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Spin dependence of critical point behavior for first and second order phase transitions in nuclei
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A study of first and second order nuclear shape phase transitional behavior in yrast states of even-even nuclei
in the context of the Interacting Boson Model-1 is presented. Finite boson number effects are identified using
calculations with up to 150 bosons, and the role of the rotational degree of freedom of observables in first and
second order quantum phase transitional nuclei is discussed. We aim to provide a first investigation of the angular
momentum dependence of experimentally accessible phase transitional signatures in finite-sized quantum nuclear
systems.
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Quantum phase transitions (QPTs) are a subject of intense
interest in many areas of physics, as such transitional phenom-
ena play important roles in everything from atomic nuclei [1–6]
to quantum Hall systems [7,8]. Second order QPTs have been
the primary focus of research, as Landau’s classical theory
of continuous phase transitions can be simply extended to
quantum systems exhibiting such behavior [9,10].

First order QPTs, on the other hand, cannot be viewed as an
easy extension of well-explored continuous (classical) models.
Theoretical approaches for defining and understanding the
complexities of such behavior have not yet been developed,
and even basic questions about experimental signatures of
first order QPT behavior remain unanswered. As such, not
much progress has been made in identifying the measur-
able differences between these two transition types in finite
systems—particularly concerning the existence of excited state
QPTs [11] in both orders, which are the focus of this work.
Pinpointing such observable distinctions between first and
second order QPT behavior is an essential first step in making
progress on testing currently available models of such systems
and in developing a more complete theory of QPTs.

The atomic nucleus is an ideal system for probing first
and second order QPT behavior in a finite system. First
and second order quantum shape phase transitions in nuclei
were first identified in a theoretical framework in 1980, when
the coherent state formalism [12–14] was used to derive a
potential energy surface (and thus, a picture of something
like the free energy surface) [1,15] within the context of the
Interacting Boson Model-1 (IBM-1) [16]. More recent work
has explored geometric models (see, e.g., Refs. [3,5,17–20]),
the IBM-1 [21–27], and experimental examples of possibly
phase transitional nuclei [26,28–31]. A more direct connection
to Landau’s classical theory has also been proposed, in the form
of a phase diagram for nuclear structure, akin to that of water
[10]. A similar approach to the problem has been constructed
in terms of nuclear pairing properties [32]. All of this work
has fueled the construction of a theoretical framework and a
search for experimental evidence of such QPT behavior in this
naturally occurring two-component condensed matter system.

In nuclei, much of the recent work on second order QPTs
[4,6,10,33–37] has made use of the IBM-1. The model offers a
means of studying the evolution of low-lying collective states
via a simple, two-parameter, Ising-type Hamiltonian and is

useful for identifying finite size effects on phase transitional
signatures in many different types of quantum bosonic systems
[37].

In the IBM-1, finite boson (N ) effects smooth out the
evolution of all observables of a given system. This smooth-
ing becomes less prevalent as system size is increased,
so distinctions between gradual evolutionary trajectories of
system observables and signatures of QPT behavior, which,
by definition, exhibit discontinuities in the continuous limit,
can only be made by exploring the system’s behavior as a
function of N over a large range of system sizes.

Thus far, most of the work on QPTs in nuclei has focused
on the behavior of the energies of states with seniority 0
near the second order phase transition (e.g., Refs. [11,33,38]).
Beyond this, Rowe and Rosensteel have previously examined
the behavior of both ground and excited state observables
in large (N � 100) finite boson systems near both first and
second order QPTs in the IBM-1 [39–41]. Their use of the
quasidynamical symmetry concept to classify vibrator- or
rotor-like behavior in the first order case, which they support
with calculations of energies, transition strength ratios, and
wave functions for finite-boson systems, provides an important
foundation for further studies of first order QPTs in the IBM-1.
Additional work by Rowe, Turner, and Rosensteel [35] has
explored the asymptotic behavior of excitation energies with
increasing system size at both the first and second order critical
points. Cejnar [42,43] has also investigated the role angular
momentum plays in the geometric behavior of both the first
and second order QPT system in a mean field study performed
in the coherent state formalism [12–14] using IBM-1 with
cranking.

