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Axial coupling from matching a constituent quark model to QCD
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The axial-vector coupling gA of a constituent quark is estimated from matching the constituent quark
model to the operator product expansion in QCD in the limit of large number of colors under some
assumptions. The obtained relation is gA � √

7/11 ≈ 0.80, which is in agreement with the existing model
estimates.
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The constituent quark model (CQM) of Manohar and
Georgi [1] (often called the chiral quark model) has been
used with great phenomenological success in the description of
strong interactions at low energies, thus giving rise to various
extensions and new applications (see, e.g., Ref. [2]). The
underlying philosophy of this model is familiar from different
branches of physics—the idea of rearrangement of physical
degrees of freedom at certain energy scale. The proposed
scenario assumes that in the energy region between the chiral
symmetry breaking (CSB) scale, �CSB � 1−1.2 GeV, and
the confinement scale, �QCD � 100−300 MeV, the almost
massless strongly interacting (αs(�QCD) > 1) quarks entering
the QCD Lagrangian are effectively rearranged into heavy
weakly interacting (αs(�QCD) � 0.28) constituent quarks with
the effective mass m � 300−350 MeV. Simultaneously, the
interaction of fundamental quarks and gluons is rearranged
below �CSB into the interaction of the constituent quarks
with the Goldstone bosons—the pions—associated with the
spontaneous CSB and, possibly, with the low-energy gluons.
For instance, the SU (2)L current in the effective CQM
Lagrangian [1] is

j
CQM
µ,L = ψ̄γµ(1 − gAγ5)�τψ + terms involving π, (1)

while the same current in the QCD Lagrangian above �CSB is

j
QCD
µ,L = ψ̄γµ(1 − γ5)�τψ. (2)

It should be emphasized that, generally speaking, the quark
and gluon fields in the CQM Lagrangian are not the same as
the ones in the QCD Lagrangian. Neglecting the current quark
masses, both fundamental and effective theories are chirally
invariant, but the chiral symmetry is realized nonlinearly in the
effective theory in contradistinction to the linear realization in
the fundamental theory; thus the chiral symmetry undergoes
a sort of “rearrangement” of its realization below �CSB rather
than breaking.

In this Brief Report we are concerned with the axial
coupling gA that is present in current (1). This coupling
is of high importance in the phenomenology because the
SU (2)L current (1) couples to the W boson, thus triggering
some semileptonic decays. Making use of nonrelativistic quark
model wave functions, gA can be related with the axial constant
GA that parametrizes the amplitude of the nucleon β decay,

the relation is [1]

gA = 3
5GA. (3)

Taking the modern experimental value for the axial con-
stant [3], GA ≈ 1.27, relation (3) yields the estimate gA ≈
0.76.

As was noted in Ref. [1], gA should be calculable from
QCD, although this is a hard nonperturbative calculation and
there is still no idea how to perform it. At present there are only
some estimates based on effective models and on the analog of
the Adler-Weisberger sum rule for quark-pion scattering; see
Ref. [4] for a brief review and also Refs. [5] and [6].

We consider a quite different way of addressing the
problem. One can try to probe the vacuum by the vector (V )
and axial-vector (A) currents of the fundamental and effective
theories; the analysis and comparison of the corresponding
responses might lead to definite conclusions. It is rather hard to
garment such a general idea with precise calculations, a kind of
guesswork is inescapable to advance. We propose an heuristic
way for the analytical realization of this program, a way
which, albeit qualitative, will result in a numerical estimate
for gA.

Our proposal is based on the expectation that the ap-
plicability of the CQM and that of the perturbative QCD
should overlap in some energy region; i.e., both theories
should give the same result in that region, thus they can be
matched (similar ideas of matching were exploited in various
effective models, see, e.g., Refs. [2] and [7]). First of all, let
us estimate the matching region. The main difference between
the CQM and QCD is induced by the pions as long as they
are quark-antiquark bound states in QCD, while within the
CQM the pions represent fundamental fields. It is expected
(see, e.g., Ref. [6]) that the simple chiral quark model is
only applicable in the low-energy region µ < mρ , where mρ

is the ρ-meson mass, mρ = 775.5 MeV [3], whereas in the
intermediate energy region, mρ < µ < �CSB, one should take
into account the higher order derivative terms of the pion field
and, probably, the ρ and σ mesons and long-range gluons
as explicit degrees of freedom. Thus, it is reasonable to try
to match the intermediate energy region to QCD. This point
is partly supported by the success of the chiral perturbation
theory [8], which basically is due to the existence of a natural
small parameter m2

π/m2
ρ � 0.03 in the low-energy strong

interactions. On the other hand, the operator product expansion
(OPE) allows us to extend the applicability of the perturbative
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QCD to the region below �CSB, up to the scale µ � mρ [9]. We
arrive thus at the conclusion that the matching region should
be mρ < µ < �CSB.

