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Hadron loops: General theorems and application to charmonium
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In this paper, we develop a formalism for incorporating hadron loops into the quark model. We derive
expressions for mass shifts, continuum components, and mixing amplitudes of “quenched” quark model states
due to hadron loops, as perturbation series in the valence-continuum coupling Hamiltonian. We prove three
general theorems regarding the effects of hadron loops, which show that given certain constraints on the external
“bare” quark model states, the valence-continuum coupling, and the hadrons summed in the loops, the following
results hold: (1) The loop mass shifts are identical for all states within a given N,L multiplet. (2) These states
have the same total open-flavor decay widths. (3) Loop-induced valence configuration mixing vanishes provided
that Li �= Lf or Si �= Sf . The charmonium system is used as a numerical case study, with the 3P0 decay model
providing the valence-continuum coupling. We evaluate the mass shifts and continuum mixing numerically for
all 1S, 1P , and 2S charmonium valence states due to loops of D, D∗, Ds , and D∗

s meson pairs. We find that
the mass shifts are quite large but numerically similar for all the low-lying charmonium states, as suggested by
the first theorem. Thus, loop mass shifts may have been “hidden” in the valence quark model by a change of
parameters. The two-meson continuum components of the physical charmonium states are also found to be large,
creating challenges for the interpretation of the constituent quark model.
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I. INTRODUCTION

The discovery of the narrow charm-strange mesons
D∗

s0(2317)+ [1] and Ds1(2460)+ [2] has given special impetus
to the calculation of hadron loop effects, since the loops are
often cited as a possible reason for the surprisingly low masses
of these mesons. This possibility is supported by the prediction
that the corresponding cs̄ quark model states have especially
strong couplings to the open-flavor decay channels DK and
D∗K [3,4]. (For discussions of the importance of hadronic loop
effects in this and other contexts, including other heavy-quark
mesons, see, for example, Refs. [5–36].)

The subject of valence-continuum couplings is also relevant
to the X(3872) seen in J/ψπ+π− [37,38], which may be
predominantly a weakly bound 1++DD∗ molecular state; the
size of the cc̄ valence component present in this system has
important implications for the properties of this state. (See
Ref. [39] for a review of these and other recent developments
in heavy-flavor hadrons.)

Since the open-flavor decay couplings of hadrons to two-
body final states A → BC are large, one might anticipate
that second-order decay loops, in which a hadron virtually
decays to a two-body intermediate state and then reforms the
original hadron (A → BC → A), are also important effects.
These second-order virtual processes give rise to mass shifts
of the bare hadron states and contribute continuum components
to the physical hadron state vectors. A careful estimate of
these mass shifts is of great interest, since they are usually
not included in quark potential models and are only partially
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present in quenched lattice QCD, and may constitute important
“systematic” errors in the results.

In our initial study, we develop a formalism for treating
these loops effects, using results from our earlier studies of
open-flavor decay amplitudes. In particular, we give results
for the loop-induced mass shifts and continuum amplitudes of
hadrons, as well as the off-diagonal “spectroscopic mixing am-
plitudes” induced by hadron loops between different external
discrete hadron basis states.

As a numerical application, we consider the charmonium
system and evaluate these mass shifts and continuum compo-
nents for the lighter (narrow) charmonium states that lie below
the open charm threshold. Charmonium is especially attractive
as a test system for studying loop effects because the low-lying
spectrum is clear experimentally, with complete 1S, 1P , and
2S multiplets, and all eight states in these multiplets are below
the open-flavor decay threshold. (This implies that all mass
shifts are negative, with no cancellations.) In addition, the
charmonium system is only moderately relativistic, and the
spectrum is quite well described by quenched potential models
and lattice gauge theory. Thus loop effects may be evaluated
as (possibly) perturbative corrections to well understood cc̄

potential model states, and the results may be contrasted with
an unambiguous experimental spectrum.

II. FORMALISM

A. Loop model

To incorporate hadron loop effects in the quark model, we
model a physical hadron as a bare valence state |A〉 augmented
by two-hadron continuum components,

|�〉 = |A〉 +
∑
BC

ψBC |BC〉. (1)
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We assume that the Hamiltonian for this combined system
consists of a valence Hamiltonian H0 (the quark model
Hamiltonian) and an interaction HI which couples the valence
and continuum sectors,

H = H0 + HI . (2)

We will evaluate the continuum components of the hadron
state and their physical effects as a perturbation series in the
valence-continuum coupling HI . Our starting point for this
perturbations series is the set of single valence hadron H0

eigenstates; a specific valence state is written as |A( �pA)〉, and
is assigned an H0 eigenvalue of EA = (M2

A + �p 2
A )1/2. Since

we normally work in the rest frame of the valence hadron,
�pA = 0, this energy eigenvalue is just the rest mass MA of the
bare valence quark model hadron.

