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Coupling constant for N∗(1535)Nρ
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The value of the N∗(1535)Nρ coupling constant gN∗Nρ derived from the N∗(1535) → Nρ → Nππ decay
is compared with that deduced from the radiative decay N∗(1535) → Nγ using the vector-meson-dominance
model. On the basis of an effective Lagrangian approach, we show that the values of gN∗Nρ extracted from the
available experimental data on the two decays are consistent, though the error bars are rather large.
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The experimental database on the production of the η meson
in nucleon-nucleon scattering near threshold has expanded
significantly in recent years. In addition to measurements of
pp → ppη total cross sections and angular distributions [1],
there are analyzing powers [2] and full Dalitz plots [3]. Total
cross sections are also available for the pn → dη and pn →
pnη reactions [4].

In response to this wealth of data there have been a large
number of theoretical investigations of η production in both
proton-proton and proton-neutron collisions. Most of these
have been within the framework of meson-exchange models,
where a N∗(1535) resonance or other nucleon isobar is excited
through the exchange of a single meson, with the η-meson
being formed through the decay of the isobar. There are
differences in the literature on how to treat the initial and final
state interactions but the major controversies are connected
with which meson exchanges are deemed to be important.

The large ratio of the production of the η in proton-neutron
compared to proton-proton collisions suggests that isovector
exchange plays the major role. However, some authors [5–7]
find pseudoscalar (π and η) exchanges to dominate, with no
significant contribution from the ρ. In contrast, others [8–12]
claim that ρ-meson exchange plays an important and possibly
dominant role. This disagreement is generated principally by
the uncertainty in the size of the N∗(1535)Nρ coupling and
it is the purpose of this present note to compare the values
of the coupling constant derived from the N∗(1535) → Nππ

and N∗ → Nγ decays.
The situation is further complicated by the variety of forms

chosen for the N∗(1535)Nρ coupling in these different works.
In the vector meson dominance model (VMD), it is assumed
that this coupling is proportional to that for the electromagnetic
N∗(1535)Nγ . It should be noted that in this approach the ten-
sor σµν coupling automatically satisfies the associated gauge
invariance constraint [6]. In contrast, the vector γ5γµ coupling
violates gauge invariance when the ρ-meson is replaced by
a photon [6,11]. As an alternative, Riska and Brown [13]
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suggested a vertex of the form γ5[γ µp2
ρ − (MN∗ + mN )pµ

ρ ],
where pρ is the four-momentum of the ρ meson. This avoids
the gauge invariance problem while keeping the γµ term, but
this coupling vanishes when used in connection with the VMD
approach. In principle both vector and tensor couplings are
needed and their relative importance has to be decided by
experiment.

Working within an effective Lagrangian approach, we
have investigated the influence of the N∗(1535)Nρ cou-
pling constant on both the N∗(1535) → Nρ0 → Nπ+π−
and the N∗(1535) → Nρ0 → Nγ decays. We shall present
the formalism and ingredients necessary for our estimations.
Although in one case the ρ-meson is essentially real while
in the other it has zero mass, we will show that consistent
values of the coupling constant can be obtained from the
available experimental data on the two decay channels, though
the uncertainties are still quite large.

The basic Feynman diagrams for the two cascade decay
modes considered here are depicted in Fig. 1. A Lorentz
covariant orbital-spin (L–S) scheme for N∗NM couplings has
been developed in detail in Ref. [14] and, within that scheme,
one can easily derive the form of the effective N∗(1535)Nρ

coupling. Since the ρ is a vector meson, both S- and D-wave
couplings are possible but experiment shows that the D-wave
plays only an insignificant role in the N∗(1535) → Nρ partial
decay width [15,16]. We therefore retain only the S-wave term
with a Lagrangian of the form

LρNN∗ = igN∗NρūNγ5

(
γµ − qµ �q

q2

)
�τ · �ρµuN∗ + h.c. , (1)

where uN and uN∗ are the nucleon and N∗(1535) spinors and
q is the isobar four-momentum. The ρ-meson field �ρµ is also
a vector in isospin space and �τ is the isospin operator in the
baryon sector. It is seen that this form is a particular linear
combination of vector and tensor couplings.

