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Radiative corrections to the deeply virtual Compton scattering electron tensor
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Radiative corrections in the leading logarithmic approximation are calculated for the differential cross section
of e−µ+ radiative scattering. In particular the interference term due to photon emission from the electron and muon
blocks are calculated in helicity independent and dependent parts. The calculation is applied to the kinematical
conditions of existing deeply virtual Compton scattering (DVCS) data in electron-proton collisions. Both helicity
odd and helicity even differential cross sections are considered.
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I. INTRODUCTION

Interesting information about the structure functions of the
proton can be found in radiative electron proton scattering ex-
periments, analyzing the interference between the amplitudes
of the radiative electron block (Bethe-Heitler amplitude) and
the amplitudes of the radiative proton block. In the literature
one can find different suggestions for the determination of
the relevant contributions to the differential cross section,
concerning in particular deeply virtual Compton scattering
(DVCS) [1].

In view of the large experimental program which is
underway or foreseen at present accelerators and of the
precision of the data in electron proton elastic and inelastic
scattering, the necessity to achieve an adequate precision in
the calculation of radiative corrections (RC) is a very real
problem.

The theoretical description at the lowest order is based
on the work of Schwinger [2] and Mo and Tsai [3]. The
last one contains an application to experimental data on ep

radiative scattering. A further improvement was given in the
known paper of Yennie, Frautschi, and Suura [4], where a
simple formula was derived to describe the emission of virtual
and real (soft) photons with energy lower than a value �ε,
of the order of the experimental resolution. Such photons
cannot be detected, in exclusive experiments. In inclusive or
semi-inclusive experiments, the emission of hard, undetected
photons should also be taken into account, as it escapes the
detection.

The emission of an additional photon (virtual or real) is
associated with a suppression factor of the order of α = 1/137,
the fine structure constant. It corresponds to a small correction
to the cross section, which can be estimated to 0.5%. However,
a precise calculation of RC at higher order of perturbation
theory (PT) is highly required in modern experiments at high
energy. There are at least two reasons for this. Firstly, due
to the emission of photons by light charged leptons, RC
have an enhancement by a factor called ‘large logarithm’,
L = ln Q2/m2, where Q is the characteristic momentum or
the energy parameter and considerably exceeds the lepton rest
mass m. Therefore the effective expansion parameter becomes

αL. Applying the general theorem about the factorization of
soft and virtual photon contribution [4], one obtains this factor
in the form:

W ∼ b exp

[
(b − 1) ln

�ε

ε

]
= b

(
�ε

ε

)b−1

, b = α

π
(L − 1),

where �ε is the energy of the photon emitted by an electron
of energy ε.

Secondly, a kinematical effect, called ‘returning’ mecha-
nism, due to hard photon emission from one of the initial
charged particles may become important, in particular for
processes where the cross section increases when the initial
energy decreases.

Both mechanisms were studied in lowest order of PT.
Including higher orders brings, in general, large computing
difficulties. However, mostly due to the study of QCD
[5] processes, a powerful method was developed based on
scale invariance (or renormalization group). In this frame,
the behavior of the amplitudes and of the cross section
can be described in the limit of vanishing lepton mass in
the leading ∼ (αL)n (LLA) and next to leading ∼ α(αL)n

(NLA) approximations. The application of this method to the
calculation of RC provides an accuracy at thousandth level.

The cross section including RC in LLA has the expression
of the convolution of universal functions [structure functions
of leptons (LSF)] with a kinematically shifted cross section,
calculated in the Born approximation. The NLA contributions
are taken into account by a K-factor. In this case, for two light
leptons in the initial channel, one can write

dσ (p1, p2, . . .) =
∫

dx1dx2D(x1, L)D(x2, L)

× dσB (x1p1, x2p2, . . .)
(

1 + α

π
K

)
,

and, for the case of a single light lepton in the initial state:

dσ (p1, . . .) =
∫

dxD(x, L)

x
dσB(xp1, . . .)

(
1 + α

π
K

)
.

The LSF D(x, L) obeys the evolution equations of a
twist-2 operator. For most quantum electrodynamic (QED)
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applications it is sufficient to consider only the nonsinglet
LSF, which was derived in 1985 in the work of one of us [6].