Let us for a while neglect the pion interactions in the CQM
and consider only almost free constituent quarks sufficiently
weakly interacting by means of low-energy gluons. The
SU (2)V and A quark currents can be then simply constructed,

j
CQM
µ,V = ψ̄γµ�τψ, j

CQM
µ,A = ψ̄γµγ5 �τψ. (4)

Consider the two-point correlators of these currents,



CQM
µν,J (q2) =

∫
d4x e−iqx

〈
j

CQM
µ,J (x)jCQM

ν,J (0)
〉
, (5)

here J = V,A. As long as the effective coupling constant
in the CQM is rather small, one may estimate the V and
A correlators (5) by doing a standard one-loop perturbative
calculation for the polarization function. Thus,



CQM
µν,V (q2) ∼

∫
d4p tr

γµ

�q
2 + �p − mcon

γν

�q
2 − �p − mcon

, (6)



CQM
µν,A(q2) ∼

∫
d4p tr

γµγ5
�q
2 + �p − mcon

γνγ5
�q
2 − �p − mcon

, (7)

where mcon is the constituent quark mass. Taking the trace and
neglecting the irrelevant for us terms quadratic in cutoff, we
obtain



CQM
µν,V (q2) ∼ {(−δµνq

2 + qµqν)F− + qµqνF+}I (q2), (8)



CQM
µν,A(q2) ∼ {(−δµνq

2 + qµqν)F+ + qµqνF−}I (q2), (9)

where

F± = 1 ± 4m2
con

q2
, (10)

I (q2) =
∫

d4p
1(

q

2 + p
)2 − m2

con

1(
q

2 − p
)2 − m2

con

. (11)

To compare these expressions with the OPE in QCD we have
to perform the Wick rotation and consider the transverse part



CQM
J⊥ (q2) only,



CQM
V ⊥ (Q2) ∼

(
1 − 4m2

con

Q2

)
I (Q2), (12)



CQM
A⊥ (Q2) ∼

(
1 + 4m2

con

Q2

)
I (Q2). (13)

Is is seen that the V and A correlators are equal in the
limit of exact chiral symmetry, mcon → 0, and in the limit
of asymptotic chiral symmetry, Q2 → ∞. In the limit of
vanishing euclidean momentum, Q2 → 0, they have opposite
signs, but equal absolute value. This sign flip could be regarded
as a signal of change of chiral symmetry realization at low
energies. The second term in Eqs. (12) and (13) emerges
because of the chiral symmetry breaking. It is different for
the V and A channels; let us denote it 


CQM
CSB,J (Q2). Of interest

for us is the fraction



CQM
CSB,V (Q2)



CQM
CSB,A(Q2)

= −1. (14)

The inclusion of pion interactions should correct the simple
picture above because the derivative of the pion field enters
the axial-vector current; moreover, in the matching region,
mρ < µ < �CSB, the higher order derivative terms of the pion
field may become significant. However, such derivative terms
can affect strongly the longitudinal parts of the correlators
while they should not couple to the transverse parts in the chiral
limit. Because we are working with the transverse parts only,
it looks reasonable to neglect the terms involving π in Eq. (1).
Moreover, we will match the CQM to QCD in the large-Nc

limit [10]; hence, the same limit has to be taken from the CQM
side, this provides a suppression of possible multiparticle
contributions to current (1). Thus, the residual effect of the
strong interactions reduces to the renormalization of the
axial-vector current [factor gA in Eq. (1)]. This constitutes
our first assumption.

Our second assumption concerns a concrete realization of
this renormalization. We propose an alternative interpretation
of the origin of the axial coupling gA in Eq. (1). In QCD, one
constructs the V and A currents from the same quark spinors,
but in the effective theory it is not evident that we are allowed to
do this. Actually, the axial-vector sector is affected strongly by
the pion interactions. This may lead to the fact that we should
use another quark spinors in the A channel; let us denote this
circumstance by a prime. But phenomenological success of the
CQM suggests that, neglecting the direct pion contributions,
the action of the A′ current may be simulated as the action
of the A current (constructed from the same quark spinors
as the V current) if we accept the following renormalization
prescription: A = gAA′. The V − A current in QCD, Eq. (2),
turns into the V − gAA′ current below �CSB. The identical
notation for the quark spinors in the vector and axial-vector
parts of current (1) should be then understood symbolically
only.

We would provide the following qualitative support in favor
of this hypothesis. If the constituent quarks are almost free, the
corresponding left nucleon current is expected to experience
the same renormalization. The nucleon analogjN

µ,L of the left
quark current (1) enters the amplitude of the nucleon β decay
and it can be written in the form

jN
µ,L = ψ̄pγµ(1 − GAγ5)ψn. (15)

This current is constructed following the Fermi V -A theory of
weak interactions. Hence, initially one has the V -A′ current
but then in calculations one uses the same ψp,n for the vector
and axial-vector parts, i.e., one works with the V -g−1

A A hadron
current. Consequently, we expect gA ≈ G−1

A ≈ 0.79, which is
reasonable (notice that from relation (3) we would formally
obtain gA = √

0.6 ≈ 0.77, which is also not bad). If our
hypothesis is right this numerology is not accidental.