The present work explicitly investigates the role angular
momentum plays in the evolution of excited state QPT
behavior in finite systems. Our approach assumes nothing
more than the presence of either a first or a second order
phase transition in the ground state of an equivalent infinite
N system. In contrast to Ref. [35], we do not study the
behavior of observables at the infinite size critical point;
instead, we observe the evolution of energies and transition
strengths with respect to angular momentum over a wide
range of boson numbers (10 � N � 150), between pairs of
symmetry limits in the IBM-1. We aim to (1) identify whether
angular momentum plays a role in QPT behavior in the finite
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size limit and (2) determine how to associate properties of
QPT behavior in the large N limit with observable trends in
experimentally accessible, finite N systems. To address these
points, numerical studies of the first and second order QPTs
approaching the large N limit of the IBM-1 are presented. The
yrast states up to spin 20 are examined across both transitions.

All calculations in this work utilized a simple, two-
parameter version of the IBM-1 Hamiltonian [44,45], which
invokes the Extended [46] Consistent Q Formalism [47]:

HECQF(ζ ) = c

[
(1 − ζ )nd − ζ

4N
Qχ · Qχ

]
, (1)

where N is the boson number, c is a scaling factor, nd =
d† · d̃ is the d-boson number operator, and Qχ , given by Qχ =
[d†s̃ + s†d̃](2) + χ [d†d̃](2), is the quadrupole operator. The E2
transition operator is defined as

T (E2) = eBQχ, (2)

where eB is the effective boson charge. In all numerical
calculations in this work, eB = 1 and c = 1.

In this parametrization, U(5) (vibrational structure) corre-
sponds to ζ = 0, all χ ; SU(3) (axially symmetric rotational
structure) corresponds to ζ = 1, χ = −√

7/2; and O(6) (soft,
axially asymmetric rotational structure) corresponds to ζ =
1, χ = 0. A first order transition occurs for χ = −√

7/2,
between the U(5) and SU(3) limits, whereas a second order
transition occurs for χ = 0, between the U(5) and O(6)
limits [1].

Studies of critical point behavior depend on the identi-
fication of an order parameter. An order parameter is an
observable (derivative of an observable with respect to the
control parameter) that exhibits discontinuous behavior at the
critical point of a first (second) order phase transition. One
option is ∂E(0+

1 )/∂ζ ≡ ν(0+
1 ), the derivative of the energy of

the ground state with respect to the control parameter, ζ , as
it is proportional to a quantity akin to the “specific heat” of
this quantum system [36]. E(0+

1 ) is not the binding energy; it
corresponds to the decrease in energy of a given state due to
an increase in the system’s deformation. In classical systems,
discontinuities in the specific heat (or its derivatives) have
been used to investigate properties of a system exhibiting QPT
behavior. As such, we will use ν(0+

1 ) as an order parameter,
but will extend this idea to excited yrast states with spin J .
ν(J+

1 ) will be one order parameter of interest.
To draw a more direct comparison to geometric descrip-

tions, observables that relate more directly to deformation
parameters β and γ —or their average values, as they are
not rigid in general—are useful. Quadrupole shape invariants
[48,49] fulfill this requirement [44] and are more broadly
applicable than β and γ , because they are model-independent
observables.

For brevity, we restrict our discussion of shape invariants to
q2(J+

1 ), which is defined in terms of the quadrupole transition
operator T (E2). In accordance with Eq. (2), q2(J ) is given as
follows [44]:

q2(J ) = |〈J |Qχ · Qχ |J 〉|. (3)

The quantity q2(J ) is proportional to 〈J |β2|J 〉; the propor-
tionality constant depends only on the charge and radius of

the nucleus. Therefore, we treat q2(J+
1 ) as an alternate order

parameter in this work.
Calculations across transitional regions U(5)-SU(3) and

U(5)-O(6) have been performed using the new IBM-1 code
IBAR [50], for a large range of boson numbers (10 � N � 150,
in steps of 10), to study the differences between first and
second order phase transitional behavior in nuclei. IBAR was
developed to provide the high precision demanded by the rapid
evolution of various observables near the critical point. The
current study is restricted to the yrast states, up to spin 20. For
each N , over 100 calculations were carried out from ζ = 0 to
ζ = 1. Smaller steps were taken near the phase transition to
ensure an adequate reproduction of the critical point behavior.