The motivation of the present paper is to calculate RC to
virtual Compton scattering (VCS) including the emission of
additional hard photons as well as higher order contributions.
In particular we focus on the real part of the interference and
on the total cross section. The interference can be measured in
experiments with radiative scattering of electron and positron
beams on a proton target, where it is related to the difference
of the corresponding cross sections in the same kinematical
conditions.

Unpolarized and polarized deep virtual Compton scattering
(DVCS) data are considered to provide useful information
for the extraction of the properties of generalized parton
distributions (GPD). When the accuracy of the experiment
is better then 10%, the role of radiative corrections becomes
important and a careful study of higher order contributions is
mandatory. QED radiative corrections (RC) to virtual Compton
scattering on proton (ep → epγ ) were calculated in lowest
order in Ref. [7], where a detailed study of one-loop virtual
corrections including first-order soft photon emission was
done. Higher order RC were included by exponentiation
procedure, which is valid only for small �ε.

One can write schematically the cross section for the pro-
cess for the DVCS process as the sum of three contributions:

dσ tot(e−p → e−pγ ) = dσ BH + dσ DVCS + dσ odd, (1)

where dσ BH is the Bethe-Heitler cross section (Fig. 1(a),1(b)),
dσ DVCS corresponds to the radiation of the photon from the
proton (Fig. 1(c), 1(d)), and the last term corresponds to the
interference between these two mechanisms.

The paper is organized as follows. In Sec. II we define
the kinematics and derive the formalism for the odd part of
the cross section of the radiative e−µ+ scattering, taking into
account RC in the leading logarithm approximation (LLA). In
Sec. III we consider the contributions of three gauge invariant
classes of one-loop virtual corrections. In Secs. IV and V
the soft and additional hard photon emissions in collinear
kinematics are considered and the relevant generalization for
all orders in LLA in the form of electron LSF is performed.
In Sec. VI we extend our calculation to ep scattering under
realistic assumptions. The results obtained for eµ scattering
are taken as a model for DVCS in electron proton radiative
scattering, when the muon is considered as a structureless
proton. We calculate the charge-even and charge-odd contri-
butions to the cross section for the reactions e−p → e−pγ and
e+p → e+pγ and the charge asymmetry, as well. The role of
RC in LLA discussed.

The Appendix is devoted to the kinematics of e−µ+
radiative scattering process in the laboratory (Lab) frame and
to the parametrization of the particle four-momenta.

II. FORMALISM

Let us consider the radiative e−µ+ scattering

e−(p−) + µ(p) → e−(p′
−) + µ(p′) + γ (k1). (2)

The contribution to the differential cross section of the
reaction (2), which corresponds to the so called up-down
interference of the amplitudes describing the radiation from
the electron and the muon blocks, in the lowest order of PT,
can be written as

(dσ )eµγ

odd = 4(4πα)3

stt1
HµνρE

µνρ

0 d	,

(3)

d	 = d3p′
−

2ε′−

d3p′

2ε′
d3k

2ω

δ4(p− + p − p′
− − p′ − k1)

(2π )5
.

p′
− and ε′

− ( p′ and ε′) are the momentum and the energy of the
scattered electron (muon). The odd DVCS tensors for electron
and muon are

E
µνρ

0 (p−, k1, p
′
−) = 1

4
Tr p̂′

−

(
γ ν

p̂′
− + k̂1

χ ′−
γ µ

− γ µ p̂− − k̂1

χ−
γ ν

)
p̂−γ ρ,

(4)

Hµνρ = 1

4
Tr (p̂′ + M)

(
γρ

p̂ − k̂1 + M

−χ
γν

+ γν

p̂′ + k̂1 + M

χ ′ γρ

)
(p̂ + M)γµ.

