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Pion-less effective field theory on low-energy deuteron electrodisintegration
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In view of its relation to Big Bang nucleosynthesis and a reported discrepancy between nuclear models and
data taken at S-DALINAC, electro-induced deuteron breakup 2H(e, e′p)n is studied at momentum transfer q <

100 MeV and close to threshold in the low-energy nuclear effective field theory without dynamical pions, EFT(π/).
The result at next-to-next-to-leading order (N2LO) for electric dipole currents and at next-to-leading order (NLO)
for magnetic ones converges order-by-order better than quantitatively predicted and contains no free parameter. It
is at this order determined by simple, well-known observables. Decomposing the triple differential cross section
into the longitudinal-plus-transverse (L + T ), transverse-transverse (TT), and longitudinal-transverse interference
(LT ) terms, we find excellent agreement with a potential-model calculation by Arenhövel and co-workers, based
on the Bonn potential. Theory and data also agree well on σL+T . There is however no space on the theory side
for the discrepancy of up to 30%(3σ ) between theory and experiment in σLT . From universality of EFT(π/), we
conclude that no theoretical approach with the correct deuteron asymptotic wave function can explain the data.
Undetermined short-distance contributions that could affect σLT enter only at high orders (i.e., at the few-percent
level). We notice some issues with the kinematics and normalization of the data reported.

DOI: 10.1103/PhysRevC.77.064001 PACS number(s): 21.45.Bc, 25.10.+s, 25.30.Fj, 27.10.+h

I. INTRODUCTION

The deuteron is the simplest nucleus, playing the same
fundamental role in nuclear physics as the hydrogen atom
in atomic physics. Its electromagnetic properties have been
studied in great detail both theoretically and experimentally—
among others in photodisintegration (see, e.g., Refs. [1,2] for
reviews) and electrodisintegration (see, e.g., Refs. [3,4] and
references therein). The latter process has the advantage of
allowing for an independent variation of energy and momen-
tum transfer. Most experiments have been performed at higher
energy transfers and are in good agreement with potential-
model calculations. However, one experiment [5,6] at the
S-DALINAC accelerator of TU Darmstadt (Germany) examined
in 2002 the triple-differential cross section for d(e, e′p)n
at low momentum transfer (<60 MeV/c) and close to the
breakup threshold, concentrating on the decomposition into the
different structure functions. For the longitudinal-transverse
interference cross section σLT , a discrepancy of about 30%
or up to three standard deviations was discovered relative to
the prediction by Arenhövel and co-workers [4,5,7]. As the
discrepancy is less pronounced with increasing momentum
and energy transfer, this does not necessarily contradict other
experiments at higher transfers, which are in good agreement
with the same potential-model calculations (see, e.g., Ref. [8]).

The disagreement raises however a serious question: The
same reaction at the real-photon point (i.e., photo-induced
low-energy deuteron breakup and recombination, np ↔ dγ )
is the first and very sensitive step in Big Bang nucleosynthesis
(BBN). Indeed, both the higher energy regime of BBN-relevant
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photodissociation and the S-DALINAC experiment on elec-
trodissociation are most sensitive to the same electric dipole
transition amplitude E1V . Because of the great difficulty
of performing very low energy experiments, the lack of
data for this reaction in the BBN-relevant energy region
E ∈ [20; 300] keV makes nuclear theory at present the sole
provider of input for the BBN network codes [9,10]. While
this has also triggered further experiments at S-DALINAC [11]
and the High-Intensity γ -ray Facility HIγ S at TUNL [12,13],
the accuracy claimed by theoretical approaches [1,14–16] is
not yet matched. In view of this, the S-DALINAC findings are
the more troubling: How well does theory understand the
simplest nucleus at low energies, if one of the conceptually
simplest nontrivial processes seems to disagree with data?
Does this reflect deficits in our understanding of the long-range
NN force, meson-exchange currents, “off-shell effects” and
cutoff dependence, or even gauge invariance? The analysis
in Ref. [5] notes that the potential-model approach “without
meson-exchange, isobar and relativistic currents accounts for
99% of the final result for σLT , leaving no room for further
improvement” and continues: “At present, there exists no
explanation of this surprising result in the framework of
conventional nuclear theory. It is an open question whether
an alternative interpretation can be offered by effective
field theory . . . .” In this work, we answer this question
by concluding that no consistent theoretical approach can
accommodate the data of Ref. [5].

We employ pion-less effective field theory EFT(π/) in the
variant in which the effective range is re-summed into the
two-nucleon propagator [17–23]. EFT(π/) is well tested in
low-energy reactions with up to three nucleons (see, e.g.,
Refs. [24–27] for reviews). Even properties of 4He [28–30] and
6Li [31] are now studied successfully. In particular, np → dγ

was studied because of its relevance for BBN [15,32,33],
culminating in a N4LO calculation by Rupak [14] with a
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theoretical accuracy of <1%. We here study the S-DALINAC

data [5] within the same framework, noting that the lowest
energy data show the biggest discrepancy and lie well within
the range of applicability of EFT(π/). At momenta below
the pion mass, probes cannot resolve the long-range part
of the NN potential as nonlocal. Thus, the most general
Lagrangean compatible with the symmetries of QCD can be
built out of contact interactions between nucleons as the only
dynamical effective hadronic low-energy degrees of freedom.
EFT(π/) is the unique low-energy version of QCD and allows
often (as in this case) for simple, closed-form results. The
amplitude is expanded in a small, dimensionless parameter
Q = ptyp

�π/
: the ratio between a typical low-momentum scale

ptyp of the process involved and the breakdown scale �π/,
set by the mass mπ of the pion as the lightest particle not
included as a dynamical effective degree of freedom. This
allows one to estimate the theoretical uncertainties induced
by neglecting higher order terms in the momentum expansion
of all forces. With a typical low-momentum scale set by the
inverse deuteron size, one obtains Q ≈ 1

3 . Looking at the
order-by-order convergence of all applications considered so
far, one finds this estimate to be quite conservative and the
actual convergence pattern to be much better. Dimensional
regularization is employed in the two-nucleon system to
renormalize high-momentum parts of loops, preserving all
symmetries at each step. External currents and relativistic
effects are included in a systematic, manifestly gauge-invariant
way. No ambiguities arise from meson-exchange currents or
off-shell effects.

The presentation is organized as follows: After recalling
the essentials of EFT(π/) in Sec. II, we give the cross section
and individual contributions for deuteron electrodisintegration
up to next-to-next-to-leading order (N2LO) for electric dipole
transitions E1V and up to next-to-leading order (NLO)
for magnetic isovector dipole transitions M1V . Section III
contains the detailed comparison with data, focusing on
kinematics in the experiment (Sec. III A), the full cross section
(Sec. III B) and its decomposition into the structure functions
(Sec. III C), data normalization (Sec. III D), and possible
higher order effects (Sec. III E). After an experiment at slightly
higher energies [8] is discussed in Sec. III F, the conclusions
of Sec. IV are followed by an Appendix with some useful
loop integrals and the explicit form of the hadronic matrix
elements. Further background and details are available in
S. Christlmeier’s Diplom thesis [34].