The free two-hadron valence states which form our zeroth-
order noninteracting continua are written as |B( �pB)C( �pC)〉.
The valence Hamiltonian H0 is understood to operate only
between the constituents of B and C separately; BC inter-
actions, which are not treated here, would be incorporated
in a separate two-hadron interaction Hamiltonian. This BC

continuum state has H0 eigenvalue EBC = EB + EC where
EB = (M2

B + �p 2
B )1/2 and EC = (M2

C + �p 2
C )1/2. In the A rest

frame, we have �pB = − �pC ≡ �p, and with p ≡ | �p| the energies
are EB = (M2

B + p2)1/2 and EC = (M2
C + p2)1/2.

The matrix elements of the valence-continuum coupling
Hamiltonian are of the form

〈BC|HI |A〉 = hf iδ( �pA − �pB − �pC). (3)

With explicit momentum labels, these rest-frame one- and two-
hadron valence states are written as |A(�0)〉 and |B( �p)C(− �p )〉,
and the coupling matrix element is a function of a single
momentum vector, hf i( �p).

B. Mass shifts

The mass shift of a valence hadron A due to its coupling
to the BC continuum may be expressed in terms of the
coupling matrix element hf i( �p) of Eq. (3) using second-
order perturbation theory (for a general discussion, see
Ref. [40]). The usual discrete sum

∑
n over intermediate states

generalizes to a momentum-space integral over continuum
states |B( �p)C(− �p)〉; the result for a single BC channel is

�M
(BC)
A =

∑
n

∣∣〈ψn|HI

∣∣ψh0

〉∣∣2

(En − E0)
= −

∫
d3p

|hf i |2
(EBC − MA)

= −P
∫ ∞

MB+MC

dEBC

(EBC − MA)

pEBEC

EBC

∫
d�p|hf i |2

− iπ

{
pEBEC

MA

∫
d�p|hf i |2

} ∣∣∣∣
EBC=MA

, (4)

where P is the principal part integral. There is an implicit sum
over any intermediate-state polarization labels in the squared
Hamiltonian matrix element |hf i |2.

As a check of our central result Eq. (4), note that the
imaginary part of the mass shift

Im
(
�M

(BC)
A

) = −π

{
pEBEC

MA

∫
d�p|hf i |2

}∣∣∣∣
EBC=MA

(5)

should be related to the total decay rate by

�(A → BC) = −2Im
(
�M

(BC)
A

)
. (6)

The standard A → B + C decay rate formula given in Eq. (5)
of Ref. [41] is indeed consistent with this relation.

If the initial hadron mass is below the BC threshold
(MA < MB + MC), we do not encounter a singular energy
denominator, and this mass shift is a real, negative definite
integral over p,

�M
(BC)
A = −

∫ ∞

0

p2dp

(EBC − MA)

∫
d�p|hf i |2. (7)

If one considers mixing between the valence state A and
several continuum BC channels, the total mass shift at this
(leading) order in the valence-continuum coupling is the sum
of the individual mass shifts due to each channel.

Nonperturbative estimates of the mass shift can be made
in the absence of final state interactions by summing iterated
bubble diagrams. The result is a full propagator of the form

− iG(s) = 1

(s − M2 − �(s))
, (8)

where � is the one particle irreducible self-energy of the
meson in question. The propagator pole yields the meson mass
shift and width. Contact to our perturbative, nonrelativistic
results can be made by identifying

√
s�(s) = −Im(�(s)) and

2
√

sδM(s) = Re(�(s)), and assuming that the width and mass
shift are small relative to the unperturbed meson mass.

We have computed numerical pole positions with iterated
loops for the charmonium examples of the next section using
this formalism and find rather small differences in mass shifts
relative to the single loop approximation [typically �M(cc̄)
changes by less than 10%].

We have also examined the effect of mixing-induced cou-
pling between states. Thus the denominator of the propagator
becomes a matrix, (s − m2

i )δij − �ij (s). Solving this equation
for the case of the J/ψ coupling to ψ ′ and ψ ′′ through
DD,DsDs,DD∗,DsD

∗
s , D

∗D∗, and D∗
s D

∗
s continua again

yields corrections to the one-loop diagonal results that are
typically about 10%. We therefore simply present perturbative
(one-loop), single-channel mass shifts in the discussion of
charmonium.