The finite size of the hadrons is taken into account through
a form factor which is normalized to unity at p2

ρ = m2
ρ . Since

only the S-wave is involved, this is taken to be monopole type

F
(
p2

ρ

) = �2

�2 + ∣∣p2
ρ − m2

ρ

∣∣ , (2)
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FIG. 1. Feynman diagrams considered for the N∗(1535) →
Nρ0 → Nπ+π− and N∗(1535) → Nρ0 → Nγ decays.

with a cut-off parameter �. In the case of t-channel exchange,
p2

ρ < m2
ρ , it leads to the more familiar form

F
(
p2

ρ

) = �2
t − m2

ρ

�2
t − p2

ρ

, (3)

with �2
t = �2 + m2

ρ .
For the ρππ and ργ couplings, we use the standard

Lagrangians [17–19],

Lρππ = gρππ (�π × ∂µ �π ) · �ρµ, (4)

Lργ = em2
ρ

fρ

ρ0
µAµ, (5)

where �π and Aµ are the pion and electromagnetic fields,
respectively. The direct photon-vector coupling in Feynman
diagram language is reflected in the factor em2

ρ/fρ .
The value of the ρππ coupling constant gρππ can be

deduced from the partial decay width


ρ0→π+π− = g2
ρππ

6π

(
p c.m.

π

)3

m2
ρ

, (6)

where p c.m.
π is the momentum of one of the pions in the

rest frame of the ρ-meson. The experimental data then yield
g2

ρππ/4π = 2.91.
Many photoproduction reactions have been successfully

related to ones involving the production or decay of vector
mesons within the vector meson dominance model. As a
consequence, there are several ways to evaluate the ργ

coupling constant but they differ little from those given in the
original Sakurai compilation [20] and we take f 2

ρ /4π = 2.7.
The amplitude for the strong decay N∗(1535) → Nρ0 →

Nπ+π− has the form

MN∗→Nρ0→Nπ+π− = igρππgN∗NρF
(
p2

ρ

)
× ūNγ5

(
γ µ − �qqµ

q2

)
× uN∗Gρ

µν(pρ)
(
pν

2 − pν
3

)
. (7)

Here Gρ
µν(pρ) is the ρ-meson propagator,

Gρ
µν(pρ) = −i

gµν − pµ
ρ pν

ρ

/
p2

ρ

p2
ρ − m2

ρ + imρ
ρ

, (8)

where 
ρ is the total ρ decay width.

FIG. 2. Coupling constant g2
N∗Nρ/4π versus the cut-off parameter

� for the pure S-wave coupling case. The dashed curve was obtained
from the N∗ → Nππ decay whereas the dot-dashed one corresponds
to the N∗ → Nγ decay. The solid curve represents the average of the
two approaches with the shading showing the uncertainties arising
from the errors in the experimental input.

The partial decay width is related to the spin-averaged
amplitude through

d
N∗→Nρ0→Nπ+π− = |MN∗→Nρ0→Nπ+π−|2

× mN

(2π )5

d3p1d
3p2d

3p3

4E1E2E3

× δ4(MN∗ −p1−p2−p3) , (9)

where p1, p2, p3 and E1, E2, E3 are the momenta and energies
of the nucleon, π+, and π−, respectively.

The phase-space integration of Eq. (9) was evaluated
numerically and the values of the cut-off parameter of Eq. (2)
and the N∗(1535)Nρ coupling constant adjusted to yield
the experimental partial width of (3.0 ± 1.6) MeV which is
obtained from the PDG values for the total decay width of
150 ± 25 MeV and the branching ratio of 0.02 ± 0.01 [16].
In Fig. 2 the value of g2

N∗Nρ/4π is shown as a function of �

by the dashed curve. In view of the uncertainty in the partial
width, one should consider an error corridor of ±53% around
this curve.

Turning now to the radiative decay, the current best PDG es-
timates of the helicity- 1

2 decay amplitudes for the charged and
neutral N∗(1535) are A

pγ

1/2 = 0.090 ± 0.030 (GeV)−1/2 and
A

nγ

1/2 = −0.046 ± 0.027 (GeV)−1/2 , respectively [16]. These

lead to the corresponding isovector helicity- 1
2 decay amplitude

of the N∗(1535) as

AI=1
1/2 = 1

2

(
A

pγ

1/2 − A
nγ

1/2

) = (0.068 ± 0.020) (GeV)−1/2 ,

(10)

in terms of which the N∗(1535) → Nγ partial decay width
for isovector photons becomes


N∗Nγ = k2

π

mN

MN∗

(
AI=1

1/2

)2
, (11)

where k is the photon momentum in the N∗ rest frame.
The radiative decay width can be estimated within the

VMD model by applying the Feynman rules to Fig. 1(b). The
resulting matrix element is
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FIG. 3. As for Fig. 2 but for the pure vector coupling case.