II. FRAMEWORK AND CALCULATION

A. Kinematics and cross section

The kinematic variables of the disintegration process
d(e, e′p)n are illustrated in Fig. 1. Two frames of reference
are conventionally used (see, e.g., Refs. [3,4,35]).

On the one hand, the leptonic part e → γ ∗e′ of the process is
conveniently discussed in terms of variables in the laboratory
frame (the deuteron rest frame), denoted by the superscript
“lab.” The four-momenta are (Elab

0 , �klab) for incoming and
(Elab

e , �k′lab) for outgoing electrons. The scattering angle be-

FIG. 1. (Color online) Kinematics of deuteron electrodisintegra-
tion, reproduced with the kind permission of the authors of Ref. [5].
The electron kinematics refers to the laboratory frame, while the
proton variables are defined in the center-of-mass frame of the
two-nucleon final state.

tween the momenta �klab and �k′lab of the incoming and outgoing
electron is �lab

e . The energy and momentum transfer of the
virtual photon is

Elab
X := ωlab = Elab

0 − Elab
e , �q lab = �klab − �k′lab. (2.1)

The hadronic part of the process, γ ∗d → pn, is on the
other hand more conveniently calculated in its own rest frame
(i.e., in the center-of-mass frame of the outgoing nucleons
and thus of the virtual photon and deuteron). Variables in this
frame carry no superscript. The outgoing proton (neutron)
has momentum �p(− �p) and kinetic energy p2

2M
, p := | �p|.

The scattering angles in this system are defined by �p · �q =
pq cos �p and �p · (�q × �k) ∝ sin �p. Thus, �p is the angle
between the virtual photon and the proton, and �p is the angle
between the scattering plane, spanned by the incoming and
outgoing electron momenta, and the reaction plane, spanned
by the proton and photon momenta.

A boost along the momentum transfer �q transforms between
the two frames:

β = q lab

Md + ωlab
, γ = 1√

1 − β2
, (2.2)

where Md = 2M − B is the deuteron mass. Hence, the
quantities defined in the laboratory frame in Eq. (2.1) transform
to the proton-neutron c.m. frame as

ω = γωlab − βγ q lab, q = βγMd. (2.3)

We choose as the five independent variables of this process
the energies Elab

0 and Elab
e (or, equivalently, Elab

X = Elab
0 −

Elab
e ) and the scattering angle �lab

e of the electrons in the
laboratory frame, plus the proton emission angles �p and
�p in the proton-neutron c.m. frame. The momentum of the
outgoing proton is

p =
√

(ω − B)M + q2
M

2Md

. (2.4)

The momentum vectors are therefore parametrized such that
�q defines the z-direction:

�q lab = (0, 0, 1)q lab, (2.5)

�q = (0, 0, 1)q, (2.6)
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�klab = (
sin �lab

0q , 0, cos �lab
0q

)
klab, (2.7)

�k′lab = (
sin �lab

eq , 0, cos �lab
eq

)
k′lab, (2.8)

�p = (sin �p cos �p, sin �p sin �p, cos �p)p, (2.9)

with the angles between the photon and the incoming or
outgoing electrons translating as

cos �lab
0q = klab − k′lab cos �lab

e

q lab
,

(2.10)

cos �lab
eq = klab cos �lab

e − k′lab

q lab
.

Since the transformation between these two frames is given
by a boost along �q, it does not affect the azimuthal angle
�p ≡ �lab

p .

The electron momenta are �k2
lab = E2

0 lab − m2
e and �k′2

lab =
E2

e lab − m2
e . Although the electron mass me = 0.511 MeV

does not play a role for the experiment at hand, we keep in
mind applications to corners of phase space where its effects
could be felt (e.g., in back-scattering [11]).

The triple-differential cross section is then derived from the
amplitude A:

d3σ

dElab
e d	lab

e d	p

= k′labpMdM
2

8(2π )5
(
M + p2

2M

)√(
MdE

lab
0 + �q lab · �klab

)2 − M2
dm2

e

|A|2

(2.11)

= d3

dElab
e d	lab

e d	p

(σL + σT + σLT cos �p + σT T cos 2�p),

(2.12)

where the spherical angles are 	lab
e = (�lab

e ,�lab
e ≡ 0) and

	p = (�p,�p). In the second line, the dependence on
the azimuthal proton emission angle �p is decomposed
into the longitudinal-plus-transverse parts σL + σT and the
interference terms σLT and σT T [3,4,35]. For any process to
contribute to either of the interference terms, it must from
Eq. (2.9) depend on those components of the outgoing proton
momentum �p that are transverse to the photon momentum �q.
This will become important in the analysis later.

The scattering amplitude A is rewritten in terms of the
photon propagator D

(γ )
µν , the hadronic current J

µ

hadr to be
calculated in EFT(π/) in the following, and the leptonic current
lµ whose contribution to lowest order in the fine-structure
constant is easily found:

A = lµD(γ )
µν J ν

hadr. (2.13)

Current conservation implies qµlµ = 0 = qµJ
µ

hadr and is at
this order in the fine-structure constant α equivalent to gauge
invariance.

If the variables of Ref. [5] are interpreted as discussed in
Sec. III A, the S-DALINAC experiment was performed at two
sets of incident electron energies Elab

0 ∈ {50; 85} MeV, a range
of photon energies Elab

X ∈ [8; 16] MeV, electron scattering
angle �lab

e = 40◦, and azimuthal angle �p = 45◦. This leads to
photon momentum transfers q ∈ [32; 65] MeV and outgoing

proton momenta p ∈ [74; 106] MeV in the proton-neutron
c.m. frame. These are the relevant external low-momentum
scales of the hadronic matrix element.

B. Lagrangean and parameter fixing

EFT(π/) allows one to address the questions raised by the
S-DALINAC data in a model-independent, systematic setting
with a reliable estimate of the theoretical uncertainties, free of
ambiguities, such as off-shell effects and cutoff dependence.
As the parts of the effective Lagrangean of EFT(π/), its power-
counting rules, and the parameter fixing necessary for this work
have been discussed extensively by Beane and Savage [22], we
repeat them here only briefly. The Feynman rules are also given
in Ref. [34] Appendix A. The Lagrangeans are

LN = N †
[

iD0 +
�D2

2M
+ e

2M
(κ0 + κ1τ3)�σ · �B

]
N, (2.14)

Ls = −s†a

[
iD0 +

�D2

4M
− �s

]
sa − ys

[
s†aN

T P (1S0)
a N + H.c.

]
,

(2.15)

Lt = −t
†
i

[
iD0 +

�D2

4M
− �t

]
ti − yt

[
t
†
i N

T P
(3S1)
i N + H.c.

]
− Csd√

Mρd

[
δixδjy − 1

3
δij δxy

]
[t†i (NTOxy,jN ) + H.c.]