C. Continuum components

Although mass shifts due to loops may be “hidden” in
fitted parameters in quenched approaches, such as mq or V0 in
potential models and mq or the coupling in quenched lattice
gauge theory, it should nonetheless be possible to identify
other, more characteristic effects of the two-meson continuum
components. We will require the explicit continuum compo-
nent wave functions to evaluate their effects on observables.
Here we give general results for these wave functions; an
example will be considered in the discussion of charmonium.
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The valence-continuum coupling HI induces a continuum
component in an initially pure valence state |A〉. At leading
order in hf i this continuum component is given by∑

BC

ψBC |BC〉 = −(H0 − MA)−1 HI |A〉. (9)

The momentum-space wave function of the continuum com-
ponent in a specific channel BC is

φB( �p)C(− �p) ≡ φBC( �p ) = − hf i( �p )

(EBC(p) − MA)
. (10)

Using the conventions of Ref. [42], the corresponding real-
space wave function in the relative separation �r = �rB − �rC is

ψBC(�r) =
∫

d3p φBC( �p )
ei �p·�r

(2π )3/2
. (11)

For nonzero spin, this spatial wave function is implicitly
summed over the meson orbital and spin magnetic quantum
numbers, to give overall states with the J, Jz of meson A.

The norm of this continuum component gives the proba-
bility that the physical energy eigenstate is in the two-meson
channel BC. This is

P
(BC)
A =

∑
n

|〈ψn|HI |ψ0〉|2
(En − E0)2

=
∫

d3p
|hf i |2

(EBC − MA)2
. (12)

=
∫ ∞

0

p2 dp

(EBC − MA)2

∫
d�p|hf i |2. (13)

D. Spectroscopic mixing

Mixing of discrete “valence” quark model basis states
through hadron loops is an interesting effect which may have
easily observable consequences. The amplitude af i to find
a discrete basis state |f 〉 in the initially pure valence state
|i〉 as a result of continuum mixing is given by second-order
perturbation theory as

af i = 1

(Mf − Mi)

∑
BC

∫
d3p

hf,BC( �p)hBC,i( �p)

(EBC(p) − Mi)
. (14)

For an initial valence state within the continuum, this is
replaced by a principal part integral, and the amplitude af i

has an imaginary part, analogous to Eq. (4).
Note that this loop-induced mixing amplitude is somewhat

counterintuitive, in that it is nonsymmetric in general; that is,

|af i | �= |aif |. (15)

This disagrees with the simple picture of an orthogonal rotation
between two basis states often used to describe mixing in
the quark model. [Examples include mixing between spin-
singlet and spin-triplet axial vector K1 and D1 mesons, and
between the |23S1〉 and |3D1〉 charmonium basis states in the
{ψ ′(3686), ψ(3772)} system.] Since this is actually an infinite-
dimensional Hilbert space rather than a two-dimensional
one, it is of course not necessary that |af i | = |aif |. Instead,
the valence state |i〉 that is closest to the continuum, and
hence minimizes the valence-continuum energy denominator
(EBC − Mi) in Eq. (14), will tend to experience the largest
mixing. This will be illustrated in the next section.

E. Three loop theorems

In the Appendix we show that sums over sets of mesons
within the loop under certain conditions gives very simple
relations between the mass shifts, strong widths, and con-
figuration mixing amplitudes due to hadron loops. Although
these relations are not exactly satisfied in nature, they are
sufficiently accurate to be relevant to realistic problems such
as the charmonium examples we consider here.

Provided that our conditions are satisfied, one may show
that for the states {A} in a given Ni, Li multiplet,

(i) The mass shifts for all states {A} are equal.
(ii) Their strong (open-flavor) total widths are equal.

(iii) The configuration mixing amplitude af i between any
two valence basis states i and f vanishes if Li �= Lf or
Si �= Sf .

These conclusions hold to all orders if there are no final
state interactions in the continuum channels.

To prove these loop results, we consider a sum over a finite
set of intermediate (loop) mesons that runs over all mesons in
a given N,L multiplet, taking on all allowed values of spin
S and total angular momentum J . Examples of such loop
sets include “SS̄” {(DD̄), (DD̄∗), (D∗D̄), (D̄∗D̄∗)} and “SP̄ ”
{(DD̄∗

0 ), (D∗D̄∗
0 ), (DD̄1), (D∗D̄1), (DD̄1

′), (D∗D̄1
′), (DD̄∗

2 ),
(D∗D̄∗

2 )}, where we have explicitly indicated antiparticles.
The proof assumes that all members of the set of intermediate
(loop) mesons which are summed over have the same
mass, and for the first two “diagonal” conclusions (equality
of mass shifts and total widths) we also require that the
external mesons have a common bare mass and radial wave
function. In addition, there are general conditions that the
valence-continuum coupling must satisfy, which are discussed
in the Appendix. These constraints are satisfied by the 3P0

model that is used for illustration in this paper.
The first conclusion suggests how these intrinsically large

loop mass shifts can be hidden in the parameters of quenched
models; since the largest effect of loops on the spectrum of
states in the multiplets we consider is an overall downward
mass shift in the multiplet center of gravity, (c.o.g.), this can
be approximately parametrized through a change in the quark
mass or through a constant in the potential.

