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Giant dipole resonance as a quantitative constraint on the symmetry energy
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The possible constraints on the poorly determined symmetry part of the effective nuclear Hamiltonians or
effective energy functionals, i.e., the so-called symmetry energy S(ρ), are very much under debate. In the present
work, we show that the value of the symmetry energy associated with Skyrme functionals, at densities ρ around
0.1 fm−3, is strongly correlated with the value of the centroid of the Giant Dipole Resonance (GDR) in spherical
nuclei. Consequently, the experimental value of the GDR in, e.g., 208Pb can be used as a constraint on the
symmetry energy, leading to 23.3 MeV < S(ρ = 0.1 fm−3) < 24.9 MeV.
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Introduction. The nuclear structure community is currently
striving to determine a nuclear energy functional as universal
and as accurate as possible. Extraction of this functional from a
more fundamental theory like QCD is of course desirable, and
there has been progress along this line. At present, however,
it is still unavoidable to work with functionals that depend
on free parameters that must be determined by some fitting
procedure.

Existing functionals include those based on a covariant
formulation [1] as well as those based on nonrelativistic
formulations. Restricting ourselves to the latter case, we note
that a nuclear energy functional can be defined in a general
way, without being derived from an underlying Hamiltonian
in conjunction with a reference state. However, most of the
existing functionals to date are derived from an effective
Hamiltonian Heff that includes the kinetic energy plus a two-
body interaction. In this case, the total energy is the expectation
value of Heff over the most general Slater determinant |�〉.
Both zero-range interactions like the one proposed by Skyrme
at the end of the fifties, and systematically parametrized for
Hartree-Fock (HF) calculations since the seventies [2,3], or
finite-range interactions like the Gogny force [4] lead to
satisfactory descriptions of many nuclear properties.

Our tool of choice in the present work is the zero-range
Skyrme force, from which one can derive a functional E[ρ]
which is a function of local densities only. For a system that
is not symmetric in neutrons and protons, the total energy
depends on both neutron and proton density:

E[ρ] =
∫

d3rE(ρn(�r), ρp(�r)). (1)

For the sake of simplicity, we have not indicated that, in
general, the energy depends not only on the spatial densities
but also on gradients ∇ ρq , on the kinetic energy densities τq ,
and on the spin-orbit densities Jq (where q labels n, p) [5,6].

In infinite matter, one has a simple expression in terms of
the spatial densities only. Instead of ρn and ρp, one can use the
total density ρ and the local neutron-proton asymmetry,

δ ≡ ρn − ρp

ρ
. (2)

This quantity should not be confused with the global asymme-
try (N − Z)/A. In asymmetric matter, we can make a further

simplification on E(ρ, δ) by making a Taylor expansion in δ

and retaining only the quadratic term,

E(ρ, δ) ≈ E0(ρ, δ = 0) + Esym(ρ)δ2

= E0(ρ, δ = 0) + ρS(ρ)δ2. (3)

The first term on the r.h.s. is the energy density of symmetric
nuclear matter Esnm, while the second term defines the main
object of the present study, namely, the symmetry energy S(ρ).
The symmetry energy at saturation S(ρ0) is denoted by
different symbols in the literature: J, aτ , or a4. We stress that
Eq. (3) is not really a simplification: the coefficient of the
term in δ4 that should follow, for the Skyrme parameter sets
employed in this work, is negligible at densities of the order
of ρ0. We remind the reader that the pressure can be written in
a uniform system as

P = − ∂E

∂V

∣∣∣∣
A

= ρ2 ∂

∂ ρ

E
ρ

∣∣∣∣
A

. (4)

This quantity is evidently related to the density dependence
of the energy functional and of the associated symmetry part
defined above.

The magnitude and the density dependence of the symmetry
energy S(ρ) are not yet well understood [7]. In brief, there exist
at present three main research lines aimed at constraining the
behavior of the symmetry energy, by using nuclear structure
data, observables related to heavy-ion collisions, or evidences
from the study of neutron stars.

