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Exact relativistic tritium β-decay endpoint spectrum in a hadron model
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We present the relativistic calculation of the β-decay of tritium in a hadron model. The elementary particle
treatment (EPT) of the transition 3H →3 He + e− + νe is performed in analogy with the description of the
β-decay of neutron. The effects of higher order terms of hadron current and nuclear recoil are taken into account
in this formalism. The relativistic Kurie function is derived and presented in a simple form suitable for the
determination of neutrino masses from the shape of the endpoint spectrum. A connection with the commonly
used Kurie function is established.
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I. INTRODUCTION

Neutrinos are one of the most intriguing and fascinating
fundamental particles, which make up the Universe. However,
they are also one of the least understood particles. Studies of
neutrinos have played a crucial role in the understanding of
elementary particle laws and their interactions.

Three types of light neutrinos are known. The recent
observation of neutrino oscillations [1–5] has now beyond
doubt established the nonzero masses of neutrinos, the flavor
change and neutrino mixing. It has opened a new excited era
in neutrino physics and represents a big step forward in our
knowledge of neutrino properties and serves as solution of
many problems in cosmology, elementary particle physics,
and astrophysics.

While neutrino oscillation experiments are sensitive only
to differences of squared neutrino masses, the neutrino mass
measurements with tritium [Qβ(3H) = 18.6 keV] and rhenium
[Qβ(187Re) = 2.47 keV)β-decays yield direct information on
the absolute neutrino mass scale. The idea underlying the
measurement of neutrino mass is actually fairly obvious. A
long time ago, it was already pointed out by Fermi [6] that the
shape of the electron spectrum in nuclear β-decay, near the
kinematical end point, is sensitive to the neutrino mass.

Attempts to evaluate the rest mass of the neutrino ex-
perimentally were already being undertaken long ago. In
1940 one of the first kinematical measurements of neutrino
mass was performed by Hanna and Pontecorvo [7] with a
proportional chamber filled with tritium. A limit of ∼1 keV on
the neutrino mass was obtained, which was determined by the
resolution of the detector. The Mainz [8] and Troitsk [9] tritium
β-decay experiments using the magnetic adiabatic collimation
technique, place the present upper limit on the mass of the
electron neutrino of 2.3 eV and 2.2 eV, respectively. The
best published calorimetric limit to the electron neutrino mass
obtained from the β-spectrum of 187Re is 15 eV [10]. We note

that the bounds on neutrino mass imposed by the shape of the
spectrum are independent of whether neutrino is a Majorana
or a Dirac particle.

A next-generation tritium β-decay experiment is the
KArlsruhe TRItium Neutrino experiment (KATRIN) [12–14],
which is presently in construction phase (It is planned to
take data starting 2010). This experiment is projected for
measurement of the neutrino mass with a sensitivity of
200 meV, which will have important implications for the theory
of neutrino masses. If the result will be positive, it will imply
a degenerate spectrum of neutrino masses. On the other hand,
a negative result will be a very useful constraint. There is
also a chance that the planned MARE experiment [11] based
on arrays of rhenium low temperature microcalorimeters will
be able to achieve sensitivity lower than 0.2 eV in future. The
MARE approach would have totally different systematics with
respect to the KATRIN.

In view of an enormous experimental progress in the field
there is a request for a highly accurate theoretical description
of the electron energy spectrum in the determination of the
neutrino masses from the shape of the endpoint spectrum.
The subject of interest has been molecular effects in tritium
beta decay [15], radiative corrections [16], Lorentz invariance
violations [17], interactions beyond the standard model [18],
relativistic form for the β-decay endpoint spectrum [19,20],
etc.

The aim of this paper is to derive the relativistic form
for the β-endpoint spectrum in a hadron model. We shall
take advantage of the fact that the nuclei 3H and 3He are,
respectively, the nuclear analogs of the neutron and the proton,
i.e., they form an isospin SU(2) doublet. A correspondence to
the commonly used formulas will be established. We note that
the considered approach is known also as Elementary Particle
Treatment (EPT) of weak processes, which was developed by
Kim and Primakoff [21].