As an illustration of this theorem in a specific case, Table I
shows the relative mass shifts of all the 1P charmonium levels
due to their 3P0 couplings to DD,DD∗, and D∗D∗ meson
loops, assuming that all the bare 1Pcc̄ masses are identical, the

TABLE I. Relative one-loop mass shifts of 1P charmonium
states in the equal mass limit.

Bare cc̄ state Relative mass shifts, �Mi(LBC)/�Mtot(LBC)

LBC = 0 LBC = 2

DD DD∗ D∗D∗ DD DD∗ D∗D∗

13P2 0 0 1 3/20 9/20 2/5
13P1 0 1 0 0 1/4 3/4
13P0 3/4 0 1/4 0 0 1
11P1 0 1/2 1/2 0 1/2 1/2
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TABLE II. Valence configuration mixing amplitudes af i due to loops (DD; DD∗; D∗D∗ 1P1; D∗D∗5P1) in the {|3S1〉, |23S1〉, |3D1〉}
system. The total af i is the sum of the individual loop contributions, as indicated. The labels |I 〉 etc. refer to the physical (unnormalized)
states one finds due to loop-induced mixing between |cc̄〉 valence states. (These are perturbative, one-loop results, with parameters as in
Table I.) Note the approximate cancellations in �L �= 0 mixing and the nonsymmetric mixing amplitudes.

|I 〉 |II 〉 |III 〉
|3S1〉 [1] −.013 − .011 + .000 + .006 = −.018 −.089 − .017i + .086 − .010 − .020 = −.033 − .017i

|23S1〉 −.003 − .014 − .001 − .026 = −.045 [1] −.572 − .138i + .573 − .072 − .143 = −.214 − .138i

|3D1〉 +.015 − .026 + .004 + .008 = +.001 +.340 − .469 + .063 + .126 = +.060 [1]

D and D∗ meson masses are identical, and each flavor system
has a common radial wave function. Although the individual
continuum channels DD,DD∗, and D∗D∗ make different
contributions to the mass shift of each meson, the summed
mass shift from all three channels is identical for each of the
four 1P mesons. Thus, if the mesons are initially degenerate,
they remain degenerate after these loop effects are included.
This has been noted previously by Tornqvist [34]; the results
presented here can be considered an elaboration of this original
observation. Furthermore, Tornqvist and Żenczykowski have
studied the analogous effect in baryons in Refs. [35,36].

One may also see evidence for the no-loop-mixing result for
states with different L (conclusion 3 above) in our charmonium
example. In Table II, we show the individual DD,DD∗, and
D∗D∗ one-loop contributions to the mixing between |3S1〉
|23S1〉 and |3D1〉 charmonium valence basis states. Note that
in some of the disfavored cases, such as |3S1〉 → |3D1〉, there is
an almost complete cancellation of the final |3D1〉 amplitude,
due to destructive interference between the DD,DD∗, and
D∗D∗ loops. This destructive interference between loops is
still evident but less complete for mixing between the higher
lying states |23S1〉 and |3D1〉, because they are quite close to
the DD threshold; this causes the energy denominators to vary
widely between channels, so the mass constraints assumed in
the theorem are strongly violated.

III. NUMERICAL RESULTS: APPLICATION TO
CHARMONIUM

A. Mass shifts

To illustrate this formalism, we will evaluate the effect
of open-charm meson loops on the masses and compositions
of 1S, 1P , and 2S charmonium states. We use the well-
established 3P0 model [41,43–46] as the valence-continuum
coupling Hamiltonian and neglect two-meson interactions.
Our general approach is very similar to an earlier study by
Heikkila, Ono, and Tornqvist [27], although we find somewhat
larger loop effects than reported by this reference.

The 3P0 model treats strong decays as being due
to a bilinear quark-antiquark pair production interaction
Hamiltonian, HI = γ

∑
q 2mqψ̄qψq , which is normally eval-

uated using nonrelativistic quark model matrix elements.
A diagrammatic technique for determining the valence-

continuum coupling matrix element hf i between a meson
A and a two-meson state BC in the 3P0 model is given in
Ref. [41]. We use this approach to determine the {hf i}A-BC

valence-continuum matrix elements. Gaussian momentum-

space quark model meson wave functions were used, with
unequal light, strange, and charm quark masses. For simplicity,
a common width parameter β was assumed for all charmonium
and open-charm meson wave functions; tests of the overlaps
of more realistic Coulomb plus linear plus smeared hyperfine
wave functions with Gaussians shows that this is a reasonable
“zeroth-order” approximation.