Within the realm of nuclear structure, the symmetry energy
affects, of course, all properties of nuclei having neutron
excess, including basic ones like masses and radii. In particular,
much attention has been focused on radii since Typel and
Brown [8,9] have noted that the neutron skin thickness δR ≡
〈r2

n〉1/2 − 〈r2
p〉1/2 is correlated with the pressure in neutron

matter Pnm(ρ = 0.1 fm−3) (see also Ref. [10]). The issue is
also investigated in Ref. [11], where the correlations between
the neutron skin thickness and other quantities are discussed
(see also Ref. [12]). The experimental accuracy is not sufficient
(so far) to limit the acceptable range of the neutron skin
thickness so that this can constrain a given equation of state;
the Parity Radius Experiment (PREX) at JLAB promises to
achieve this task [13]. Another interesting way to fix the value
of the neutron skin thickness, and extract information on the
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symmetry energy, is to go through the study of the isovector
Spin-Dipole Resonance (SDR) sum rule; also in this case, the
experimental difficulties hinder a too definite conclusion (see
Ref. [14]).

In this article we shall instead concentrate on the correlation
between the symmetry energy and the energy of the Giant
Dipole Resonance (GDR). The idea is not new, but in the
present work we develop it based on a fully microscopic
approach, namely, within a self-consistent Random Phase
Approximation (RPA) scheme to calculate the GDR properties.
In the past [15], as well as in recent works [16], the connection
with the symmetry energy has been discussed starting from
a macroscopic, hydrodynamical description of the GDR (in
particular, using the Steinwedel-Jensen ansatz, which is known
to be not fully reliable). Consequently, we believe that our
results are more relevant from a quantitative point of view.

If one tries to constrain the symmetry energy by means
of the study of heavy-ion collisions, or by neutron star
observables, it is likely that somewhat different physics is
needed. In general, the behavior of the symmetry energy on a
broader range of densities is involved. In heavy-ion collisions
maximum densities up to ∼4–5 ρ0 can be attained [17]. On
the other hand, data at lower incident energies are believed to
be able to constrain the nuclear EOS below ρ0 [18]. The study
of neutron stars, as well, brings in the physics of both low-
density and high-density neutron matter (for a comprehensive
review, cf. Ref. [19]). A recent study [20], which is close
in spirit to ours, has examined a large set of Skyrme forces,
trying to determine those that have a satisfactory behavior in
reproducing the neutron-star observables. One should remark,
however, that there are many caveats in the literature against the
use of functionals in a density regime far from that in which the
functionals are fitted and usually employed. In particular, we
mention here that Monte Carlo calculations of neutron matter
at low density [21] show that in this regime E/A is about
one half of the Fermi energy of the noninteracting neutron
gas, and this behavior is not reproduced by any effective mean
field functional.

Consequently, we do not discuss in detail in the present
work the possibility of an overall constraint on the symmetry
energy extracted by different kinds of studies. We briefly
discuss in the conclusions to what extent our results can be
compared with a few others in the literature.

The correlation between the GDR and the symmetry energy.
Our starting point will be the hydrodynamical model of giant
resonances, proposed by Lipparini and Stringari [22]. They
assume an energy functional that is simplified yet sufficiently
realistic, solve the macroscopic equations for the densities and
currents, and extract expressions for the moments m1 and m−1

associated with an external operator F (mk ≡ ∫
dES(E)Ek ,

where S is the strength function associated with F ). The
expression for m1 is proportional to (1 + κ), where κ is
the well-known “enhancement factor,” which in the case of
Skyrme forces is associated with their velocity dependence.
The expression for m−1, in the case of an isovector external
operator, includes integrals involving Esym and F . They can
be evaluated in a simple way if one assumes the validity
of the leptodermous expansion. We write the volume and
surface coefficients of the expansion of Esym as bvol and bsurf ,

respectively. By specializing F to the isovector dipole case,
the following expression is obtained (for details, cf. Ref. [22]),

E−1 ≡
√

m1

m−1
=

√√√√ 3h̄2

m〈r2〉
bvol[

1 + 5
3

bsurf
bvol

A− 1
3

] (1 + κ). (5)

This equation yields values of the centroid energy that are
in rather good agreement with those of microscopic RPA
calculations. It turned out to be useful in a previous study [23],
to constrain directly the parameters of the isovector part of
the Skyrme interaction. Here we use it as a guideline and try
instead to find a quantitative connection between the energy
of the GDR and the symmetry energy.