− CQ

Mρd

t
†
i [iD0,Oij ]tj , (2.16)

Lst = eL1

M
√

r0ρd

[t†i s3Bi + H.c.]. (2.17)

The one-nucleon Lagrangean LN of the nucleon isodoublet
N = (

p

n

)
with isospin-averaged mass M = 938.9 MeV con-

sists of two parts: the kinetic term with minimal substitution,
Dµ = ∂µ + ieQAµ, where Q = 1

2 (1 + τ3) is the nucleon

charge matrix and α = e2

4π
= 1

137 the fine-structure constant,
and the interaction via the isoscalar (isovector) magnetic
moments, κ0 = 0.44(κ1 = 2.35) in nuclear magnetons. The
spin (isospin) Pauli matrices with vector (isovector) index
i = 1, 2, 3 (a = 1, 2, 3) are denoted by σi(τa).

The Lagrangean for the auxiliary dibaryon field sa(ti) in
the 1S0(3S1) channel is Ls(Lt ) [17–19]. (In EFT, this was
first considered in Ref. [36].) As we probe only the np

system, Dµ = ∂µ + ieAµ for both dibaryons. The projec-

tion operators are P (1S0)
a = 1√

8
σ2τ2τa, P

(3S1)
i = 1√

8
σ2σiτ2. The

auxiliary-field parameters are matched to the effective-range
expansion of NN scattering such that the effective range is
re-summed to all powers to speed up convergence and simplify
calculations of some higher order effects [17–23]:

ys =
√

8π

M
√

r0
, �s = 2

Mr0

(
1

a0
− µ

)
, yt =

√
8π

M
√

ρd

,

�t = 2

Mρd

(
γ − ρd

2
γ 2 − µ

)
. (2.18)

The parameter µ encodes the linear cutoff divergence of
individual diagrams, calculated in the power-divergence
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subtraction (PDS) scheme version of dimensional regulariza-
tion [37,38]. It is imperative for self-consistency that physical
amplitudes are independent of µ. This is indeed the case.

For the spin-singlet, the scattering length and effective
range of the np system are probed in deuteron electrodisin-
tegration: a0 = −23.71 fm, r0 = 2.73 fm. Parameters for the
spin-triplet are determined from the effective-range expansion
about the observed real bound state, namely the deuteron
with binding energy B = 2.225 MeV (corresponding to a
momentum γ = √

MB = 45.70 MeV) and effective range
ρd = 1.764 fm. Therefore, the deuteron wave function shows
the correct exponential decay and normalization Z already at
leading order (LO) in EFT(π/) [22,39]:

�deuteron(r → ∞) =
√

Z

2πρd

e−γ r

r
with Z = γρd

1 − γρd

.

(2.19)

The last two terms of Lt parametrize SD-wave mixing in the
spin-triplet, with

Oxy,j = − 1
4

( ←
Dx

←
DyP

(3S1)
j + P

(3S1)
j

→
Dx

→
Dy

− ←
DxP

(3S1)
j

→
Dy − ←

DyP
(3S1)
j

→
Dx

)
, (2.20)

Oij = −( �Di
�Dj − 1

3δij
�D2

)
(2.21)

operators, which ensure that Lst is manifestly gauge invariant.
Their strengths are determined from the asymptotic ratio
ηsd = 0.0254 of D- and S-wave components of the deuteron
wave function and of the deuteron quadrupole moment µQ =
0.2859 fm2 [22]:

Csd = 6
√

πηsd√
Mγ 2

, µQ = 2Z

[
yt

Csd√
Mρd

M2

32π

2

3γ
+ CQ

Mρd

]
.

(2.22)

Here, Csd contributes at LO, and CQ provides a NLO
correction of about 50%.

Finally, Lst in Eq. (2.17) parametrizes transitions between
the 1S0 and 3S1 channels by a magnetic field acting on a
dibaryon. Its strength is determined by the thermal cross sec-
tion σ (E = p2

M
= 1.264 × 10−8 MeV) = (334.2 ± 0.5) mb

[40] for radiative capture of neutrons on protons, np → dγ .
At thermal energies, it is dominated by isovectorial M1V

transitions. Magnetic moment interactions are LO, and the
parameter L1 in Lst enters as a NLO correction of about 50%,
whereas electric transitions are irrelevant. The free parameter
is thus determined from the thermal cross section [22]

σ (M1V ) = 2αZ(p2 + γ 2)3

pM3

∣∣∣∣∣ 1

− 1
a

+ 1
2 r0p2 − ip

∣∣∣∣∣
2

×
[
κ1

γ − 1
a

+ 1
2 r0p

2

p2 + γ 2
+ L1

2

]2

(2.23)

as L1 = −4.41 fm [34] or L1 = −4.0 fm [22], depending on
whether terms quadratic in L1 are kept. Both variants differ by
10% <∼ Q, as expected from L1 being a higher order correction.

We now state the power-counting rules of EFT(π/) in the
version in which the effective-range parameters are treated

as unnaturally large and thus are kept at LO together with
the scattering lengths [22]. The typical low-energy c.m.
momentum �p and kinetic energy E/2 of a nucleon get counted
as

| �p| ∼
√

ME ∼ γ ∼ 1

ρd

∼ 1

r0
∼ 1

a0
∼ µ ∼ Q�π. (2.24)

Hence, the wave function renormalization scales as Z ∼ 1.
SD mixing is suppressed by Q2 with respect to pure S-wave
amplitudes because of the two derivatives in Eq. (2.16). Finally,
the ratio of the isoscalar and isovector magnetic moments is
κ0/κ1 ≈ 1/5 <∼ Q. Therefore, κ0 is neglected as numerically
higher order in the following [41].

Since the gauge field is minimally coupled, these rules are
simple to extend: The zero component of the gauge field Aµ

scales like an energy, A0 ∼ Q2; its three-vector components
scale like a momentum, �A ∼ Q. As seen in the previous sec-
tion, photon energies for the S-DALINAC kinematics of deuteron
electrodisintegration lie in the range Elab

X ∈ [8; 16] MeV,
corresponding to EX ∈ [6; 14] MeV ∼ [Q2�2

π/ /M; Q2�π/],
photon momenta in the range q ∈ [32; 65] MeV ∼ Q�π/, and
outgoing proton momenta in the range p ∈ [74; 106] MeV ∼
Q�π , approaching �π ≈ mπ . Convergence must therefore be
checked with care.