1. J/ψ mass shifts

As a first numerical example, we consider the mass shift of
an initial valence J/ψ cc̄ state mixing with the DD continuum.
The hf i matrix element for the transition J/ψ → D( �p)D̄(− �p)
for a rest J/ψ in polarization state m is given by

hf i = 23

33

1 + 3rn

1 + rn

γ

π1/4β1/2
ρe−ρ2/3(1+rn)2

Y1m(�p), (16)

where rn = mn/mc is the light (n = u, d) to charm quark mass
ratio, ρ = p/β, β is the simple harmonic oscillator (SHO)
meson wave function width parameter (taken to be the same
for all mesons in this work), and γ is the dimensionless 3P0

pair production amplitude. On substituting this hf i into the
mass shift formula Eq. (7), and including a flavor factor of two
for neutral and charged DD loops, we find

�M
(DD)
J/ψ = −27

36

(
1 + 3rn

1 + rn

)2
γ 2β

π1/2

×
∫ ∞

0

ρ4e−2ρ2/3(1+rn)2
dρ

2
(
ρ2 + µ2

D

)1/2 − µJ/ψ

, (17)

where µ ≡ M/β for each meson.
Numerical evaluation of this integral using MJ/ψ =

3.097 GeV, MD = 1.867 GeV, β = 0.5 GeV, γ = 0.35 (mo-
tivated by total widths; see Fig. 2 of Ref. [47]), and rn =
mn/mc = 0.33/1.5 gives the result

�M
(DD)
J/ψ = −23.1 MeV. (18)

Using the experimental J/ψ mass as the input bare mass in
this manner is of course only appropriate as an estimate of the
size of these effects. Since this is, in effect, a renormalization
problem, the sum of the (unobservable) bare mass and mass
shift should be identified with the experimental J/ψ mass.

Although this DD contribution is a relatively small effect,
incorporation of higher (1S)(1S) channels shows that the
summed loop mass shifts are quite large. The formulas for
the DD,DD∗, and D∗D∗ loop integrals in the J/ψ system
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are identical, but the relative spin-flavor factors of 1:4:7 give
a combined mass shift that is an order of magnitude larger
than for the DD channel alone. (These 1:4:7 spin-flavor
factors were reported earlier by Heikkila et al. [27] for loop
contributions to mass shifts, and by De Rujula et al. [48]
and Close [49] for charm production cross sections.) On
including all six D,D∗,Ds, and D∗

s pair channels (with MD =
1.867 GeV, MD∗ = 2.008 GeV, MDs

= 1.968 GeV, MD∗
s
=

2.112 GeV, and rs = 0.55/1.5), we find

6∑
n=1

�M
(n)
J/ψ = −457.5 MeV. (19)

This very large mass shift appears to invalidate the quenched
quark model. In the next section, we will see that this scale of
mass shift is actually common to all the low-lying charmonium
states, and it can therefore be approximately subsumed in a
change of parameters (such as the charm quark mass mc or an
overall constant V0 in the cc̄ potential).

2. Mass shifts of other charmonium states

One can understand how such large mass shifts may have
been accommodated in pure cc̄ quark models by evaluating
the mass shifts of the remaining low-lying charmonium states
below DD threshold. We again set the bare masses equal
to the experimental values to generate this estimate; the
values used (in GeV) are Mψ ′ = 3.686,Mη′

c
= 3.637,Mχ2 =

3.556,Mχ1 = 3.511,Mχ0 = 3.415,Mhc
= 3.526, and Mηc

=
2.979, and the other model parameters are as before.

The resulting mass shifts are given in Table III, and
evidently are all quite large. Note, however, that they are rather
similar, so there is a much smaller scatter about the mean shift;
the mean and variance are, respectively, −471 and 49 MeV.
The scatter of mass shifts within a multiplet is even smaller;
the variance within the 1P multiplet, for example, is just
24 MeV. (The similarity of mass shifts within a multiplet was
discussed in the previous section and is a consequence of the
general nature of the valence-continuum coupling model.)

The large overall shift could be parametrized in a pure
cc̄ “quenched” potential model through a shift in mc or through
the addition of a large negative constant V0 to the cc̄ potential.
One expects that the goodness of fit to the cc̄ spectrum is rather
insensitive to these modifications.

The J/ψ-ηc and ψ ′-η′
c loop-induced mass splitting has been

discussed previously by Eichten et al. [7]. These authors sum
over the same set of intermediate states employed here but
use the Cornell decay model for the strong decay interaction.
They find a small loop-induced J/ψ-ηc mass splitting of
−3.7 MeV and a ψ ′-η′

c splitting of −20.9 MeV, bringing
their model into good agreement with the experimental ψ ′-ηc

mass difference. Table III shows that we find a numerically
similar ψ ′-η′

c splitting of −24 MeV; however, the ground
state mass difference due to coupling to the continuum is
−34 MeV, indicating that loop effects induce a larger ψ ′-η′

c

mass difference of approximately +10 MeV. This is consistent
with the bare model employed here, which finds a substantially
smaller bare ψ ′-η′

c mass difference [47] than that of Ref. [7].