MN∗→Nγ = −i
em2

ρ

fρ

gN∗NρF
(
p2

ρ

)
Gρ

µν(pρ) εν(k)

× ūNγ5

(
γ µ − �qqµ

q2

)
uN∗ , (12)

where εν(k) is the polarization vector of photon. The resulting
decay width is


N∗→Nγ = g2
N∗Nρ

4π

α

f 2
ρ /4π

× 3k(mN + EN )

MN∗
(
1 + 
2

ρ

/
m2

ρ

)(
1 + m2

ρ

/
�2

)2 , (13)

where α is the fine-structure constant and EN the energy of the
final nucleon. The numerical value of AI=1

1/2 from Eq. (10) leads
to the dot-dashed curve of Fig. 2, which shows g2

N∗Nρ/4π vs
� as derived from the radiative decay. An uncertainty corridor
must also be associated with this curve because of the large
error in the radiative amplitude shown in Eq. (10).

The values of g2
N∗Nρ/4π extracted from the two decays

are mutually compatible within the error bars for the whole
range of � from 0.5 to 2.0 GeV. From these two independent
measurements we deduce the average value and the corre-
sponding uncertainty corridor, as shown by the solid curve
and the shaded area in Fig. 2.

We can derive analogous constraints from these data on the
other two commonly used forms for the N∗(1535)Nρ cou-
pling, i.e., pure vector or pure tensor which have, respectively,
the corresponding effective Lagrangians

LV
ρNN∗ = igN∗NρūNγ5γµ�τ · �ρµuN∗ + h.c. , (14)

LT
ρNN∗ = i

gN∗Nρ

2mN

ūNγ5σµν∂
ν �τ · �ρµuN∗ + h.c. (15)

Since these two kinds of coupling involve both S-wave and
D-wave, a dipole form factor is used for the N∗Nρ vertex:

F
(
p2

ρ

) =
(

�2

�2 + ∣∣p2
ρ − m2

ρ

∣∣
)2

. (16)

The corresponding results are shown in Figs. 3 and 4,
respectively. For the pure vector coupling case, the extracted
values from the two decays are also agree within error bars
for the whole range of � from 0.5 to 2.0 GeV, while for pure
tensor coupling this is only true for � > 0.6 GeV.

FIG. 4. As for Fig. 2 but for the pure tensor coupling case.

In this Brief Report we have compared the values obtained
for the N∗(1535)Nρ coupling constant from experimental data
on the radiative and two-pion decays of N∗(1535) resonance.
For this purpose we have used an effective Lagrangian
approach combined with the vector meson dominance model
that links photoproduction reactions to ones involving the ρ

and other vector mesons. With a particular choice of the form
of the N∗(1535)Nρ vertex (S-wave coupling), we show in
Fig. 2 that the two determinations are quite compatible for a
wide range of the cut-off parameter �, especially if account
is taken of the error bands that arise from uncertainties in the
input data. Typically one would expect �t = (�2 + m2

ρ)1/2 to
be of the order of 1 GeV/c2 [21], which falls well within the
domain of compatibility.

It is seen from Figs. 3 and 4 that the pure vector and tensor
forms of the coupling can also reproduce simultaneously the
data within the rather large error bars, though marginally worse
than the pure S-wave coupling of Fig. 2. Both vector and
tensor forms are linear combinations of S-wave and D-wave
couplings. However, since both give only a small D-wave
contribution to N∗(1535) → Nρ, the available data are not
precise enough to discriminate between them. One can only
put constraint on their couplings versus the cut-off parameter
�, as shown by Figs. 2–4. If the data on both the two-pion
and radiative decays were improved significantly, one might
eventually hope to identify unambiguously the form of the N∗
coupling from a comparison of the two rates.

In conclusion, the N∗(1535)Nρ vertex can be constrained
by the available experimental data from the radiative and
two-pion decays of N∗(1535) resonance. The pure S-wave
coupling gives a good simultaneous fit to the data, though
the large error bars means that one cannot exclude either
the pure vector or tensor forms. The values of the coupling
constant are strong in the sense that they would predict a
large ρ-exchange contribution to η production in nucleon-
nucleon scattering [8–12] so that it would be very unwise to
neglect it.
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