C. Electric contributions to N2LO

Electric dipole transition amplitudes E1V dominate not
only the photodissociation cross section at the higher end of the
energy range relevant for BBN but also electrodisintegration
for p >∼ 20 MeV. To N2LO, the hadronic currents have the
structure

J
(E1V ) µ

hadr = ie
√

Z
1√
8

(N †
pσ iσ2N

∗
n )εj

(d)J
µ

ij , (2.25)

where the proton and neutron spinors Np/n are specified ex-
plicitly. The indices on the current Jµ

ij indicate the polarization
j of the initial deuteron and the spin i of the pn-triplet final
state. By averaging over spins and polarizations, the electric
contribution to Eq. (2.11) is

|AE1V
|2 = (4πα)2

(ω2 − q2)2

Z

6

{[
k

′µ
labJ

†ij
µ kν

labJ
ij
ν + (µ ↔ ν)

]
− (

klab
µ k

′µ
lab − m2

e

)
J †ij

ν J νij
}
. (2.26)

The three diagrams contributing at leading order, Q0, are
shown in Fig. 2. In the last two graphs, the photon couples
to the deuteron, which is at this order a pure S-wave state.
These diagrams are therefore independent of the direction of

FIG. 2. (Color online) The LO electric contributions to the
hadronic current. The double line denotes the spin-triplet dibaryon
intermediate state. There is no NLO contribution.
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FIG. 3. (Color online) The order-Q2 (N2LO)
electric contributions. The SD-mixing vertex pro-
portional to CSD is denoted by a circle; further
notation as in Fig. 2.

the outgoing proton momentum �p and hence via Eq. (2.9) of
the proton emission angle �p. They thus do not contribute
to the longitudinal-transverse and transverse-transverse parts
of the cross section [Eq. (2.12)]. In contradistinction, the
final-state interaction in diagram (e1) depends on �p and thus
contributes to σLT and σT T .

There are no electric contributions at NLO. The first
nonzero corrections, listed in Fig. 3, appear at N2LO. All
arise from SD mixing proportional to CSD in the Lagrangean
[Eq. (2.17)]. Relative to the LO contributions, these diagrams
are suppressed by two more derivatives (i.e., two more powers
of Q ≈ 1

3 ) and thus should contribute at most ( 1
3 )2 ≈ 10%

of the LO terms. The error one makes by truncating the
series at this order should be ( 1

3 )3 ≈ 4%. The convergence
is indeed much better because the asymptotic SD ratio is
numerically ηsd = 0.0254 ≈ Q3 (i.e. N3LO). Even at the
S-DALINAC kinematics of photon momenta as large as 78 MeV
(Elab

0 = 50 MeV, Elab
X = 9 MeV, �lab

e = 40◦, and �p = 45◦),
they amount to not more than 1% of the total; see the discussion
and figures in Secs. III B and III C as well as Ref. [34] for
details. Only the diagrams (sd1-3) and (sd6) contribute to the
interference terms σLT and σT T via their final-state interaction
or via the D-wave component induced into the deuteron and
np final-state wave function.

The resulting electric currents up to N2LO are detailed in
Appendix B. At each order, they are manifestly gauge invariant
and cutoff independent.

D. Magnetic contributions to NLO

Magnetic dipole transitions M1V dominate the inverse
reaction np → dγ at the lower end of the energy range relevant
for BBN, but they are usually small at S-DALINAC kinematics.
We therefore include them only to NLO (Fig. 4). The LO part is
set by the isovector magnetic moment κ1; the only NLO graph,
(m4), comes from the singlet-triplet coupling [Eq. (2.17)].

The hadronic currents from magnetic contributions can to
this order be written as

J
(M1V ) k
hadr = e

√
Zεijkεi

(d)
1√
8

(N †
pσ2N

∗
n ) J j , (2.27)

and the squared amplitude is, after averaging over initial states,

|AM1V
|2 = (4πα)2

(ω2 − q2)2

Z

6
(δjmδkn − δkmδjn)

× [
k′ lab
n J †j klab

k Jm + k′ lab
k Jmklab

n J †j

+ (
klab
µ k′labµ − m2

e

)
J †j Jmδkn

]
. (2.28)

The vertex where a magnetic photon couples to a dibaryon
largely reduces the amplitude, although it is formally NLO.
Compared to the electric amplitude, the magnetic one is
suppressed by two orders of magnitude in the energy regime
of the S-DALINAC experiment, except for the vicinity of
�p = 70◦; see Figs. 5 to 8.

It is not too difficult to see that the only angular dependence
in the magnetic amplitude comes from the �p · �q terms in
the intermediate nucleon propagators, as the deuteron and
outgoing np system are again pure S states in these diagrams.
Thus, the amplitudes only test the longitudinal part of �p. There
is no �p dependence, and therefore magnetic transitions at
this order do not contribute to σLT and σT T interference terms
[Eq. (2.12)].

The explicit form of the resulting magnetic currents can
be found in Appendix C. At each order, they are manifestly
gauge invariant and cutoff independent.

III. THEORY CONFRONTS DATA

We now compare the results of EFT(π/) to the S-DALINAC

data reported in Refs. [5,6] and to the potential model
calculation by H. Arenhövel and co-workers, which is based on
the Bonn-C r-space potential and includes final-state effects,

FIG. 4. (Color online) The magnetic contributions to the hadronic current at LO (m1–m3) and NLO (m4). The blob denotes a magnetic
photon coupling via the isovectorial magnetic moment, the square the dibaryon-photon interaction [Eq. (2.17)] proportional to L1, and the
dashed double line the spin-singlet dibaryon intermediate state; further notation as in Fig. 2.
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FIG. 5. (Color online) Examples of the triple-differential cross
section for Elab

X = 9 MeV at Elab
0 = 85 MeV, compared to S-DALINAC

data [5] (with combined statistical and systematic error bars)
and to the result by Arenhövel and co-workers [4,5,7] (squares).
(a) Interpretation of “EX = 9 MeV” as given in the total c.m. frame,
the pn c.m. frame, or the laboratory frame. (b) EFT(π/) at Elab

X =
9 MeV (solid line) and E

(pn)−c.m.

X = 9 MeV (i.e., Elab
X = 10.6 MeV;

dashed). The dotted curve is the double-differential cross section per
MeV, obtained by integrating over the bin Elab

X ∈ [8; 10] MeV; the
difference from the solid line is almost invisible. (c) Comparison on a
logarithmic scale of the EFT(π/) contributions: electric transitions up
to LO and N2LO, respectively (recall that NLO is zero), and magnetic
transitions up to NLO.

meson-exchange currents, isobar configurations, and (in our
case negligible) relativistic effects [4,5,7]. Before we consider
the energy and angular dependence of the triple-differential
cross section and its decomposition, we first have to address a
subtle kinematical point.

A. Kinematics, again

In Sec. II A, we adopted the standard kinematics of
electrodisintegration, according to which the leptonic part
of the cross section is calculated in the laboratory frame
(deuteron at rest), while the hadronic part is determined in
the proton-neutron c.m. frame of the hadronic subprocess
γ ∗d → pn. In a slight but revealing abuse of language, the
latter is often referred to as “the c.m. frame.” According
to a literal reading of Ref. [5], the S-DALINAC experiment
would have been analyzed in the center of mass frame of the
whole process, resulting in large deviations between theory
and experiment both in shape and normalization even of the
full triple-differential cross section (see Fig. 5). We take this
to be a slip of the tongue and assume that the experiment was
analyzed by using standard kinematics [3,4,35].