Thus, the assumptions above result in the following con-
clusion: In ratio (14) we had different quark spinors in the
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numerator and in the denominator. If we want to compare the
correlators calculated with the same spinors, say with the ones
entering the vector current (let us refer to them as bare spinors),
we should renormalize the A correlator in the following way,



CQM
CSB,A(Q2) → g−2

A 

CQM
CSB,A(Q2). (16)

This renormalization effectively takes into account the contri-
bution of pion interactions.

Now we formulate our matching condition between the
CQM and the QCD in the region mρ < µ < �CSB, where
both are expected to describe the same physics related to CSB.
We require that the bare quark spinors in the CQM Lagrangian
can be replaced by those of the QCD Lagrangian at mρ < µ <

�CSB with ensuing equality of operators of quark currents,

ψ̄γµ�τψ |bare
CQM � ψ̄γµ�τψ |QCD, (17)

ψ̄γµγ5 �τψ |bare
CQM � ψ̄γµγ5 �τψ |QCD. (18)

We require also that the same identification is valid between
the fundamental gluon fields in the QCD Lagrangian and the
long-range gluons in the CQM. Then relations (14) and (16)
lead to



QCD
CSB,V (Q2)



QCD
CSB,A(Q2)

� −g2
A. (19)

The problem now is to find 

QCD
CSB,J (Q2), i.e., the parts of the

corresponding QCD correlators that appear due to the CSB. A
solution of such a task is known in the euclidean region due to
the OPE method [9]. Accepting the chiral and large-Nc [10]
limits, the OPE for 


QCD
µν,J (q2) in the one-loop approximation

reads as follows at large euclidean momentum Q,



QCD
J⊥ (Q2) = Nc

12π2

(
1 + αs

π

)
ln

µ2

Q2
+ αs

12π

〈G2〉
Q4

+4πξJ αs

9

〈q̄q〉2

Q6
+ O

(
1

Q8

)
, (20)

where

ξV = −7, ξA = 11, (21)

and we have defined



QCD
µν,J (Q2) = (−δµνQ

2 + QµQν)
QCD
J⊥ (Q2). (22)

The symbols 〈G2〉 and 〈q̄q〉 denote the gluon and quark
condensate, respectively. The power-like expansion (20) shows
explicitly that the CSB effects set in since the O(1/Q6)
terms. This agrees with our naive model calculation above—
expanding Eqs. (12) and (13) at large Q2 we obtain the same
qualitative behavior for the CSB contribution. The part of



QCD
J⊥ (Q2) that absorbs the leading contributions related to the

CSB (more precisely, the contributions that are different for

the V and A channels), 

QCD
CSB,J (Q2), is evident from Eq. (20),



QCD
CSB,J (Q2) = 4πξJ αs

9

〈q̄q〉2

Q6
+ O

(
1

Q8

)
. (23)

The relation above gives



QCD
CSB,V (Q2)



QCD
CSB,A(Q2)

= ξV

ξA

+ O
(

1

Q2

)
. (24)

Collecting Eqs. (19), (24), and (21), we get our final result,

g2
A � 7

11 , (25)

which yields gA ≈ 0.80 in a good agreement with the existing
phenomenological estimates.

The obtained value calls for a comment concerning the
large-Nc behavior of gA. In the literature there is a discrepancy
with regard to the question of whether or not gA = 1 in the
large-Nc limit; see Refs. [4–6] for discussions. Our estimate
has been performed taking this limit from the outset since it
was used in OPE (20)—the factorized form of the numerator in
O(1/Q6) term takes place by virtue of the vacuum saturation
hypothesis, which is justified in the large-Nc limit only [9].
We conclude thus that the deviation of gA from unity is not
an artifact of the O(1/Nc) corrections, at least within the
presented approach.

Let us summarize our scheme. We have considered the
transverse parts of vector and axial-vector two-point correla-
tors and extracted the leading contributions coming from the
spontaneous chiral symmetry breaking, which are different
for the vector and axial-vector channels. In the constituent
quark model, the ratio of these contributions in the vector
and axial-vector channels is −1 whereas from the QCD side
in the large-Nc limit it is equal to −7/11. We assumed that
the difference appears mainly from the fact that the QCD
vector and axial-vector currents, jV

µ and jA
µ , are built from

the same quark spinors while in the constituent quark model
this is not the case, the effect can be effectively described
as the renormalization of the current jA

µ , jA
µ |ren = g−1

A jA
µ |bare,

and, in fact, by default one uses the renormalized current
in the two-point correlator 〈jA

µ jA
ν 〉. The correct matching

with QCD correlators, however, should be achieved with the
unrenormalized currents if we want to escape the double
counting of nonperturbative effects. Thus, the axial-vector
correlator of the constituent quark model should be mul-
tiplied by the factor g−2

A when doing matching to QCD.
This gives immediately the relation for the axial coupling,
g2

A � 7/11.
Finally, realizing that the undertaken reasoning is expected,

at best, to give an order-by-magnitude estimate, it looks quite
spectacular that the obtained value for gA is so close to the
accepted phenomenological estimate. Perhaps, this somewhat
justifies a posteriori the assumptions made.
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by the Ministry of Education of Russian Federation, Grant
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