0556-2813/2008/77(5)/055502(6) 055502-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.77.055502
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II. THE NUCLEAR PHYSICS DESCRIPTION OF TRITIUM
β-DECAY

By neglecting neutrino mixing for simplicity and taking
into account only left-handed weak interaction, the electron
energy spectrum for tritium β-decay is

N (Ee) = d�

dEe

= G2
F V 2

ud

2π3
|M.E.|2F (Z,Ee)peEe

× (E0 − Ee)
√

(E0 − Ee)2 − m2
ν, (1)

where GF is the Fermi constant and Vud is the element of the
Cabbibo-Kobayashi-Maskawa (CKM) matrix. pe,Ee, and E0

are the momentum, energy, and maximal endpoint energy (in
the case of zero neutrino mass) of the electron, respectively.
F (Z,E) denotes the relativistic Coulomb factor.

The transition is superallowed, a mix of Fermi and Gamow-
Teller transitions. The absolute square of the nuclear matrix
element is given by

|M.E.|2 = f 2
V |MF |2 + f 2

A|MGT |2, (2)

where the Fermi and Gamow-Teller matrix elements take the
form

MF = 〈3He|
3∑

k=1

τ+
k |3H〉, (3)

�MGT = 〈3He|
3∑

k=1

τ+
k �σk|3H〉. (4)

fV and fA are the vector and the axial-vector coupling
constants of the nucleon, respectively. We note that the
derivation of the differential decay rate in Eq. (1) involves
nonrelativistic approximations and that only the s1/2 states of
outgoing leptons are taken into account.

The Fermi matrix element can be evaluated by assuming
the exact isospin symmetry as well as the fact that 3H and 3He
form an isospin doublet (T = 1/2) (the projection Tz = 1/2 is
assigned to the 3He and Tz = −1/2 to the 3H) with the result
MF = 1.

The absolute square of the Gamow-Teller matrix element
can be deduced from the Ikeda sum rule by taking into account
that the Gamow-Teller operator has no radial dependence and
thus can not scatter into higher shells. In 3He the 1s neutron
level is already occupied by two neutrons and therefore in
the transition p to n the neutron would need to be scattered
into a higher orbit (e.g., 2s) in the continuum, which is
forbidden for the Gamow-Teller operator. Thus only 3H →3He
but not 3H → 3n can contribute to the Ikeda sum rule. In
addition, there are no excited states of 3He. As a consequence
|MGT |2 = 3. This result is in a good agreement with the
recommended value |MGT | = √

3(0.962 ± 0.002) obtained in
nuclear structure calculation [24].

The conserved vector current (CVC) hypothesis proposed
by Feynman and Gell-Mann suggests that the vector coupling
constant fV is not renormalized in the nuclear medium, i.e.,
fV = 1.0. The accurately measured β-decay lifetime of tritium
(T1/2(3H ) = 12.32 ± 0.03 yr) [22,23] is used to adjust the
value of axial-vector coupling constant fA via the calculation

of the theoretical half-life

(T1/2)−1/2 = �

ln 2
=

∫ E0−mν

me

N (Ee)dEe. (5)

In the computation of the integral over the electron energy Ee

we adopted the relativistic Coulombic factor F (Z,E) [26],
which take into account the finite size of the nucleus. For
|MGT |2 = 3 we found |fA| = 1.247. The very good agreement
between this result and the bare nucleon value |fA/fV | =
1.2695 ± 0.0029 [25] suggests that the axial-vector coupling
constant is only weakly quenched in the tritium.