Furthermore, the variable that labels the energy transferred
by the photon in the S-DALINAC experiment is said to be
obtained “after transformation to the center-of-mass system”
[5]. However, agreement of the data with both the potential-
model and EFT(π/) calculation is found only if the S-DALINAC

variable “EX” refers to the laboratory frame. The point
E

(pn)−c.m.

X = 9 MeV would correspond to Elab
X = 10.6 MeV

and a much smaller cross section, so that the resulting curve
would again substantially deviate from data (see Fig. 5). We
therefore interpret “EX” in [5] as Elab

X , defined in the rest frame
of the deuteron target.

The experimental results are reported in four energy
bins, Elab

X = [8; 10], [10; 12], [12; 14], and [14; 16] MeV. We
interpret them such that the count rate was normalized to
give the double-differential cross section per MeV. Thus,
we compare the triple-differential cross section for Elab

X to
the double-differential one per MeV. The difference between
averaging over the 2-MeV range and taking the mean value
of Elab

X can be neglected down to Elab
X = 6 MeV, as shown in

the plot; see also Ref. [34]. If EX is interpreted as given in the
pn c.m. frame and the cross section as given over the whole
2-MeV bin, the data would consistently overshoot the theory
results by 10% to 20%.

We are grateful to H. Arenhövel [7] for confirming that the
potential-model results reported in Ref. [5] were determined
in the same kinematics used here.

B. Total differential cross section

Comparing in Fig. 6 the differential cross sections re-
ported in Ref. [5] at Elab

0 = 50 and 85 MeV in several
Elab

X bins confirms our interpretation of the experiment’s
kinematical variables. At Elab

0 = 85 MeV, additional data at
large �p are available and within their (combined statistical
and systematic) error bars these are compatible with both
theoretical approaches. We note excellent agreement with the
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FIG. 6. (Color online) EFT(π/) results for the differential cross section, compared to data and calculations by Arenhövel and co-workers.
(a) Data set at smallest energy and momentum transfer: Elab

0 = 50 MeV, Elab
X = 9 MeV. (b) Data sets at largest energy and momentum transfer:

Elab
0 = 85 MeV, Elab

X = 15 MeV. (e), (f) Data set at Elab
0 = 85 MeV, Elab

X = {11; 13} MeV. Comparisons of EFT(π/) contributions are in panels
(c) and (d) included for the smallest and largest energy and momentum transfer: electric transitions up to LO and N2LO, respectively (NLO is
zero), and magnetic transitions up to NLO.

calculation by Arenhövel and co-workers and with the data
within error bars. In Fig. 6, a decomposition of the different
contributions in EFT(π/) for the smallest and the largest energy
and momentum transfer of the S-DALINAC data is also shown.
As expected, the LO electric transitions dominate except
around the minimum at �p ≈ 70◦, where N2LO contributions
and magnetic transitions play a significant role. That means
that by taking into account only minimal coupling of photons

to nucleon and dibaryon fields, disintegration can be described
highly accurately within EFT(π/). SD mixing, being the only
correction up to N2LO, contributes even less than estimated
by power counting. This good convergence confirms our
confidence that our results are reliable. Less-known short-
distance contributions play a very minor role (see Sec. III E).

The convergence plots also reveal an interesting facet: The
N2LO contribution has increased slightly for higher energy
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FIG. 7. (Color online) Decomposition of the triple-differential cross section into (top to bottom) longitudinal-plus-transverse (L + T ),
longitudinal-transverse (LT ), and transverse-transverse (T T ) parts at Elab

0 = 85 MeV, normalized to σL+T at �p = 0. Left column: Elab
X =

9 MeV; right column: Elab
X = 11 MeV. No data are available for the T T interference cross section.

and momentum transfer, but much less than expected from
naive dimensional analysis. Deviations between the potential-
model and EFT(π/) results are also slightly more pronounced
there, especially at large �p. As typical momenta in the
process approach the breakdown scale �π/ of EFT(π/), the
dimensionless parameter Q = ptyp/�π/ approaches unity and
the expansion is rendered useless. The momentum transfer q ∈
[32; 56] MeV is comparable to the intrinsic low-momentum
scale of the two-nucleon system, namely the deuteron “binding
momentum” γ ≈ 45 MeV. The momentum of the final-state
proton in the proton-neutron c.m. frame ranges however
from 75 to 106 MeV and hence becomes at the upper end
comparable to �π/ ≈ mπ . One would have expected this to

affect in particular the final-state interaction diagrams and the
SD-mixing contributions at N2LO, which depend on �p in
the numerator. The observed enhancement is however much
smaller. The good convergence of EFT(π/)—even for momenta
close to the breakdown scale—was found also in many other
applications (see, e.g., Refs. [25–27,42]).

C. Comparing structure functions

The main goal of the S-DALINAC experiment [5] was
a decomposition of the contributions of different structure
functions in Eq. (2.12): the longitudinal-plus-transverse cross
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FIG. 8. (Color online) The same as Fig. 7, but for Elab
X = 13 MeV (left column) and Elab

X = 15 MeV (right column).

section and the LT - and T T -interference parts. However,
the uncertainties in the data turned out to be too large for
a meaningful comparison of σT T to theory. Studying the
interference terms provides information about the impact of
final-state interactions, since these can be �p dependent, as
reiterated in Sec. II A. The contributions of the L + T ,LT ,

and T T terms are shown in Figs. 7 and 8 for Elab
0 = 85 MeV

and Elab
X = {9; 11; 13; 15} MeV, again compared to data and

the potential-model result.
The results are normalized to d3(σL + σT )/(dElab

e

d	lab
e d	p) at �p = 0◦ to make the comparison independent

of the absolute normalization of the data. This also mutes
the question of whether the cross sections were averaged or
summed over each Elab

X bin. The error of the value to which

the data are normalized has been taken into account in all error
bars. One sees that σL + σT dominates, whereas σLT and σT T

are one and two orders of magnitude smaller, respectively.
However, the interference terms become more relevant with
increasing energy transfer, reflecting the growing impact of
final-state interactions. In each figure, the result for the LO
electric transitions in EFT(π/) is also given. Recall that, in
that case, σLT and σT T are nonzero only because of the
final-state interaction of the proton with the virtual photon after
the deuteron breakup [Fig. 2.(e1)]. The degree to which the
E1V transition dominates—already discussed in the previous
section—is even more striking for σLT . Magnetic transitions
do not contribute at all to the interference cross sections, since
their amplitudes are independent of �p (see Sec. II D). The
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impact of SD mixing is increasing slightly with Elab
X , but the

mixing is small for σL + σT and σT T and almost negligible for
σLT .

