model, the
correction has little effect on the calculated observables (an
increase of a few percent for the S–P transition part). This
would be different for nonlocal models where the correction
could be significantly larger. Depending on the value of the
parameter µ, a large part of the sensitivity of the LM results to
strong-interaction models mentioned here could be removed
[10]. We notice that a discussion similar to the one here on the
role of the subtraction scheme has also been held in the strong-
interaction case [4]. It was concluded that the spectral function
regularization (SFR) scheme was providing better convergence
properties than the dimensional-regularization one, owing to
its avoidance of spurious short-range contributions. To some
extent, the SFR scheme is close to the MS one considered
here, with the parameter �̃ introduced in the former case being
replaced by the quantity 2µ in the latter case.

VII. CONCLUSION

In the present work, we have compared different approaches
for incorporating the TPE contribution to the PV NN interac-
tion. They include a covariant one, which fully converges and
can thus be considered as a benchmark, and an effective-field-
theory and a time-ordered one, which can contain infinities.
The last two approaches involve two components at the
leading order, with a local character, whereas the covariant
one involves both local and nonlocal components. For a
given transition, one can thus compare the local components
obtained from different approaches with local components on
the one hand and the nonlocal ones on the other hand. These
two comparisons can allow one to assess the validity of the
assumption of dominant order in the EFT approaches as well
as the role ascribed to LECs.

We first notice that the EFT approach, the time-ordered-
diagram approach, and the limit of the covariant one at the
lowest nonzero order in the 1/M expansion essentially agree
with each other for the local terms. Possible discrepancies
involve ingredients that have been omitted (the contribution of
baryon resonances in particular) but these are unimportant for
the comparison. We can thus concentrate on a comparison
of the covariant approach with its LM limit. Taking into
account that this approach is determined up to contact terms,
one finds rough agreement. This is better seen by considering
the subtracted potentials in momentum space or intermediate
distances (r = 1 fm) in configuration space. Quantitatively,
the LM (EFT) approach tends to overestimate the “covariant”
results. At low q or at intermediate distances, the effect reaches
factors of 1.7 and 1.3, respectively, for the transitions 1S0–3P0

and 3S1–3P1. At very small but finite distances, the LM
(EFT) potentials become very singular and their contribution
to physical processes diverge. This divergence is canceled
by the contribution associated with the contact term so that
the total result is finite (after renormalization). This peculiar
behavior at and around r = 0 contrasts with the smooth but
diverging behavior in momentum space of the published EFT
TPE interaction. In this case, it turns out that the sign of the

potential is opposite to that one at finite distances, which
is the most relevant part. This suggests that this EFT TPE
potential is dominated by an unknown contact term, as far as
a comparison with the “covariant” result is concerned. The
problem disappears with a different subtraction scheme, such
as the minimal one with a dimensional-regularization scale
µ in the range (3–6)mπ . This last choice tends to minimize
the role of short distances, confirming the absence of a large
sensitivity to cutoffs observed elsewhere [10]. Interestingly,
the MS scheme corresponds to cutting off the dispersion
integrals at a value of t ′1/2 around 2µ, which, together with
the aforementioned value of µ, is about 1–2 GeV. This is quite
a reasonable value for separating the contribution of known
physics from the unknown part to be integrated out. We thus
believe that the choice of the MS scheme would be more
appropriate; the interaction then ascribed to the EFT TPE one,
would be a better representation of the most reliable part of the
TPE physics, which occurs at intermediate and large distances.

Comparing the nonlocal components to the local ones, one
finds that they are rather suppressed at large distances. For such
distances, the contribution to dispersion relations is expected
to come from values of t ′ smaller than M2. The suppression of
nonlocal terms then reflects the fact that they have an extra 1/M

factor in the 1/M expansion. At short distances, instead, the
contribution to dispersion relations comes from large values
of t ′. In this case, the local and nonlocal terms have the same
1/M order and they tend to have comparable contributions.
Another aspect of the dependence on the range concerns the
comparison with the ρ-meson exchange. Not surprisingly,
TPE dominates the ρ-meson exchange at long distances but,
because the potential is relatively small there, not much effect
is expected from this part on the calculation of observables.
The TPE contribution is slightly dominated by the ρ-meson
exchange one at medium distances and dominates again at
very short distances. Taking into account that the dominant
contributions come from short and intermediate distances, one
finds that the TPE contribution has a shorter range than the
ρ-meson exchange.