The on-mass shell conditions and kinematics invariants are
defined as

p2
− = p′2

− = m2, k2
1 = 0, p2 = p′2 = M2,

χ− = 2k1p−, χ ′
− = 2k1p

′
−, χ = 2k1p, χ ′ = 2k1p

′,

s = 2p−p, s1 = 2p′
−p′, t = −Q2 = −2p−p′

−,

t1 = q2
1 = 2M2 − 2pp′, u = −2p−p′, (5)

u1 = −2p′
−p, q1 = p − p′,

s + s1 + t + t1 + u + u1 = 0,

FIG. 1. Born Feynman diagrams for virtual Compton scattering.
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where m and M are electron and muon (proton) mass.
Throughout the paper we will suppose

s ∼ s1 ∼ −t ∼ −t1 ∼ −u ∼ −u1 ∼ χ−
∼ χ ′

− ∼ χ ∼ χ ′ � m2, (6)

where the symbol ‘∼’ means ‘of the same order’. We will
systematically omit terms of the order of m2/s compared to
those of order of unity. The considered kinematical region
corresponds to large angle final particle emission in the Lab
frame, where the calculation is performed.

In order to make the comparison with the experimental data,
we chose the following set of four independent variables:

Q2 = −t, t1, xBj = Q2

2pq
,

(7)
q = p− − p′

− and φ,

where φ is the azimuthal angle between the plane containing
the three-momenta of the initial and the scattered electrons
( �p−, �p′

−) and the hadronic plane, containing the momentum
transfer to the electron, �q, and the scattered muon momentum
�p′ [8].

The phase volume can be rewritten in terms of these
variables (see details in the Appendix) as

d	 = d�4

28π4R
,

d�4 = 1

sxBj

dφdQ2dt1dxBj , (8)

R =
[

1 + 4M2x2
Bj

Q2

] 1
2

.

The Born cross section [in the lowest order of perturbation
theory (PT)] has the form

(dσ )eµγ

odd = α3

2πstt1R
Wd�4, W = 2HµνρE

µνρ

0 . (9)

In case of massless muon we recover the result from Ref. [11]:

WM=0 = (
s2 + s2

1 + u2 + u2
1

)
×

[
s

χ−χ
+ s1

χ ′−χ ′ + u

χ ′χ−
+ u1

χ ′−χ

]
. (10)

Below we consider the radiative corrections to this part of
differential cross section. We show that when the energy
fraction of the scattered electron is not fixed, we obtain in
LLA ( α/π � 1, α/πL ∼ 1, and L = ln(Q2/m2) is the large
logarithm):

dσ
eµγ

odd

d�4
= α3

2πsQ2t1

∫ 1

x0(φ)

dx

x
D(x, L)

× W (x)

[1 − �(xt)][1 − �(t1)]
�(x), (11)

�(x) = 1

R′I

[
1 − sxBj (1 − x)

Q2

]−1

,

where �(Q2) is the contribution to vacuum polarization from
the light lepton (electron), W (x) = W (p− → p−x) and R′,

I are defined in the Appendix. D(x, L) is the nonsinglet LSF
of the electron [6]

D(x, L) = 1

2
β(1 − x)β/2−1

[
1 + 3

8
β

]
− 1

4
β(1 + x) +O(β2),

(12)
β = 2

α

π
(L − 1).

The physical requirements ε′
− > 0 and the on-mass shell

condition for the real photon lead to the restrictions:

x > x0(φ), 1 − Q2

sxBj

> 0. (13)

The determination of the quantity x0(φ) is given in the
Appendix. The helicity dependent part of DVCS cross section
on proton is

d4�

dφ
= 1

2

(
dσ→

dφ
− dσ←

dφ

)
(14)

and it is sensitive to the imaginary part of the DVCS
amplitude. Let us calculate the proton Compton amplitude in
the structureless approximation, and parametrize the nucleon
structure by a general factor G.

The relevant part of the matrix element squared can be
written as

�|M→|2 − �|M←|2 ∼ Im(G)[ �p− × �p′
−] · �kF , (15)

with

F = (2t + 4m2)

(
1

χ1χ2
+ 1

χ2χ
′
1

)
+ 2(s − u1)

(
1

χ1χ2
− 1

χ2χ
′
1

)
− 2χ2

(
1

χ1χ
′
2

+ 1

χ ′
1χ

′
2

)
+ 4(s − M2)

χ1χ2
+ 4(u1 − M2)

χ ′
1χ

′
2

.