The EFT(π/) results are again in good agreement with those
of Arenhövel and co-workers, and especially σLT is essentially
identical in both calculations. Only in the very small quantity
σT T can a deviation be detected. It is a factor of 4 larger than the
difference between the LO and N2LO results, which in turn is
one way to estimate higher order effects. However, we already
hinted that the contributions from SD mixing and magnetic
moment interactions are much smaller than estimated by naive
power counting. Another estimate for possible corrections
is to set the uncertainty of the EFT(π/) calculation at N2LO
as ∼Q3 = (ptyp/�π )3 ≈ [3 . . . 10]% of the LO term, by
assuming a typical momentum ptyp ∼ q ≈ [45; 60] MeV.
This is apt to overestimate the theoretical uncertainties, as
discussed in Sec. III E in conjunction with possible higher
order corrections. In short, all EFT(π/) results should be
understood with an uncertainty that reflects an estimate of the
higher order effects not considered. A conservative accuracy
limit would be <∼10% in each observable. It is thus safe to
conclude that the potential-model and EFT(π/) results agree
within the theoretical uncertainties.

D. How to resolve discrepancies with data?

The accordance of both theoretical approaches with the
data, however, is considerably worse. The discrepancy ranges
from just over one standard deviation at the largest energy
and momentum transfer to three and more at the smallest
energy and momentum transfer. Not only does the calculated
longitudinal-transverse interference cross section deviate by
about 30% from the measured one (as pointed out in Ref. [5]),
but so does σL + σT at large �p. In particular, it is re-
markable that the latter is overpredicted at Elab

X = 9 MeV
but underpredicted at Elab

X = 15 MeV. A look at σL + σT

at �p = 180◦ before data normalization reveals however a
reduced discrepancy (see Fig. 9). Only then do data and theory
agree on the shape of the curve, except at the smallest value of
Elab

X , and an additional normalization would solve the problem.
Although the statistical significance of the discrepancy hardly
changes, this may indicate unaccounted systematic errors in
the data.

Normalizing to �p = 0 seems to deteriorate the accord of
calculations and data, although it avoids accounting for the
absolute normalization of data. The reason can be seen by
comparing Figs. 9(b) and 9(c): The cross sections both at
�p = 0 and �p = 180◦ display relatively small deviations,
which go, however, in different directions: The theoretical
result (e.g., at Elab

X = 15 MeV) is a bit too small for �p = 180◦,
but it is too large for �p = 0. In dividing these two values, the
discrepancy increases.

The significant difference between data on the one hand and
the agreeing theoretical predictions of EFT(π/) and Arenhövel
and co-workers on the other continues for the longitudinal-
transverse interference cross section σLT [see Figs. 7(b) and
7(e) and 8(b) and 8(e)]. The angular dependence of the
normalized values is reproduced, but the normalization differs
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FIG. 9. (Color online) Elab
X dependence of σL + σT at �p = 180◦,

normalized to �p = 0◦ (a) and before normalization (b), and (c)
σL + σT at �p = 0◦ (to which all data are normalized). All graphs
refer to Elab

0 = 85 MeV, �lab
e = 40◦.

between one standard deviation at high energy and momentum
transfer and three standard deviations at high energy and
momentum transfer.

Figure 10 examines the energy dependence of the discrep-
ancy for σLT at the minimum around �p = 35◦ as a function
of Elab

X , both before and after normalization of the data. Again,
the situation becomes, at least for higher energies, slightly
better when one looks at the absolute values. However, a
clear deviation remains, and it surprisingly becomes larger
at smaller Elab

X . The shapes and slopes of the un-normalized
energy dependence of the minima in σLT do not match. The
un-normalized data at high energy are, at least at non-backward
angles, compatible with the theoretical approaches within error
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FIG. 10. (Color online) Elab
X dependence of σLT at the minimum around �p = 35◦, normalized (a) and absolute values (b), both for

Elab
0 = 85 MeV, �lab

e = 40◦.

bars, but the discrepancy at smaller energies and momentum
transfers worsens (see Fig. 11).

E. Discussion of higher order contributions

In view of these discrepancies, one must investigate to what
extent additional interactions could remedy the problem. The
EFT(π/) result is complete up to N2LO in electric and up to NLO
in magnetic transitions, resulting in a conservative accuracy
estimate of <∼10%, as discussed in Sec. III C. Including some
renormalization-group-invariant subset of higher order contri-
butions provides a third alternative to estimate the uncertainties
of the calculation, besides order-by-order convergence and
prima facie power counting.

However, the results so far provide a strong argument that
higher order corrections cannot solve the problem: Recall
first that σLT is nonzero only because of nonzero transverse
components of the momentum �p of the outgoing proton. If, in
spite of the power counting, some higher order contributions
were important for σLT , they should therefore contribute more
at higher energies, where �p is bigger and thus closer to the
breakdown scale �π/. This would lead to larger higher order

corrections with increasing photon energy. This is however at
odds with our analysis of Figs. 7 to 10. As fine-tuning could
circumvent this general argument, we explicitly consider in
the following some N3LO contributions.

Magnetic transitions are negligible at these energies and
in these kinematics, as seen in Figs. 5 and 6. Another
contribution to electric transitions includes P -wave nucleon-
nucleon final-state interactions, which also enter at N3LO [33].
Although they do become stronger with increasing energy and
momentum transfer, they are, even at high energies, not even
of the same order of magnitude as the N2LO contributions.

Next, one might think that the correction to the deuteron
quadrupole moment of about 50% provided by the CQ term
in Eq. (2.16) can solve the problem at N3LO. However, this
term is at best comparable in size to the N2LO term from
SD mixing. Its contribution will thus be even smaller than the
N2LO correction in Figs. 7 and 8. An explicit calculation [34]
renders

J 0
ij = −2ytDt

CQ

Mρd

(
qiqj − 1

3
q2δij

)
, �Jij = 0. (3.1)

The difference to the N2LO result is less than 0.5% even at
the minimum around �p = 70◦ at Elab
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FIG. 11. (Color online) Elab
X dependence of the absolute values of σLT for the extreme cases Elab

X = 9 MeV (a) and 15 MeV (b) at Elab
0 =

85 MeV, �lab
e = 40◦. Compare to the normalized data in Figs. 7 and 8.
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FIG. 12. (Color online) Comparison to the data of Ref. [8] for σL+T (a) and σLT (b), both in the laboratory frame (also for the hadronic
variables!) and normalized to σL+T at �p = 0.

9 MeV, where the effect would need to be biggest to remedy
the discrepancy. The contribution of this interaction to the
interference terms σLT and σT T is furthermore zero since
Eq. (3.1) is independent of �p.