B. Continuum components

Although the large negative mass shifts may be “hidden”
by the choice of mc or V0 in potential models and mc or a(β)
in quenched LGT, it should nonetheless be possible to identify
other observable effects of the two-meson continuum compo-
nents, since according to Table III their occupation probabili-
ties are comparable to the valence cc̄ components. To illustrate
this, we will evaluate some of these continuum component
wave functions explicitly and consider their effect on some
experimentally observed properties of charmonium states.

Recall from Eq. (10) that the continuum component wave
function in momentum space, φBC( �p ), is given by

φBC( �p) = − hf i

EBC(p) − MA

. (20)

Again specializing to the DD component of the J/ψ as our
example, this momentum-space wave function is

φDD( �p ) = φDD(p)Y1m(�p), (21)

TABLE III. Mass shifts (in MeV) and cc̄ probabilities for low-lying charmonium states due to couplings to two-meson
continua. This one-loop estimate sets the unperturbed bare masses to the experimental values and assumes 3P0 model
and SHO wave function parameters γ = 0.35 and β = 0.5 GeV and quark mass ratios rn = mn/mc = 0.33/1.5 and
rs = ms/mc = 0.55/1.5.

Bare cc̄ state Mass shifts by channel, �Mi (MeV) Pcc̄

Multiplet State DD DD∗ D∗D∗ DsDs DsD
∗
s D∗

s D
∗
s Total

1S J/ψ(13S1) −23 −83 −132 −21 −76 −123 −457 0.69
ηc(11S0) 0 −114 −105 0 −106 −98 −423 0.73

2S ψ ′(23S1) −27 −84 −126 −19 −70 −113 −440 0.51
η′

c(2
1S0) 0 −118 −103 0 −102 −94 −416 0.61

1P χ2(13P2) −40 −105 −144 −33 −88 −111 −521 0.49
χ1(13P1) 0 −127 −148 0 −90 −130 −496 0.52
χ0(13P0) −57 0 −196 −34 0 −172 −459 0.58
hc(11P1) 0 −149 −130 0 −118 −107 −504 0.52
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FIG. 1. DD continuum component wave function of the J/ψ .

where

φDD(p) = − 8

27

1 + 3rn

1 + rn

γ

π1/4β3/2

pe−p2/3(1+rn)2β2

2
(
M2

D + p2
)1/2 − MJ/ψ

.

(22)

Note that this component formally diverges as MJ/ψ → 2MD ,
due to a vanishing energy denominator; this shows that as
expected, the largest continuum components arise in valence
states that are closest to the continuum. The spatial wave
function corresponding to φDD(p) is shown in Fig. 1.

C. J/ψ continuum probabilities

The probability of finding the physical J/ψ in the DD

continuum [from Eq. (13)] is

P
(DD)
J/ψ = 27

36

(
1 + 3rn

1 + rn

)2
γ 2

π1/2

∫ ∞

0

ρ4e−2ρ2/3(1+rn)2
dρ[

2
(
ρ2 + µ2

D

)1/2 − µJ/ψ

]2 .

= 0.021. (23)

Although this appears to be a reassuringly small correction
to the valence quark model description of the J/ψ as a pure
cc̄ state, when we calculate the probability that the physical
state is in any of the i = 1, . . . , 6 meson continuum states
DD,D∗D,D∗D∗,DsDs,DsD

∗
s , D

∗
s D

∗
s , we again find that

the summed contribution is quite large. Expressed as the
probability that the physical J/ψ is in the valence cc̄ state,
we find

P
(cc̄)
J/ψ = 1 −

6∑
i=1

P
(i)
J/ψ = 0.685. (24)

Just as was the case for the mass shifts, we find that the
continuum components of charmonium states are very large.
This represents an interesting challenge in the interpretation
of the constituent quark model and quenched QCD, which
both neglect meson loops. The main issue is whether such
large loop effects can be absorbed into parameter redefinitions
when computing observables.

D. Spectroscopic mixing

As noted previously, discrete charmonium levels below
the continuum mix at second order in the valence-continuum
Hamiltonian HI through hadron loops, provided that both the
initial and final valence states |i〉 and |f 〉 have nonzero matrix
elements to at least one continuum intermediate state |BC〉.

Here we shall illustrate this effect by calculating the amount
of mixing between low-lying 1−− states. First we consider the
|3S1〉 and |23S1〉cc̄ basis states, which at leading order are
identified with the J/ψ and ψ(3686), respectively. We will
give explicit formulas for mixing through DD intermediate
states and simply quote numerical results for mixing through
higher two-meson continua.