We looked at the TPE contribution in two physical pro-
cesses, pp scattering and radiative thermal neutron-proton
capture. Roughly, they confirm what could be inferred
from examining potentials. The results from the “covariant”
approach, calculated with the Av18 NN strong-interaction
model, essentially agree with earlier estimates based on
other models. The main discrepancies highlight the role
of inputs such as the restriction on the t ′ value in the
dispersion relations or the role of resonances in modeling
the πN scattering amplitude that enter these relations but
were omitted here for simplicity. Despite that plane-wave Born
amplitudes calculated with the EFT TPE and those from the
“covariant” approaches have opposite signs, it turns out that
their contributions to observables are relatively close to each
other. This feature points to the Av18 model, which produces
wave functions that evidence the effect of a strong repulsion at
short distances. Such a property is interesting in that the main
contribution to observables comes from intermediate and long
distances, where the derivation of the TPE potential is the most
reliable. It is thus found that the EFT TPE at NNLO tends to
overestimate the “covariant” results by about 50%, pointing
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to a non-negligible role of next-order corrections. This is
confirmed by the consideration of nonlocal terms, which
correspond to higher order terms. Their contribution is
especially important in neutron-proton capture, owing to a
destructive interference with the dominant one. Thus, the result
at the dominant 1/M order (LM) in this process exceeds
the “covariant” one by a factor of about 2–3. Interestingly,
the present results are rather insensitive to the subtraction
scheme since the coefficient 1 + ln(µ/mπ ) remains in the
range of a few units. This is a consequence of the strong
short-range repulsion present in the Av18 model. We however
stress the fortunate character of this result. The use of
nonlocal strong-interaction models, such as CD-Bonn or some
Nijmegen ones, could lead to different conclusions. Actually,
the dependencies on the model expected for the contribution
of the term 1 + ln(µ/mπ ) and the EFT potential calculated in
the MX scheme are likely to largely cancel.

By comparing different approaches to the description of the
PV TPE NN interaction, it was expected that one could learn
about their respective relevance. By implying a natural cutoff
of the order of the nucleon mass, the “covariant” approach
provides an unavoidable benchmark. This is of interest for
the EFT approach, which, up to now, has been considered at
the lowest 1/M order. In improving this approach, a first step
concerns the subtraction scheme. The minimal-subtraction one
(MS), which involves a renormalization scale µ, is probably
more favorable. By taking for this scale a value of the order of
the nucleon mass (or the chiral-symmetry-breaking scale �χ ),
the scheme better matches the separation of the interaction
into known and less-known contributions, corresponding,
respectively, to long and short distances. The LECs so obtained
could be less dependent on the strong-interaction model. The
next step should concern higher 1/M-order terms, whose
contributions are not negligible. This is likely to require a
lot of cautious work, as the singular behavior of these terms
at short distances increases with their order. Meanwhile, the
“covariant” results could provide both a useful estimate and a
relevant guide for their study.

ACKNOWLEDGMENTS

We thank the Institute for Nuclear Theory at the University
of Washington for its hospitality and the Department of Energy
for partial support during the completion of this work. We are
grateful to Prof. U. van Kolck for pointing out an inconsistency
of the simplest time-ordered-diagram approach with chiral-
symmetry expectations. The work of CHH was supported by
the Korea Research Foundation Grant funded by the Korean
Government (MOEHRD, Basic Research Promotion Fund)
(KRF-2007-313-C00178). The work of SA was supported by
the Korea Research Foundation and the Korean Federation
of Science and Technology funded by the Korean Government
(MOEHRD, Basic Research Promotion Fund) and SFTC Grant
No. PP/F000488/1. The work of CPL was supported in part by
the U.S. Department of Energy under Contract No. DE-AC52-
06NA25396.

APPENDIX A: SUBTRACTION OF THE ITERATED OPE
AND RELATED QUESTIONS

A. Expressions of the spectral functions, g(t ′)

Historically, the derivation of the isovector PV TPE
started with the calculation of the crossed diagram [12]. The
calculation of the noncrossed diagram, which implies the
removal of the iterated OPE contribution and thus requires
more care, came slightly later [13].5 Later works along the
same lines [14,15] considered the two types of diagrams on
the same footing. We first recall here some results relative
to the crossed and noncrossed diagrams with the notation of
Ref. [13] (functions gA(t ′), gB(t ′), gC(t ′), gD(t ′), and gE(t ′),
respectively). The functions gA(t ′) and gD(t ′) correspond to
the same spin-isospin structure. The two versions of the
iterated OPE discussed in the text, which concern the gD(t ′)
and gE(t ′) functions, are considered. The one employed in
Ref. [13] corresponds to the term with the factor (E + M) in
the integrand whereas the other one considered in later works
contains the factor 2E. The expressions read