Corrections from relativistic kinematics are negligible. An
example for a relativistic effect that is dynamical but has been
neglected in our calculation is the spin-orbit interaction first
considered in EFT(π/) by Chen et al. [43,44],

Lso = iN †
[(

2κ0 − 1

2

)
+

(
2κ1 − 1

2

)
τ3

]

× e

8M2
�σ · ( �D × �E − �E × �D)N, (3.2)

where �E is the electric field. This term is suppressed by
ptyp/M <∼ Q2 relative to the magnetic field term in LN

[Eq. (2.14)] and thus enters in M1V transitions at N4LO.
Chen et al. also demonstrated that it provides substantial
angle-dependent contributions to deuteron Compton scattering
at energies around ω ≈ 49 MeV [44]. Its Feynman diagrams
are those of the LO magnetic transitions [Fig. 4.(m1-3)],
with the magnetic moment interaction substituted by Eq.
(3.2). The vector component of the hadronic current has the
same structure as Eq. (2.27), and the zero-component can be
written as

J
0 (M1V )
hadr = e

√
Zεijkεi

(d)
1√
8

(
N †

pσ2N
∗
n

)
J 0

jk. (3.3)

The analytical results for these currents are reported in
Ref. [34]. As expected, they give only a small correction to
the already negligible NLO result for magnetic transitions. In
σL+T , they lead to a correction never exceeding 10−3 of the LO
result. Although they are �p dependent, the relative difference
to LO in σLT is less than 10−2, with 2 × 10−3 at the extrema.
In σT T , the relative difference to LO at the maximum is 10−5

and never exceeds 10−4.
We mention in passing also a N4LO contribution that can

naively be incorporated by modifying the dibaryon propaga-
tors [Eqs. (A12) and (A25)] to include the shape parameters
ρ1 = 0.389 fm3 for the 3S1 channel and r1 = −0.48 fm3 for

the 1S0 channel of NN scattering. This neglects diagrams that
come from gauging the derivative terms in the Lagrangean that
correspond to these corrections, so the result is not complete.
However, we see that this leads only to minimal modifications
of the structure functions. σL+T is increased by <∼5% at back
angles, by about 20% in the minimum due to fine-tuning, and
in general by much less. σLT changes by less than 1% at the
extrema, and σT T only by 0.1%.

Overall, this discussion supports our estimate of the
theoretical uncertainty of our results.

F. A higher energy experiment

In Fig. 12, we finally compare the EFT(π/) results to an
earlier experiment at a slightly higher momentum transfer [8],
which reported good accord between data and the potential-
model calculation by Arenhövel and co-workers1 also for the
normalized σLT . Although the involved proton momentum
p = 117 MeV is even closer to the breakdown scale of EFT(π/)
than for the S-DALINAC kinematics, we observe very good
agreement for both σL+T and σLT . It is remarkable that the
result describes the data so well in a regime in which EFT(π/)
may start to become unreliable but deviates significantly from
data at lower momenta.

IV. CONCLUDING QUESTIONS

In a parameter-free N2LO calculation using EFT(π/), a
manifestly gauge and renormalization-group-invariant, well-
tested formulation of few-nucleon physics with analytical
results rooted in a systematic, model-independent low-energy
expansion of all nuclear forces, with an a priori estimate
of theoretical uncertainties corroborated by order-by-order

1For this experiment, the calculations were performed by using the
Paris potential; its difference to the Bonn potential calculation in
Refs. [4,5,7] should not be relevant here.
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convergence, the S-DALINAC data on deuteron electrodisinte-
gration d(e, e′p)n at low energy and momentum transfer [5,6]
cannot be explained.

Since an important aspect of any effective field theory
is its universality and resulting model independence, this
leads us to a conclusion beyond the EFT(π/) approach: The
predictions of models that reproduce or share the input of
EFT(π/) must agree with its results to within the accuracy of
the EFT calculation, in the range where EFT(π/) is applicable.
The analysis in Sec. III showed that the S-DALINAC data at
low momentum and energy transfer lie undoubtedly within
this regime. Therefore, any self-consistent potential model,
irrespective of the detailed treatment of meson-exchange
currents, “off-shell effects,” cutoff dependence, etc. will to
the accuracy outlined here agree with the EFT(π/) result, if it
incorporates the same ingredients: the same deuteron binding
energy, the same asymptotic normalization Z and asymptotic
S-to-D wave ratio ηsd of the deuteron wave function, the same
scattering length and effective range in the 1S0 channel, the
same isovectorial magnetic moment of the nucleon κ1, and the
same total radiative thermal capture cross section of neutrons
on protons. This is nicely confirmed for electrodisintegration
at low energies: The potential-model approach by Arenhövel
and co-workers [4,5,7] yields essentially the same results as
EFT(π/), especially for σLT .

We find furthermore that σL+T , σLT , and σT T are all
dominated up to the few-percent level by the leading-order
electric transition (i.e., by minimally coupling the photon to
the nucleon and deuteron). This coupling is sensitive only to
the asymptotics of the deuteron wave function. The statement
is strongest for σLT , which shows the discrepancy: It is
dominated up to the 1% level by only one LO electric process
[Fig. 2.(e1)], that is, by the asymptotic normalization Z of
the deuteron wave function [Eq. (2.19)]. In contradistinction,
the discrepancy to the S-DALINAC data amounts to up to three
standard deviations or 30%.

These findings suggest a re-analysis of the experiment [45].
We identified some questions concerning the kinematics and
systematics of the experimental analysis and caution that
the differences could in part arise from a dis-advantageous
normalization of the data. If the discrepancies were confirmed,
this would pose a highly nontrivial problem for nuclear
theory. Only new data for deuteron electrodisintegration near
threshold and at low momentum transfers can settle the issue
definitively, particularly concerning the decomposition into the
contributions of different structure functions. We are however
confident to maintain that the validity and error estimate of the
E1V part of the photodissociation cross section relevant for Big
Bang nucleosynthesis as calculated in EFT(π/) [14,15,32,33]
are not in question.
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APPENDIX: CURRENTS AND INTEGRALS

We now list the analytical results for the hadronic currents
described in Secs. II C and II D.

A. Useful loop integrals

The following loop integrals are calculated by the method-
ology outlined in Refs. [46,47],2 using contour integration for
the energy part and the PDS subtraction scheme combined
with dimensional integration in D spatial dimensions [37,38]
to identify divergences, parametrized by µ, and tensorial
reduction. The reader may consult Ref. ( [34] Appendix D)
for details.