(16)

III. ONE-LOOP VIRTUAL CORRECTIONS

In LLA only Feynman diagrams (FD) where a single
photon is transferred between the muon and the electron blocks
contribute to cross section (see Fig. 2). In our considerations
we omit FD with two virtual exchanged photons due to the
cancellation of such contributions when one includes the
amplitude corresponding to soft photon emission between
electron and muon blocks. The details of this ‘up-down
cancellation’, which holds in LLA, were discussed in [17]
and references therein. The corresponding contribution goes
beyond the limits of accuracy of the present calculation.

In the calculation, only FD drawn in Fig. 2 can be
considered. The corresponding part of the total matrix element
is denoted as Mγ . The total contribution to the DVCS tensor
can be restored from the interference of these amplitudes
(Fig. 2) with the Born one (Fig. 1(c) or 1(d)):

Evirt
µνρ = [1 − P (p− ↔ −p′

−)]Mγ
µν(Mρ)�. (17)
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FIG. 2. Some one-loop FD for virtual Compton scattering.

The matrix element describing the electron self-energy (see
Fig. 2(c), 2(d)) and the vertex function of the real photon
emission by the initial electron have the form [9]:

α

2π
u(p′

−)γµ

[
A1

(
ê − k̂1

ep−
k1p−

)
+ A2k̂1ê

]
u(p−). (18)

The contribution of the structure A1 disappears in the limit
m → 0 [10], whereas A2 survives, providing the following
contribution to the DVCS tensor:

Evirt1
µνρ = α

π

1

χ−

(
ln

χ−
m2

− 1

2

)
Tr p̂′

−γµk̂1γνp̂−γρ. (19)

The contributions of the virtual photon emission vertex of type
FD (Fig. 2(a)) as well as of the box-type (Fig. 2(b)) have the
form:

Evirt2
µνρ = α

4π

∫
d4k

iπ2

{
S1

−χ−
+ S2

(p− − k)2 − m2

}
× 1

(k2 − λ2)[(p′− − k)2 − m2][(p− − k1 − k)2 − m2]
,

(20)

where

S1 = 1
4 Tr p̂′

−γλ(p̂′
− − k̂)γµ(p̂′

− − k̂1 − k̂)γλ(p̂− − k̂1)γνp̂−γρ,

(21)
S2 = 1

4 Tr p̂′
−γλ(p̂′

− − k̂)γµ(p̂′
− − k̂1 − k̂)γν(p̂− − k̂)γλp̂−γρ.

Their calculation requires scalar, vector and tensor (up to rank
three) integrals with three and four denominators, which are
listed in [10].

Both Evirt1
µνρ and Evirt2

µνρ do not satisfy gauge invariance. Only
the right hand side of expression (17) restores the property of
gauge invariance.

After applying Eq. (17), the sum of the vertex contributions
excluding FD with Dirac form factor (see Fig. 3) are

Evirt
µνρ = Evirt1

µνρ + Evirt2
µνρ

= E0
µνρ

α

π

[
−1

4
L2 + 1

2
ln

m2

λ2
(1 − L) + 3

4
L

]
, (22)

L = ln
−q2

m2
.

In this expression it was assumed that all terms proportional to
k1ν give a vanishing contribution, due to the Lorentz condition
e(k1)k1 = 0.

IV. SOFT PHOTON EMISSION AND DIRAC
FORM-FACTOR CONTRIBUTIONS

Finally let us consider the vertex-type corrections to the
electron scattering vertex without real photon emission (see
Fig. 3(a)) and the contribution of additional soft photon
emission with energy not exceeding �ε.

Both contributions are proportional to the Born DVCS
terms:

Esoft+D
µνρ = E0

µνρ

(
α

π
	1(q2) + δsoft

)
,

(23)

δsoft = − 4πα

(2π )3

∫
d3k2

2ω2

(
p−

p−k2
− p′

−
p′−k2

)2∣∣∣∣
ω2��ε

,

where

α

π
	1(q2) = α

π

[
ln

m

λ
(1 − L) − 1

4
L2 + 3

4
L + π2

12
− 1

]
,

δsoft = α

π

[
(L − 1) ln

(�ε)2m2

λ2ε−ε′−
+ 1

2
L2 − 1

2
ln2 ε′

−
ε−

(24)

− π2

3
+ Li2

(
cos2 θ

2

)]
,

FIG. 3. Dirac and vacuum polarization contribution for one-loop
FD.
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where ε− is the energy of the incident electron and θ is electron
scattering angle.