Finding a numerical means of extracting the critical point
was necessary to study the evolution of the critical point
with increasing J and N . Following the procedure given in
Ref. [27], we defined the “effective” critical point, ζc, as the
point at which the change in the order parameter (derivative
of the order parameter) is most rapid for a finite N calculation
at the first (second) order transition. This value approximately
corresponds to the point at which the order parameter or its
derivative becomes discontinuous in the infinite N limit, and,
as defined, mirrors the typical experimental procedure used to
identify QPT behavior in isotopic/isotonic chains.

To determine the value of ζc, spline functions were fit to the
calculated observables of interest and were then differentiated
once, twice, or three times (for energies only), depending on
the order of phase transition. For the second order case, the
Lanczos algorithm used to facilitate higher boson calculations
produced occasional fluctuations in q2, which we attribute to
the underlying O(5) symmetry along the U(5)-O(6) transition.
In these cases, we compared results to those obtained with a
full diagonalization of the Hamiltonian to ensure the accuracy
of our results, where possible, and graphically confirmed the
location of the extremum of the second derivative of q2(J+

1 )
for each set of calculations. The numerical error introduced in
our methods was <1% for the energies and <5% for the shape
invariants.

A comparison between the ground state energies along
both the U(5)-SU(3) (first order) and U(5)-O(6) (second order)
transitions, as shown in Figs. 1(a) and 1(b), respectively, illus-
trates the distinctive behavior exhibited by such observables
depending on the type of phase transition. Along U(5)-SU(3),
the deviation from zero for all N increases sharply and rapidly
in the vicinity of the critical point. In contrast, along U(5)-O(6),
the deviation from zero near the critical point for all boson
numbers varies smoothly and slowly with increasing ζ .

Examining the relevant derivatives of the ground state
energies with respect to ζ further highlights the distinction
between the two transition types. For U(5)-SU(3), the order
parameter ν(0+

1 ) becomes increasingly step function-like as N

increases, as shown in Fig. 1(c). Taking the derivative once
again [Fig. 1(e)] highlights the increasingly discontinuous
behavior of the order parameter with increasing N .

At the U(5)-O(6) transition, a discontinuity in the derivative
of the order parameter is expected. This is illustrated in the plot
of ∂ν(0+

1 )/∂ζ in Fig. 1(d), which is similar in shape but far
smoother and smaller in overall magnitude at its minimum than
the same quantity [Fig. 1(e)] along U(5)-SU(3). In Fig. 1(f),
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FIG. 1. The unnormalized energies for (a) U(5)-SU(3) and (b)
U(5)-O(6); cases are plotted for N = 10, 50, 100, 150. (c) ν(0+

1 ) for
U(5)-SU(3) and (d) ∂ν(0+

1 )/∂ζ for U(5)-O(6) are plotted. Finally,
(e) ∂ν(0+

1 )/∂ζ for U(5)-SU(3) and (f) ∂2ν(0+
1 )/∂ζ 2 for U(5)-O(6),

from which ζc(0
+
1 ) is extracted, are shown. For higher J states, the

behavior of the energies and their subsequent derivatives is similar,
though boson saturation effects are more evident.

one can confirm that the second order treatment for U(5)-O(6)
is valid by observing that |∂2ν(0+

1 )/∂ζ 2| approaches infinity
with increasing N . The extrema of the derivatives of the
relevant discontinuous quantities, whose ζ values correspond
to the effective critical point ζc, are of the same order of
magnitude for both U(5)-SU(3) and U(5)-O(6) [Figs. 1(e)
and 1(f)].