The hf i matrix elements required to evaluate these mixing
amplitudes are

hBC,i(
3S1 → DD)

= 23

33

1 + 3rn

1 + rn

γ

π1/4β1/2
ρe−ρ2/3(1+rn)2

Y1m(�p), (25)

hf,BC(DD → 23S1)

= 25/2

35/2

[
1 + 2

9

1

1 + rn

− 8

27

1 + 3rn

(1 + rn)3
ρ2

]

× γ

π1/4β1/2
ρe−ρ2/3(1+rn)2

Y∗
1m(�p), (26)

and

hf,BC

(
DD → 3D1

)

= 211/251/2

39/2

[
r

1 + r
− 2

15

1 + 3rn

(1 + rn)3
ρ2

]

× γ

π1/4β1/2
ρe−ρ2/3(1+rn)2

Y∗
1m(�p). (27)

Substitution of these expressions into Eq. (14) and evaluation
of the overlap integral gives the 13S1 − 23S1 mixing ampli-
tudes af i . Our numerical results, using the same parameters
and masses as previously, are given in Table I.

IV. SUMMARY AND CONCLUSIONS

In this paper, we presented a formalism for “unquenching
the quark model” through the incorporation of the effects
of hadron loops on valence quark model states. We gave
expressions for the mass shift, continuum components of the
hadron state vector and mixing amplitudes between discrete
valence states that follow from hadron loop effects for a given
valence-continuum coupling Hamiltonian.

As a numerical example, we applied this formalism to
the experimentally well-established light charmonium sys-
tem, using the 3P0 decay model for the valence-continuum
coupling. We evaluated the mass shifts and compositions of
the physical charmonium states for all 1S, 1P , and 2S states
using perturbation theory in the valence-continuum coupling;
these mass shifts and two-meson components were found to be
quite large. Since the mass shifts of the different charmonium
levels are numerically rather similar, we speculate that they
have been hidden in the choice of mc or a constant potential
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shift V0 in cc̄ valence potential models. It remains to be
seen whether the two-meson continuum components can be
“parametrized away”—it is possible that they lead to important
mixing effects between discrete charmonium basis states that
may be experimentally observable.

The mixing effects we find using the 3P0 decay model
as the valence-continuum coupling prove to be quite large
for higher mass intermediate continuum states. Although it is
possible that these effects can be largely renormalized away, an
accurate description of loop effects will probably require the
development of a more realistic valence-continuum coupling
Hamiltonian than the 3P0 model.
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APPENDIX: LOOP THEOREMS

Numerical experiments suggest that although individual
loop contributions to physical observables are large, in practice
there are often important cancellations or constraints when
loop sums over sets of mesons are carried out. This is evident,
for example, in the mass shifts in Table III; the individual
loop mass shift for a given state varies widely between states,
but the total mass shifts when summed over loops are rather
similar. One can see that these relations are exact in certain
limits. As an example, Table I shows the relative mass shifts
of the four P -wave charmonium states in the limit in which
they have identical initial masses, and the D and D∗ within
the loops also have identical masses; although the individual
channel mass shifts differ, we find the same total mass shift for
each P -wave state on summing over the channels DD,DD∗,
and D∗D∗.

A similar result is evident in the loop-induced configura-
tion mixing discussed in the text; the configuration mixing
amplitude af i between initial i and final f meson basis states
in the usual N, J,L, S basis is found to be zero if Li �= Lf ,
provided that the mesons in the loops have identical masses
and we again sum over a complete set of loop meson spin
states SB and SC . As an example, in this limit this gives a zero
mixing amplitude due to loops between any charmonium 3S1

and 3D1 basis states.
In this Appendix, we give a proof of this mass shift identity

and the zero-mixing result for loop sums; these results hold
whenever one sums over loops containing a complete set of

spin (S) meson states (in a given N, J,L, S multiplet). The
proof applies to the 3P0 coupling model in particular, but
it also holds for a more general class of valence-continuum
couplings, specifically to spin-one, factorized, spectator decay
models, as discussed by Burns, Close, and Thomas [50]. In
this type of model, the valence-continuum coupling proceeds
through spin-one qq̄ pair production, the initial quarks do
not couple to the decay vertex, and the spatial dependence
of the decay vertex multiplies the created qq̄ spin operator:
O = σψ , where ψ represents the spatial portion of the decay
vertex. The proof therefore also applies to the Cornell decay
model [8] and a decay model based on the nonrelativistic
reduction of the interaction

∫
ψ̄ψ(�x)V (�x − �y)ψ̄ψ(�y), but it

does not apply to pair production from one gluon exchange
(discussed in Ref. [41]).