The fundamental bubble-sum integral is [37,38]

I
(1)
0 (a) =

(µ

2

)3−D
∫

dD1

(2π )D
1(�l + �q

2

)2 + a

PDS= 1

4π
(µ − √

a). (A1)

Reference [46] provides

I
(2)
0 (a, b; q) =

∫
d3l

(2π )3

1

l2 + a

1(�l + �q
2

)2 + b

= 1

2πq
arctan

(
q

2(
√

a + √
b)

)
. (A2)

From that, one finds the µ-independent result with one loop
momentum in the numerator,

A1(a, b; q) =
∫

dD

(2π )D
�l · �q

l2 + a

1(�l + �q
2

)2 + b

= I
(1)
0 (a) − I

(1)
0 (b) −

(
q2

4
+ b − a

)
I

(2)
0 (a, b; q),

(A3)

2We use a slightly different notation.
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and the following µ-dependent ones with two powers of loop
momenta in the numerator:

A2(a, b; q) = 1

D − 1

∫
dD1

(2π )D
l2 − (�l·�q)2

q2

l2 + a

1(�l + �q
2

)2 + b

= 1

1 − D

1

q2

[
2 − D

2
I

(1)
0 (b) − aI

(2)
0 (a, b; q)

+D

q2

4 + b − a

q2
A1(a, b; q)

]
, (A4)

B2(a, b; q) = 1

1 − D

1

q2

∫
dD1

(2π )D
l2 − D

(�l·�q)2

l2

l2 + a

1(�l + �q
2

)2 + b

= 1

1 − D

1

q2

[
2 − D

2
I

(1)
0 (b) − aI

(2)
0 (a, b; q)

+D

q2

4 + b − a

q2
A1(a, b; q)

]
. (A5)

Three powers of loop momenta in the numerator are covered
by the integrals

A3(a, b; q) = 1

(D − 1)q2

∫
dD1

(2π )D
1

l2 + a

1(�l + �q
2

)2 + b

×
[

(�q · �l)l2 − 1

q2
(�q · �l)3

]

= 1

(D − 1)q2

[
−q2

2
I

(1)
0 (b) − aA1(a, b; q)

− 1

q2
Â3(a, b; q)

]
, (A6)

B3(a, b; q) = D + 2

D − 1

1

q6

∫
dD1

(2π )D l2 + a

1(�l + �q
2

)2 + b

×
[

(�q · �l)3 − 3q2

D + 2
(�q · �l)l2

]

= D + 2

D − 1

1

q6

[
Â3(a, b; q) − 3q2

D + 2

×
(

−q2

2
I

(1)
0 (b) − aA1(a, b; q)

)]
, (A7)

with the aid of

Â3(a, b; q)

=
∫

dD1

(2π )D
(�q · �l)3

l2 + a

1(�l + �q
2

)2 + b

= −aq2

D
I

(1)
0 (a) −

(
q4

4
− bq2

D

)
I

(1)
0 (b) +

(
q2

4
+ b − a

)

×
[
−q2

2
I

(1)
0 (b) +

(
q2

4
+ b − a

)
A1(a, b; q)

]
. (A8)

B. Electric currents up to N2LO

The electric contributions to the hadronic current at LO are
labeled as in Fig. 2. The four-vector contribution is for the first
diagram with �r := 2 �p − �q

J
0 (e1)
ij = −2ytDp( �p; ω, �q) δij ; �J (e1)

ij = J
0 (e1)
ij

�r
2M

, (A9)

where the proton propagator

iDp( �p; ω, �q) = i

−ω + �p·�q
M

− q2

2M

(A10)

could be approximated for real photons by dropping the q2

term in the denominator (ω = q), but not in electrodisintegra-
tion because the kinematics imposes ω ∼ q2/M .

The second diagram gives

J
0 (e2)
ij = 2ytDt (p) δij ; �J (e2)

ij = −J
0 (e2)
ij

�q
4M

, (A11)

with the spin-triplet dibaryon propagator

iDt (p) = Mρd

2

i

γ − ρd

2 (γ 2 + p2) + ip
. (A12)

After integrating over the loop, diagram (3) results in

J
0 (e3)
ij = −2y3

t Dt (p)M2I
(2)
0 (−p2, γ 2) δij , (A13)

�J (e3)
ij = y3

t Dt (p)M

[
I

(2)
0 (−p2, γ 2) + 2

q2
A1(−p2, γ 2; q)

]
× �q δij . (A14)

Here, as in the following, −p2 is understood to be −p2 − iε
with ε ↘ 0 (i.e.,

√
−p2 = −ip, where p is the proton

momentum).
The N2LO contributions come from SD-mixing operators

only. Following the numeration of Fig. 3, one finds

J
0(sd1)
ij = −1

2

Csd√
Mρd

Dp( �p; ω, �q)
(
rirj − 1

3
�r2δij

)
,

�J (sd1)
ij = J

0(sd1)
ij

�r
2M

, (A15)

J
0(sd2)
ij = Csd√

Mρd

Dt (p)
(
pipj − 1

3
�p2δij

)
,

�J (sd2)
ij = −J

0(sd2)
ij

�q
4M

, (A16)

J
0(sd3)
ij = −2

Csdy
2
t√

Mρd

Dt (p)M2I
(2)
0 (−p2, γ 2; q)

×
(
pipj − 1

3
�p2δij

)
, (A17)

�J (sd3)
ij = Csdy

2
t√

Mρd

Dt (p)M

[
I

(2)
0 (−p2, γ 2; q)

+ 2

q2
A1(−p2, γ 2; q)

] (
pipj − 1

3
�p2δij

)
�q,

(A18)

J
0(sd4+sd5)
ij = −2

Csdy
2
t√

Mρd

Dt (p)M2[B2(−p2, γ 2; q)

+B2(γ 2,−p2; q)]
(
qiqj − 1

3
�q2δij

)
, (A19)
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( �J (sd4+sd5)
ij

)
k

= 2
Csd√
Mρd

Dt (p)y2
t M

[
1

2
B2(−p2, γ 2; q)

×
(
qiqj − 1

3
�q2δij

)
qk + [A3(−p2, γ 2; q)

−A3(γ 2,−p2; q)]

(
qiδjk + qj δik − 2

3
qkδij

)
+ [B3(−p2, γ 2; q) − B3(γ 2,−p2; q)]

×
(

qiqjqk − 1

3
q2qkδij

)]
. (A20)

The last three diagrams contribute only to the three-vector
component of the current:

(
�J (sd6)
ij

)
k

= Csd√
Mρd

[
−piδjk +

(
− pj + 1

2
qj

)
δik

+ 2

3

(
pk − 1

4
qk

)
δij

]
, (A21)

(
�J (sd7+sd8)
ij

)
k

= Csd√
Mρd

Dt (p)y2
t

M

4

[
I

(1)
0 (γ 2) − I

(1)
0 (−p2)

]
×

(
qj δik + qiδjk − 2

3
qkδij

)
. (A22)

With these results, it is simple to show that the LO and N2LO
electric currents are separately gauge invariant (qµJ

µ

ij = 0).
It is also noteworthy that the total current at each order is
independent of the regularization parameter µ.

C. Magnetic currents up to NLO

The LO diagrams, numbered as in Fig. 4, contribute

�J (m1) = −ytDp( �p; ω, �q)
κ1

M
�q, �J (m2)

= −ytDn( �p; ω, �q)
κ1

M
�q, (A23)

�J (m3) = −2ytDs(p)y2
s κ1MI

(2)
0 (−p2, γ 2; q) �q, (A24)

with neutron propagator Dn( �p; ω, �q) = Dp(− �p; ω, �q) and
spin-singlet dibaryon propagator

iDs(p) = Mr0

2

i
1
a0

− r0
2 p2 + ip

. (A25)

The current provided by the NLO contribution is

�J (m4) = −2ysDs(p)
L1

M
√

r0ρd

�q. (A26)

Notice that these currents are all transversal only.
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