The dependence of spectrum shape on the mass of neutrino
mν in Eq. (1) follows from the phase volume factors only. The
traditional way to look at the β-spectrum data is to make a
Kurie plot, where

K(Ee) ≡
√

N (Ee)

F (Z,Ee)peEe

= GF Vud√
2π3

|M.E|

× (E0 − Ee)
4

√
1 −

(
mν

(E0 − Ee)

)2

. (6)

For zero mass neutrino, if K(Ee) is plotted against Ee, the
result is a straight line that crosses the Ee axis at Ee = E0. For
mν �= 0 the endpoint shifts to Emax = E0 − mν and the rate
near the endpoint is depressed, namely the Kurie plot has a
kink at the endpoint. This distortion will be washed out at the
experiment unless the energy resolution is comparable to mν .

There are open questions related to the presented conven-
tional approach for kinematical study of the β-decay endpoint
of 3H. In particular, it is not known what the consequences
of the considered nonrelativistic approximations are. Further,
the effect of the nuclear recoil is not taken into account. It is
also worth mentioning that the relativistic expression for the
maximal electron energy

Emax
e = 1

2Mf

[
M2

i + m2
e − (Mf + mν)2

]
(7)

gives a value about 3.4 eV lower than the considered
approximation Emax

e 	 Mi − Mf − mν [20] (Mi,Mf , and
me are masses of the tritium atom, 3He+ and the electron,
respectively). In view of the planned sensitivity of ∼0.2 eV
of the KATRIN experiment, there is a request for a consistent
relativistic description of the β-decay of tritium [20].

III. RELATIVISTIC β-DECAY KINEMATICS IN HADRON
MODEL

We shall study the β-decay of tritium,

3H →3 He + e− + νe, (8)

in an analogy with the β-decay of a free neutron,

n → p + e− + νe, (9)

as the spin-isospin characteristics of 3H (3He) nucleus and
neutron (proton) are the same. The kinematics of the two
processes above differ mostly due to different Q-values and
the Coulomb corrections.
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The invariant β-decay amplitude is given by

M = GF Vud√
2

u(Pe)γα(1 − γ5)v(Pν)

× u(Pf )

[
GV (q2)γ α + i

GM (q2)

2Mi

σαβqβ

−GA(q2)γ αγ5 − GP (q2)qαγ5

]
u(Pi). (10)

Here, qα = (Pf − Pi)α = (Pe + Pν)α is the momentum
transferred to the hadron vertex. Pi = (Mi, 0), Pf =
(Mf , pf), Pe = (me, pe) and Pν = (mν, pν) are four momenta
of the 3H, 3He, electron and antineutrino in the laboratory
frame, respectively.

The form factors GV (q2),GM (q2),GA(q2),GP (q2) are
real functions of the squared momentum q2. They are
parametrized as follows:

GV (q2) = gV(
1 − q2

M2
V

)2 , GM (q2) = gM(
1 − q2

M2
V

)2 ,

(11)
GA(q2) = gA(

1 − q2

M2
A

)2 .

The two form-factor cutoffs MV and MA are in general
different and their values are expected to be of the order of
1 GeV like it is in the case of nucleon form-factors. As it will
be discussed later the q2-dependence of these form factors is
not crucial for tritium β-decay.

The conserved vector current hypothesis (CVC) implies
gV = 1.0. gM = −6.106 is calculated from the values of
magnetic moments of 3H and 3He using the CVC hypothesis
as well [27]. The axial coupling constant gA can be determined
from the measured half-life of 3H. The induced pseudoscalar
coupling is given by the partially conserved axial-vector
current hypothesis (PCAC)

gP (q2) = 2MigA(q2)
/(

m2
π − q2

)
. (12)

mπ is the mass of pion.
For the spin-summed, Lorentz-invariant squared amplitude

we get

1

2

∑
spins

|M|2 = 16(GF Vud )2

[
G2

VPV V + GAGVPAV + G2
APAA

+GAGPPAP + G2
PPPP

+GV GM

PV M

2Mi

+ GAGM

PAM

2Mi

+ G2
M

PMM

4M2
i

]

(13)

with

PV V = Pef Pνi + PeiPνf − MiMf Peν, (14)

PAA = Pef Pνi + PeiPνf + MiMf Peν, (15)

PAV = 2(Pef Pνi − PeiPνf ), (16)