The ratio bsurf
bvol

can be evaluated through the calculation
of a semi-infinite nuclear slab. This has been done, e.g., in
Ref. [24] (cf. their Sec. 3.2.3). We do not discuss here the
approximations made in the derivation, but we use the fact that
the mentioned ratio can be written in terms of the symmetry
energy and its derivatives. If we insert this result into Eq. (5)
we obtain

E−1 =
√

6h̄2

m〈r2〉gA(ρ0)(1 + κ), (6)

where

gA(ρ) = S(ρ)

1 + 5
S(ρ)

[
ρ dS

d ρ
− ρ2

4
d2S
d ρ2

]
A− 1

3

. (7)

For a given heavy nucleus we can safely consider the first of
the three factors under the square root as a constant, because
different Skyrme forces do not vary widely in their predictions
for 〈r2〉. We have evaluated the term gA(ρ) at ρ = ρ0 for
A = 40, 124, 208 and for a number of Skyrme forces. We
have found that it is strongly correlated with the value of S(ρ)
in the range ρ = 0.08–0.12 fm−3. The specific case A = 208
is displayed in Fig. 1 in the case ρ = 0.1 fm−3, for which the
correlation coefficient is maximum.

Although we have not been able to deduce this correlation in
an analytic way from the expression of the Skyrme functional,
this result, together with Eq. (6), motivates us to look for a
direct correlation between the centroid of the GDR and the
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FIG. 1. Correlation between the quantity gA=208(ρ0) and the
symmetry energy S(ρ) for the Skyrme forces listed in Table I, at
ρ = 0.1 fm−3. The value of the correlation coefficient is r = 0.981.
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symmetry energy, through the quantity

f (ρ) ≡
√

S(ρ)(1 + κ), (8)

for ρ ∼ 0.1 fm−3. In the next section, we discuss this
correlation for ρ = 0.1 fm−3 in the case of 208Pb. We also
discuss in some detail the choice of the Skyrme forces that we
have employed.

Results. We have obtained results for the GDR in 208Pb by
using a series of microscopic Hartree-Fock (HF) plus Random
Phase Approximation (RPA) calculations. Skyrme-RPA theory
has been well known for many years, especially in its matrix
formulation. Recently, we have developed a scheme that is
fully self-consistent and is discussed in Ref. [25]. There is no
approximation in the residual interaction, in that all its terms
are taken into account (including the two-body spin-orbit and
Coulomb interactions). The occupied states are determined
by solving the HF equations in a radial mesh extending
up to 24 fm. The continuum is discretized by using box
boundary conditions (the box size is 24 fm). Particle-hole (p-h)
configurations, which constitute the basis for the RPA matrix
equations, are included up to typically 60 MeV so that the value
of m1 is at least 98% of the well-known value obtained from
the double commutator. In a few cases, due to the instability
of RPA, we had to resort to Tamm-Dancoff Approximation
(TDA) calculations but this does not affect significantly our
results.

The calculations have been performed for a set of 20
Skyrme interactions. It is well known that more than 100
Skyrme parametrizations have been proposed in the literature,
including some that have been employed only in limited and
specific cases. It is hard to define in a clear-cut way a “standard”
subset to be analyzed; however, we have decided, in the present
context, not to consider parametrizations that (a) have an
associated K∞ outside of the range 210–270 MeV, in keeping
with the conclusions reached in Ref. [26] by studying the giant
monopole resonance (GMR) in 208Pb, and (b) do not reproduce
the experimental value of the GDR in 208Pb (13.46 MeV [27])
within ±2 MeV.

We have determined our set including forces proposed by
different groups and at different times. In this sense the set can
be considered representative enough. In the cases in which
several forces have been proposed in the same reference, we
have not included more than two forces to avoid a too strong
bias.1 The forces are listed in Table I; we also provide the
references from which the parameter sets have been taken,
the value for E−1(RPA) ≡

√
m1
m−1

obtained from our RPA
calculation, and the values of the quantities f (0.1), S(0.1),
and κ [cf. Eq. (8)].

We find a strong linear correlation between the values of
E−1(RPA) and f (0.1), which are shown in Fig. 2 together
with the interpolating straight line f (0.1) = a + bE−1(RPA).

1We have nonetheless checked that, expanding the set shown in
Table I, that is, including the forces SkT1, SkT2, SkT3, SkT5, SkT7,
SkT8, SkT9, Es, Zs, SkI3, SkI5, MsK1, MSk2, MSk3, MSk4, MSk5,
MSk6, v105, v100, v090, v080, BSk1 (whose references can be found
in Ref. [20]), the final result for the constraint on S(0.1) reported in
Eq. (13) does not vary within 200 keV.

TABLE I. For the Skyrme parameter sets considered in this
work, we provide the values of E−1(RPA), f (0.1), S(0.1), and κ .
All these quantities are defined in the text.