Given a valence-continuum coupling of this general form,
which includes the 3P0 used in this paper for numerical
examples, one may show that the general 〈BC|HI |A〉 matrix
element is of the form

〈JA[LjBC]; jBC[jBjC]; jB[sB�B] jC[sC�C]|σψ |JA[sA�A]〉
=

∑
sBC�BCLf

(−)η1̂L̂f ŝBC�̂BCĵB ĵCĵBCŝAŝB ŝC ŝBC

· 〈Lf [L�BC]; �BC[�B�C]||ψ ||�A〉

·




sB �B jB

sC �C jC

sBC �BC jBC







1/2 1/2 sB

1/2 1/2 sC

sA 1 sBC




·
{

sBC �BC jBC

L jA Lf

}{
sBC sA 1
�A Lf jA

}
(A1)

where x̂ = √
2x + 1 and η = L + sBC + �BC + Lf + sB .

If the expressions for the mass splitting (Eq. (7)) or
spectroscopic mixing are summed over intermediate states
BC with identical masses, the resulting common energy
denominators may be taken outside the sum over channels,
and one is left with the expressions

δm(i) =
∫

d3p

(2π )3

1

mi − ĒBC(p) + iε

×
∑
BC

|〈ji[si�i]|σψ |BC〉|2 (A2)

and

af i = 1

mi − mf

∫
d3p

(2π )3

1

mi − ĒBC(p) + iε
· (A3)

×
∑
BC

〈jf [sf �f ]|σψ |BC〉〈BC|σψ |ji[si�i]〉, (A4)

where ĒBC is the common energy of all states in the same
multiplet as BC.

The sum over intermediate states simplifies when one
considers a subsum over spin multiplets:∑

BC

→
∑

sBsCjBjC

; (A5)

the angular momenta �B, �C, L can remain fixed.
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On substituting Eq. (A1) into Eqs.(A2) and (A4), and using
the orthogonality relation for 9j and 6j symbols

∑
j13,j24

ĵ13ĵ24




j1 j2 j12

j3 j4 j34

j13 j24 J


 ·




j1 j2 j ′
12

j3 j4 j ′
34

j13 j24 J




= δ(j12, j
′
12)δ(j34, j

′
34)

ĵ12ĵ34
, (A6)

and ∑
j12

ĵ 2
12

{
j1 j2 j12

j3 j4 J

}
·
{

j1 j2 j12

j3 j4 J ′

}
= δ(J, J ′)

Ĵ
, (A7)

we obtain the sum
δsi sf

δ�i�f

2�i + 1

∑
�BCLf

|〈Lf [L�BC]; �BC[�B�C]||ψ ||�i〉|2. (A8)

Since this expression is independent of the initial and final
meson spin, we conclude that all mesons in a given (assumed
degenerate) spin multiplet receive the same width and mass
shift from the sum over all intermediate (loop) mesons in a
given spin multiplet. Furthermore, the spectroscopic mixing
between mesons of different orbital angular momentum is
zero when sums over spin multiplet intermediate states are
carried out. (The external meson masses need not be identical
to prove this result.) Finally, since these matrix elements drive
nonperturbative mixing [see the discussion following Eq. (8)],
these conclusions also apply to nonperturbative mixing, in the
absence of final state interactions.

Spectroscopic mixing between mesons with differing radial
quantum numbers (but identical otherwise) is not zero in

general. The size of this mixing is governed by the spatial
dependence of the strong decay vertex. Spectroscopic mixing
has been studied previously by Geiger and Isgur [29], who
considered the closure approximation, in which all loop
mesons are assumed to be degenerate, not simply those in
a spin multiplet. Geiger and Isgur used this approximation to
explain the observed weakness of loop-driven OZI (Okubo-
Zweig-Iizuka) violation effects. We remark that the closure
approximation implies that spectroscopic mixing between
states with different radial quantum numbers is zero: under
this approximation Eq. (A4) simplifies to

af i = 1

(mi − mf )

1

(mi − Ē)
〈nf jf [sf �f ]|O2|niji[si�i〉

= 〈0|O2|0〉
(mi − mf )(mi − Ē)

〈nf jf [sf �f ]|niji[si�i]〉, (A9)

where the last form follows from the spectator nature of the
decay model. Thus, if we impose the equality of all loop meson
masses, all spectroscopic mixing is zero in the 3P0 model and
in a wide range of related decay models.

Finally, the previous discussion remains largely unchanged
when considering mixing between initially degenerate states.
In this case, one must diagonalize the matrix of second-order
matrix elements in the degenerate subspace [51], δHij =
(mi − mj )aji . Under the conditions of the theorem, off-
diagonal matrix element in δHij are zero when the meson
spins or angular momenta differ. Furthermore, the diagonal
matrix elements are identical. Thus conclusions concerning
mass shifts, widths, and small or zero spectroscopic mixing
remain unchanged.
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