PAP = Mf

(
m2

ePνi + m2
νPei

) − Mi

(
m2

ePνf + m2
νPef

)
, (17)

PPP = 1

2
(Pif − MiMf )

(
Peν

(
m2

e + m2
ν

) + 2m2
νm

2
e

)
, (18)

PV M = Mi

[
Peν

(
Pif − M2

f

) + Pef (Pνi − 2Pνf ) + PeiPνf

]
+Mf

[
Peν

(
Pif − M2

i

) + Pei(Pνf − 2Pνi) + Pef Pνi

]
,

(19)

PAM = 2(Mi + Mf )(Pef Pνi − PeiPνf ), (20)

PMM = −1

2
Pif

(
Peν

(
m2

e + m2
ν

) + 2m2
em

2
ν

) − MiMf m2
em

2
ν

+ 2PeiPef

(
Peν + m2

ν

) + 2PνiPνf

(
Peν + m2

e

)
− 1

2
MiMf Peν

(
3m2

e + 3m2
ν + 4Peν

)
. (21)

Here, Pkl ≡ (Pk · Pl) with k, l = i, f, e and ν denotes the
scalar product of two four-momenta.

By neglecting the contribution from higher order currents
(terms proportional to GM,P ) we find

1

2

∑
spins

|M|2 = 16(GF Vud )2
[
(GV + GA)2(Pe · Pf )(Pν · Pi)

+ (GV − GA)2(Pe · Pi)(Pν · Pf )

× ( − G2
V + G2

A

)
MiMf (Pe · Pν)

]
. (22)

The advantage of the presented formalism is that the
squared Lorentz invariant amplitude is calculated exactly
unlike in Ref. [20], where an assumption about its dominant
constituent was considered. We note that for GV = GA = 1
the squared amplitude is proportional to (Pe · Pf )(Pν · Pi), i.e.,
the structure is similar as, e.g., in the case of the muon decay.

For the tritium β-decay at rest the differential decay rate is

d� = 1

2Mi

F (Z,Ee)

(
1

2

∑
spins

|M|2
)

× (2π )4

(2π )9
δ(4)(Pi − Pf − Pe − Pν)

d3pe

2Ee

d3pν

2Eν

d3pf

2Ef

.

(23)

The factor 1/2 in front of the squared amplitude stands for the
average over the spin of the initial state.

The subject of interest is the energy distribution of the
electron. Hence, the integration over antineutrino and final
nucleus momenta have to be performed in Eq. (23). It requires
calculation of the following integrals:

K =
∫

d3pf

Ef

d3pν

Eν

δ(4)(Q − Pf − Pν), (24)

(Lν,f )ρ =
∫

d3pf

Ef

d3pν

Eν

δ(4)(Q − Pf − Pν)(Pν,f )ρ, (25)

(Nkl)
ρσ =

∫
d3pf

Ef

d3pν

Eν

δ(4)(Q − Pf − Pν)(Pk)ρ(Pl)
σ (26)

with Q = Pi − Pe and k, l = ν, f . The details of integrations
with results are given in the Appendix.

055502-3
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The differential decay rate is found to be of the form

d�

dEe

= 1

2π3
(GF Vud )2F (Z,Ee)pe

M2
i

(m12)2

√
y

(
y + 2mν

Mf

Mi

)

×[
g2

VRV V + gAgVRAV + g2
ARAA

+ gAgPRAP + g2
PRPP

+ gV gMRV M + gAgMRAM + g2
MRMM

]
, (27)

where (m12)2 = M2
i + m2

e − 2MiEe and y = Emax
e − Ee. In

the calculation we neglected q2 dependence of the form
factors as for the β-decay of 3H the value of q2 is rather
small. Their consideration would lead only to small correction
factors, which are not sensitive to neutrino mass. We find it
not useful to present here the explicit form of all RI (I =
V V, V A,AA,AP,PP, V M,AM,MM) factors. Instead of
that we conclude about their structure and importance.