Ref. E−1

(MeV)
f (0.1)

(MeV1/2)
S(0.1)
(MeV)

κ

SkA [28] 15.14 6.27 23.43 0.68
SkM [15] 13.94 5.65 23.26 0.37
SGI [29] 14.16 5.62 20.40 0.55
SGII [29] 13.56 5.34 20.98 0.36
SkM∗ [30] 13.89 5.63 22.93 0.38
RATP [31] 15.17 6.06 23.55 0.56
SkT4 [32] 11.47 4.86 23.58 0.00
SkT6 [32] 12.17 4.92 24.20 0.00
Rs [33] 12.76 5.20 20.05 0.35
Gs [33] 12.62 5.20 20.03 0.35
SkI2 [34] 12.29 5.00 21.17 0.18
SLy230a [35] 12.49 5.04 25.43 ∼0
SLy4 [5] 13.40 5.45 25.15 0.18
SLy5 [5] 13.28 5.42 24.88 0.18
SkO’ [36] 13.85 5.00 22.61 0.11
MSk7 [37] 12.10 4.86 24.56 −0.04
v110 [38] 12.13 4.80 24.79 −0.07
v075 [38] 13.97 5.62 25.30 0.25
SK255 [39] 13.98 5.94 25.39 0.39
LNS [40] 13.95 5.43 23.20 0.27

The value of the correlation coefficient is r = 0.909. Before
discussing the extraction of the value of the symmetry energy,
we should stress that we have not been able to correlate
the GDR simply with S(ρ0); this may be possible (cf., e.g.,
Ref. [41]) at the price of restricting oneself to a small set of
Skyrme forces.

We can now avail ourselves of the experimental values of
the GDR centroid E−1(exp) and of the enhancement factor κ to
deduce the best value of the symmetry energy. While the value
of E−1(exp) in 208Pb has been rather well determined from
photoabsorbtion measurements, E−1(exp) = 13.46 MeV [27],
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FIG. 2. Correlation between the energy of the GDR and the
quantity f (0.1). The definition of these quantities, and the related
discussion, can be found in the text.
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the value of κ is less precise. Because∫ ∞

0
σ (E)dE = 60

(
NZ

A

)
(1 + κ) MeV mb, (9)

κ would be determined if the integrated photoabsorbtion
cross section σ (E) had been measured up to large energies
(essentially, up to the pion production threshold). For obvious
experimental difficulties, the photoabsorbtion cross section has
been measured up to much lower energies (25 MeV in the case
at hand, namely, 208Pb [42]). The experimental value with the
associated error can be divided by the well-known Thomas-
Reiche-Kuhn (TRK) sum rule and provides an “effective” κ

that we can call κ25 = 0.17 ± 0.08. Furthermore, we have
noticed that there is a very strong linear correlation between
κ25 and κ for all the Skyrme forces listed in Table I, leading
to κ = 0.22 ± 0.04. This is in agreement with the estimate
reported in Ref. [22], where it has been stated that κ should
lie, approximately, between 0.2 and 0.3.

At this point, the best value for S(0.1) is found as

S(0.1) =
(
a + bE

exp
−1

)2

(1 + κ)
, (10)

where a, b come from the fit. The error is obtained from

σ√
S(0.1)(1+κ) = σb

√
σ 2

E−1
+ (Ē−1 − E

exp
−1 )2, (11)

where σb comes from the fit and the variance σ 2
E−1

is
calculated with respect to the interpolating straight line.
Having determined the ±1σ interval around the mean value

for the quantity
√

S(0.1)(1 + κ), we obtain

5.419√
1 + κmax

<
√

S(0.1) <
5.422√
1 + κmin

. (12)

This can be considered one of the main results of the present
investigation. By introducing the values of κmin and κmax

discussed above, that is, 0.18 and 0.26, one obtains a further
(more direct) constraint, that is,

23.3 MeV < S(0.1) < 24.9 MeV. (13)

Conclusions. Using a representative set of Skyrme effective
functionals we have found a clear correlation between the
energy of the GDR in 208Pb and a simple function of
the symmetry energy at density ρ ∼ 0.1 fm−3 and of the
enhancement factor κ associated with the velocity depen-
dence (and with the effective mass) of the various func-
tionals. Using the well-established experimental value of the
GDR we have extracted a range of acceptable values for
S(0.1) [cf. Eq. (13)].

It will be important to test whether other classes of
effective functionals lead to a similar result. More generally,
it will be essential to study the interplay between constraints
coming from the different kinds of works mentioned in the
Introduction, which deal with different energy and density
regimes. In fact, a better knowledge of the symmetry part of
the nuclear effective functionals, and in particular of its density
dependence, would be highly instrumental for the study of
systems ranging from exotic nuclei to pure neutron matter.
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