gA(t ′) = 1

2M

(
G

x
− Hx

x2 + 4M2q2
π

)
,

gB(t ′) = x

M2
gA(t ′),

gC(t ′) = 1

2M

[
4qπ

χ2
+ H

M2
− G

(
1

M2
+ 1

χ2

)]
,

gD(t ′) = − x

M2m2
π

arctan

(
m2

π

2Mqπ

)
− G

2xM

+
∫ k2

+

k2−

dk2

k2
√

k2t ′ − (
m2

π + k2
)2

×
[

2Eor(E + M)

E2

(
k2 − x

4M
− E − M

2

)
+ x

2M2

]
,

gE(t ′) = 4x2

M2m2
π t ′

arctan

(
m2

π

2Mqπ

)
+ 2G

Mt ′

+
∫ k2

+

k2−

dk2

k2
√

k2t ′ − (
m2

π + k2
)2

×
[

2E or (E + M)

E2

(
(k2 − x)2

Mt ′

− 2(E − M)(k2 − x)

t ′
+ (E − M)2

M

)
− 2x2

M2t ′

]
,

(A1)

where the various functions qπ , x, χ,G, and H are given in
the text [Eq. (10)]. The writing slightly differs from that in
Ref. [13]. No nonrelativistic approximation is made for the in-
tegrands. Moreover, the original term, arctan(2Mqπ/m2

π )/m2
π ,

has been transformed into [π/2 − arctan(m2
π/2Mqπ )]/m2

π and
the factor π/2/m2

π has been inserted in the integral using the

5However, the paper contains errors that could obscure its under-
standing: The contents of Figs. 1 and 2 should be interchanged and
the number −1.61 in the table should be replaced by −0.61.
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relation
∫ k2

+
k2−

dk2/(k2
√
k2t ′ − (m2

π + k2)2) = π/m2
π . With this

rearrangement, it can be checked that the integrand has no
singularity at k2 = 0.

The g(t ′) functions considered in the present work are
related to these by the relations

g44(t ′) = K̃gC(t ′),
g34(t ′) = K̃gB(t ′),

(A2)
g56(t ′) = K̃[gA(t ′) + gD(t ′)],
g75(t ′) = K̃gE(t ′),

where K̃ is an overall constant given in Eq. (10). An important
point to note is that the contributions of the term G/2xM

in gA(t ′) and gD(t ′), which dominate at low energy, exactly
cancel. This cancellation is important in restoring the crossing
symmetry for pions, a property that is fulfilled by the effective
pion-nucleon interaction introduced in the EFT approach
(triangle diagram).

B. Asymptotic behavior of the g(t ′) functions

The asymptotic behavior of the spectral functions g44(t ′)
and g34(t ′), which only involve the crossed-diagram contribu-
tion, can be easily obtained from their expressions, Eqs. (9).
The dominant term is of the order 1/(M

√
t ′) up to some log

factors [see Eq. (11)]. The asymptotic behavior of the two
other spectral functions, g56(t ′) and g75(t ′), is considerably
more complicated. Their analytic part contains terms with the
behavior −K̃

√
t ′/2M3 and K̃

√
t ′/M3, respectively, whereas

the integral part requires careful examination.
The dominant term in the integral is given by the part

proportional to x and x2 in the integrands of g56(t ′) and g75(t ′),
respectively. As the integrands are the same up to a factor of
−4x/t ′, it is sufficient to consider the first case. Its contribution
becomes

I56 = −K̃x

∫ k2
+

k2−

dk2

k2
√

k2t ′ − (
m2

π + k2
)2

×
(

2E(orE + M)

4ME2
− 1

2M2

)

= K̃x

∫ k2
+

k2−

dk2

k2
√

k2t ′ − (
m2

π + k2
)2

×
[

(E − M)

2M2E

(
or

(E − M)(2E + M)

4M2E2

)]

= K̃x

∫ k2
+

k2−

dk2√
k2t ′ − (

m2
π + k2

)2

×
[

1

2M2E(E + M)

(
or

(2E + M)

4M2E2(E + M)

)]
, (A3)

where the first case corresponds to the quadratic-energy-
dependent Green’s function retained here and the second case
to the linear one. After some algebra, it is found that in the
large-t ′ limit and for a negligible pion mass, the integral with

the first integrand becomes

I56(t ′ → ∞) 	 −1

2
I75(t ′ → ∞)

	 K̃

M
√

t ′

[
t ′

2M2
− 1

8
ln

(
t ′

M2

)
+ 1

8
− 1

2
ln(2)

]
.