In Fig. 2, ζc(J+
1 ) for several N , as extracted from ν(J+

1 ), is
shown for both U(5)-SU(3) and U(5)-O(6). In the first order
case, ζc occurs at smaller ζ values for higher J in low N

cases, as shown in Fig. 2(c) for the example of N = 10.

0 2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

 J

(d) N=10

ζ
c
(E(J)) 

0 2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

(c) N=10

 J

ζ
c
(E(J))

0.5

0.6

0.7

0.8

(b)

U(5)-O(6)
ζ

c
(E(J)) 

0.5

0.6

0.7

0.8

(a)

U(5)-SU(3)
N

 30
 70

 110

 150

ζ
c
(E(J))

FIG. 2. ζc(J ), as determined from the energy calculations, is
shown for (a) U(5)-SU(3), N = 30, 70, 110, 150; (b) U(5)-O(6),
N = 30, 70, 110, 150; (c) U(5)-SU(3), N = 10; and (d) U(5)-O(6),
N = 10.
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FIG. 3. In the upper panels, a plot of q2(0+
1 ) with respect to ζ is

shown for (a) U(5)-SU(3) and (b) U(5)-O(6) for N = 30, 50, 90, 130.
In the lower panels, the spin dependence of ζc(J

+
1 ) extracted from

q2(J ) for N = 30, 50, 90, 130 is shown for (c) U(5)-SU(3) and (d)
U(5)-O(6).

In this case, finite N effects are prevalent, especially in the
dramatic decrease in ζc(J+

1 ) for high J . This effect appears
for J approaching 2N in large N cases as well and is a result
of the fact that the IBM system scales with N . For higher N

calculations, plotted in Fig. 2(a), ζc(J+
1 ) becomes increasingly

flat with increasing N and converges to the ground state
coherent state result in the infinite N limit (ζc = 8/17) [51].
In the second order case, the opposite behavior with respect
to spin for lower N is evident in Fig. 2(d); ζc(J+

1 ) increases
with increasing spin for lower N . Again, convergence toward
the ground state coherent state result (ζc = 1/2) is suggested
from Fig. 2(b), but is much slower for this transition. Because
of the current N limit of our code, convergence can only be
surmised.

When using q2(J+
1 ) as the order parameter, however,

the evolution of QPT behavior takes an alternate path. For
reference, plots of q2(0+

1 ) are shown in Figs. 3(a) and 3(b)
for several N and both U(5)-SU(3) and U(5)-O(6). ζc(J+

1 )
extracted from q2 for multiple N is shown in Figs. 3(c)
and 3(d). In both the first and second order cases, ζc occurs at
lower values of ζ with increasing J for small N . Again, this
effect is tempered in higher N calculations, and convergence
toward the coherent state critical points (ζ = 8/17 for first
order, ζ = 1/2 for second order) is evident.

Interestingly, the evolution of ζc as derived from either
ν(J+

1 ) or q2(J+
1 ) is consistent with Cejnar’s finding [42,43]

for the U(5)-SU(3) leg. If one compares Fig. 1 in Ref. [43] to
Fig. 2(c) in this work (keeping in mind that η = 1 corresponds
to the U(5) limit in Cejnar’s parametrization), it is clear that
both methods predict that the critical point will head toward
U(5) with increasing angular momentum. The same holds true
for low N calculations with q2(J+

1 ) along U(5)-O(6).
In contrast, the ζc values extracted from ν(J+

1 ) between
U(5)-O(6) contradict Cejnar’s result, which predicts the same
critical point evolution with angular momentum for both U(5)-
SU(3) and U(5)-O(6) in the infinite boson limit. However, the
two models differ significantly, as the present work introduces
no cranking and is specifically focused on finite N systems,
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whereas Refs. [42] and [43] explore similar questions with
cranking, using an energy potential surface derived with the
coherent state formalism for the infinite N case. Also, the
critical point line in Fig. 1 of Ref. [43] actually represents a
separatrix between two phases. In the present work, the ζc(J+

1 )
lines cannot be interpreted in the same way, because the wave
functions exhibit mixed character [both U(5) and SU(3) or
O(6) components] on either side of the critical point [41]. ζc is
simply the point of greatest change in the order parameter (or
its derivative), as this is generally used to identify the critical
point in experimental work. Our work shows that ζc actually
evolves into the infinite N critical point of a complementary
continuous QPT system.