Our analysis showed that each term of RI is proportional to
(y + mν(Mf + mν)/Mi) or (y + mνMf /Mi). So, a common
(y + mνMf /Mi) can be put in front of the bracket in Eq. (27)
by neglecting a small term mν/Mi . The importance of different
RI contributions can be studied in the limit Mi = Mf ,Ee =
me and by making Taylor expansion in in mν,me(mν 
 me 

Mi). The leading terms of different RI (without the common
factor) are as follows:

V V : meMi,AA : 3meMi,AV : 2m2
e,

V M :
1

2

m3
e

Mi

,MM :
3

16

m5
e

M3
i

, AM : 2m2
e, (28)

AP : 2meMi

m2
e

m2
π

, PP :
1

2
meMi

m4
e

M2
i m2

π

.

From their comparison we conclude that the contributions
coming from higher order terms of hadron current to the decay
rate of 3H can be neglected.

Then we have
d�

dEe

= 1

2π3
(GF Vud )2F (Z,Ee)pe

× M2
i

(m12)2

√
y

(
y + 2mν

Mf

Mi

)

×
[

(gV + gA)2y

(
y + mν

Mf

Mi

)
M2

i

(
E2

e − m2
e

)
3(m12)4

× (gV + gA)2

(
y + mν

Mf + mν

Mi

) (
MiEe − m2

e

)
m2

12

×
(

y + Mf

Mf + mν

Mi

) (
M2

i − MiEe

)
m2

12

− (
g2

V − g2
A

)
Mf

(
y + mν

(Mf + Mν)

Mi

)(
MiEe − m2

e

)
(m12)2

+ (gV − gA)2Ee

(
y + mν

Mf

Mi

) ]
. (29)

The first term in the brackets in Eq. (29), which is quadratic
in y, plays a subleading role. By keeping only the dominant
contributions and by introducing a mass scale parameter M

instead of the Mi and Mf , we get

d�

dEe

	 1

2π3
(GF Vud )2F (Z,Ee)peEe

(
g2

V + 3g2
A

)
×

√
y(y + 2mν)(y + mν). (30)

For the relativistic form of the Kurie function we can write

K(y) = B(
√

y(y + 2mν)(y + mν))1/2 (31)

with

B = GF Vud√
2π3

√
g2

V + 3g2
A. (32)

The unknown coupling constant gA of the hadron current is
fixed to the half-life of 3H [22,23] with result gA = 1.247. This
value coincides well with that of the axial-vector coupling
of the nucleon (see previous section). We have B = 3.43 ×
10−6 GeV−2.

By comparing the Kurie function in Eqs. (31) and (32) with
the commonly used one Eq. (6) we find that they are equal if y

is replaced with (E0 − Ee − mν) and |MGT |2 = 3 is assumed.
This confirms what was generally expected, namely that the
relativistic effects are small corrections to the results known in
the traditional method due to a small Q-value of the β-decay
of tritium. However, it was not clear yet whether the recoil
of the nucleus, which value is 3.4 eV for maximal electron
energy, affects the endpoint spectra, if the sub-eV mass of the
neutrino is measured. Within the considered EPT of β-decay
of tritium we find that there is no significant modification of
the shape of the electron spectra close to the endpoint due to
the nuclear recoil.

In Fig. 1 we show a relativistic Kurie plot for the β-
decay of 3H versus y = Emax − Ee near the endpoint. Special
attention is given to the effect of a small neutrino mass
(mν = 0.2, 0.4, 0.6, and 0.8 eV). We see that the Kurie plot
is linear near the endpoint for zero neutrino mass (mν = 0).
However, the linearity of the Kurie plot is lost if the neutrino
has a nonzero mass. Deviation from a straight line depends
on the magnitude of neutrino mass mν . Though, there is
no difference with the previously known dependences, it is
worth to stress that in this case the relativistic form of the

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
-y-mν [eV]

0.0

0.4

0.8

1.2

1.6

K
(y

)/
B

 [
eV

]

FIG. 1. Endpoints of the relativistic Kurie plot [see Eqs. (31)
and (32)] of the tritium beta decay for various values of the neutrino
mass: mν = 0, 0.2, 0.4, 0.6, and 0.8 eV.
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β-decay Kurie plot is used, which also takes the nuclear recoil
(∼3.4 eV) into account.