(A4)

The absence of the intermediate term 1/(M2) results from a
nontrivial cancellation. All the other terms not considered here
behave like 1/(M

√
t ′) (up to log terms) for the most important

ones. It can thus be checked that the contributions of order√
t ′/M3 to the spectral functions g56(t ′) and g75(t ′) cancel,

leaving contributions of order 1/(M
√

t ′).
Had we used the other Green’s function, the dominant

contribution resulting from performing the integral would read

I56(t ′ → ∞) 	 −1

2
I75(t ′ → ∞) 	 K̃

√
t ′

2M3

2 + π

4
, (A5)

and the corresponding g(t ′) functions would be given by

g56(t ′ → ∞) 	 −1

2
g75(t ′ → ∞) 	 K̃

√
t ′

2M3

π − 2

4
. (A6)

Thus, in contrast to the quadratic-energy-dependent Green’s
function, no cancellation of the dominant terms is found with
the consequence that the dispersion integrals involving the
spectral functions g56(t ′) and g75(t ′), Eqs. (5), do not converge
(logarithmic divergence). Moreover, these functions evidence
a sign change around t ′ = 20–25 GeV2. Actually, this has
little effect on the spectral functions at low values of t ′ but, of
course, this prevents one from getting convergent results. The
sensitivity of the configuration-space potentials did not exceed
10% at r = 1 fm [15].

APPENDIX B: PARITY-VIOLATING TWO-PION
EXCHANGE N N POTENTIAL FROM

EFFECTIVE FIELD THEORY

In this Appendix, we give the details of the momentum-
space contributions from the TPE diagrams shown in Fig. 2,
employing a heavy-baryon chiral Lagrangian and the di-
mensional regularization in the d-dimensional space-time,
d = 4 − 2ε.

From diagrams (b), (c), and (d), we get

V(b) = −i(�τ1 × �τ2)z(�σ1 + �σ2) · �q πgAh1
π√

2(4πfπ )3

×
[

1

ε
− γ + ln(4π ) + ln

(
µ2

m2
π

)
+ 2 − 2L(q)

]
,

(B1)

V(c) = −i(�τ1 + �τ2)z(�σ1 × �σ2) · �q 2
√

2πg3
Ah1

π

(4πfπ )3

×
[

1

ε
− γ + ln(4π ) + ln

(
µ2

m2
π

)
+ 2 − 2L(q)

]

− i(�τ1 × �τ2)z(�σ1 + �σ2) · �q
√

2πg3
Ah1

π

2(4πfπ )3
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×
{
−3

2

[
1

ε
− γ + ln(4π ) + ln

(
µ2

m2
π

)
+ 4

3

]

+ 3L(q) − H (q)

}
, (B2)

V(d) = −i(�τ1 × �τ2)z(�σ1 + �σ2) · �q
√

2πg3
Ah1

π

2(4πfπ )3

×
{
−3

2

[
1

ε
− γ + ln(4π ) + ln

(
µ2

m2
π

)
+ 4

3

]

+ 3L(q) − H (q)

}
, (B3)

where L(q) and H (q) are defined in Eq. (13), and the Euler
number is given by γ = 0.5772 · · ·. The quantity µ represents

the scale of the dimensional regularization, and q = |�q| with
�q defined by Eq. (2). We note that we have employed,
in the calculation of diagram (d), the same prescription to
subtract the two-nucleon-pole contribution as in Ref. [6]
[Eq. (C.3)].

All these potentials from the loop diagrams have infinities
(i.e., the 1/ε terms). Along with the finite constant terms, they
are renormalized by the counter terms (PV NN contact terms)
C̃2 + C̃4 and C6 (see Eq. (5) in Ref. [6]). In the MX scheme,
the L(q) and H (q) terms, which are the only ones to contribute
to the finite-range potential, are retained. This procedure fixes
the associated contact term. In the MS scheme, besides L(q)
and H (q) terms, an extra term, ln(µ2/m2

π ) + 2, (written as
2[1 + ln(µ/mπ )] in the main text), which produces a contact
term, appears.
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