One may note that our results for higher N converge to
one value, rather than maintain a characteristic J -dependent
trajectory. This is surprising at first, because such large N

systems should converge to the infinite N coherent state-based
critical behavior discussed in Refs. [42] and [43]. However,
our calculations were limited to J � 20 to follow the trajectory
of states with specific quantum numbers as a function of N .
As Cejnar [43] illustrates in Fig. 6, J = N is close to the
maximum spin at which the U(5)-SU(3) phase transition is
still evident for finite systems.

The order parameter’s effect on the evolution of ζc behavior
for the second order case gives rise to the question of the role
observable-dependent finite size effects play on such studies.
As Dusuel et al. [37] found, scaling behavior of different
observables in a given system, as defined by the asymptotic
behavior of each observable at the critical point in the infinite
N limit, differs depending on the observable in question. In
the second order case, the B(E2; 0+

1 → 2+
1 ) value scales as

+4/3; this is quite different from the scaling behavior of the
energy gap between the two states [E(2+

1 ) − E(0+
1 )], which

goes as −1/3 [37]. Such quantitative differences in the scaling
behavior of system observables at the infinite N critical point
will be reflected in the opposing evolution of ζc with increasing
J . As such, one must note that observables used to examine
QPT behavior in nuclei may not exhibit identical finite size
effects. In turn, one must not expect to find QPT behavior
(in terms of a rapid change in system observables) for all
states or observables in a single nucleus. QPT signatures
will instead be found in different states in a given nucleus
and even across different members of an isotopic/isotonic
chain.

Nevertheless, ζc behavior in the yrast band is sensitive to the
angular momentum of the state in question, as shown in Figs. 2
and 3. In the case of ν(J+

1 ) for low N , the distinctive evolution
of ζc for the first and second order transitions for small N

systems is intriguing, as N ∼ 10 corresponds to the typical
size of existing nuclear systems (N � 16). As such, these
differences may be detectable in isotopic chains accessible
to experiment. In an investigation of the yrast energies of
rare earth nuclei by Zhang [52], ζc was identified as the
inflection point of backbending in gauge space. While this
description is outside of the scope of the calculations presented
here, as absolute binding energies are not calculated with the
Hamiltonian given in Eq. (1), one can compare the results on an
interpretive basis. In comparing Figs. 2 and 4 in Ref. [52] and
Fig. 2(c) herein, it becomes evident that both works—despite
different approaches—show the same result: that ζc occurs for
lower values of ζ for the first order case. Note that the neutron
number N in Ref. [52] is analogous to the control parameter ζ

used in this work. For the second order case, the current data
available in isotopic chains including such transitional nuclei
(e.g., 134Ba [28]) are insufficient to perform a similar analysis,
though E-GOS methods presented by Regan et al. [53] may
help shed some light on the J dependence of critical point
behavior in these nuclei.

This novel investigation has established that critical point
behavior in finite nuclear systems varies smoothly with respect
to angular momentum. This point is important from an
experimental perspective, as it establishes the possibility that
QPT behavior in nuclei occurs in different members of iso-
topic/isotonic chains for states of different angular momentum.
In addition, this work has found that the explicit role angular
momentum plays in effective critical point behavior in finite
systems depends on both the choice of order parameter and on
the order of the QPT. The observed convergence to the same
critical point for all higher angular momentum states using
either order parameter in the large N limit provides evidence
of the presence of real first and second order QPTs for excited
yrast states in the infinite boson limit.
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discussions and S. Heinze for providing us with a starting point
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Grant DE-FG02-91ER-40609.
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