IV. CONCLUSION

The neutrino absolute mass scale, which is very important
for particle physics as well as for cosmology and astrophysics,
cannot be resolved by oscillation experiments. A way of the
direct determination of the neutrino mass scale in laboratory
experiment is the investigation of the kinematics of tritium
β-decay.

The KATRIN experiment [12–14], which is under construc-
tion, will be able to reach a sensitivity of neutrino mass in the
sub-eV range. In connection with that there is a request for a
highly accurate theoretical description of the electron energy
spectrum.

In this paper we derived the relativistic form for the β-decay
endpoint spectrum in the elementary particle treatment of
weak interaction. The considered formalism follows from the
analogy between 3H (3He) and the neutron (proton) having the
same spin-isospin properties. It allowed us unlike in Ref. [20]
to determine the squared β-decay amplitude more accurately.
In addition, we found that the higher order terms of the hadron
current can be neglected without affecting the dependence of
the Kurie plot on the electron energy and the neutrino mass. By
comparing the relativistic and previously used Kurie functions
a good agreement between them was established.
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APPENDIX

Here we outline the calculation of integrals over neutrino
and final nuclear momenta.

A. Integration of K
The integration is performed by choosing Q = (Q0, 0), i.e.,

the rest frame connected with the center of mass of antineutrino
and final nucleus. We have

K =
∫ ∫

d3pf

Ef

d3pν

Eν

δ(4)(Q − Pf − Pν)

=
∫

1

Eν

δ(Q0 − Ef − Eν)pf dEf d�f (A1)

with Ef = (m2
ν − M2

f + E2
f )1/2. By using δ(f (x)) = δ(x −

x0)/|f ′(x0)| we find

K = 2π

√[
Q2

0 − (Mf + mν)2
][

Q2
0 − (Mf − mν)2

]
Q2

0

. (A2)

We replace Q2
0 with Q2 and write K in the Lorentz invariant

form

K = 2π

√
[Q2 − (Mf + mν)2][Q2 − (Mf − mν)2]

Q2

= 4πMi

√
y
(
y + 2mν

Mf

Mi

)
(m12)2

. (A3)

Aps journal.

B. Integration of (Lν)ρ

The integral

(Lν)ρ =
∫

d3pf

Ef

d3pν

Eν

δ(4)(Q − Pf − Pν)(Pν)ρ (A4)

can be written as

(Lν)ρ = AQρ. (A5)

Here, A ≡ A(Q2) is a scalar function of Q2. By multiplying
(Lν)ρ with Qρ the constant A(Q2) can be determined. Then
we get

(Lf )ρ = (Q · Pf )

Q2
KQρ. (A6)

Aps journal.

C. Integration of (Nν f )ρσ

The integral

(Nνf )ρσ =
∫

d3pf

Ef

d3pν

Eν

δ(4)(Q − Pf − Pν)(Pν)ρ(Pf )σ (A7)

is a second rank tensor

(Nνf )ρσ = Cgρσ + DQρQσ , (A8)

where C ≡ C(Q2) and D ≡ D(Q2) are scalar functions of Q2.
By multiplying (Nνf )ρσ with gµν and with QρQσ a set of

two equations is formed. By solving them we find

(Nνf )ρσ

K =
(

(Pν · Pf ) − (Q · Pν)(Q · Pf )

Q2

)
1

3
gρσ

−
(

(Pν · Pf ) − 4
(Q · Pν)(Q · Pf )

Q2

)
QρQσ

3Q2
.

(A9)

The remaining integrals (Lν)ρ, (Nνν)ρσ , (Nff )ρσ can be cal-
culated following the scheme given above.
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