Combining all contributions containing large logarithms,
we arrive to the lowest order expansion of the right hand side,
which does not contain the auxiliary parameter λ. Omitting
the terms of order of unity we obtain

Esummed
µνρ = Evirt

µνρ + Esoft+D
µνρ

= E0
µνρ

α

π

[
ln

(�ε)2

ε−ε′−
+ 3

2

]
(L − 1). (25)

V. ADDITIONAL HARD PHOTON EMISSION
CONTRIBUTION

The contributions arising from the emission of an additional
hard photon with energy ω2 > �ε can be written in form of
two terms. The first one, corresponding to collinear kinematics,
contains a large logarithm of type L and can be calculated with
the help of the quasireal electron method [12]. It has a form:

α

2π

∫ 1−�1

x0(φ)
dx[P (x)(L1 − 1) + 1 − x]E0

µνρ(p−x, p′
−, k1),

(26)

for the case of photon emission close to the initial electron,
and

α

2π

∫ 1

y(1+�2)

dz

z

[
P

(
y

z

)
(L2 − 1) + 1 − y

z

]
E0

µνρ

×
(

p−,
z

y
p′

−, k1

)
, (27)

for the case of photon emission close to the scattered electron
with

�1 = �ε

ε−
, �2 = �ε

ε′−
, P (z) = 1 + z2

1 − z
, (28)

with

L1 = ln
ε2
−θ2

0

m2
, L2 = ln

ε′2
−θ2

0

m2
. (29)

This contribution arises when the photons are emitted in a
narrow cone, within an angle θ0 � 1, along the directions of
the initial and the scattered electrons.

The contribution from non collinear kinematics θ > θ0 can-
cels the θ0 dependence and does not contain large logarithms.
Omitting non leading terms, we can write L1 = L2 = L.

By summing up all contributions, we can put the cross
section of the radiative production in the form:

Eµνρ(p−, p′
−, k1) =

∫ 1

0
dxD(x, L)

∫ 1

y

dz

z
D

(
y

z
, L

)

×
E0

µνρ

(
xp−, z

y
p′

−, k1
)

q2(x, z)q2
1

× 1

[1 − �(q2(x, z)]
[
1 − �

(
q2

1

)] ,

D(x, L) = δ(1 − x) + α

2π
P (1)(x)(L − 1) + · · · ,

P (1)(x) = lim
�→0

[(
2 ln � + 3

2

)
δ(1 − x)

+�(1 − x − �)
1 + x2

1 − x

]
=

(
1 + x2

1 − x

)
+
.

(30)

Here 1/[1 − �(q2(x, z)] is the polarization vacuum factor (see
Fig. 3(b)), �(t) ∼ α

3π
(L − 5

3 ) and q2(x, z) = q2xz/y.
This expression is in agreement with the result previously

obtained for the whole differential cross section in Ref. [14]
where the RC to the muon block were also taken into account.
Performing the integration on the scattered electron energy
fraction y and using the normalization property of the LSF∫ 1

0
dzD(z, L) = 1, (31)

we recover expression (11).
The differential cross section for the reaction (2) in LLA

can therefore be expressed in terms of the shifted Born cross
section as [14]

dσ e±µ→e±µγ (p±, . . .)

=
∫

dxD(x, L)

[1 − �(xt)][1 − �(t1)]
dσ

e±µ→e±µγ

B (xp±, . . .), (32)

with the following expression:

dσ
e±µ→e±µγ

B (p±, . . .) = 27π3α3

stt1

(
s2 + s2

1 + u2 + u2
1

)
×

[
− t1

χ−χ ′−
− t

χχ ′ ∓
(

u

χ−χ ′

+ u1

χ ′−χ
+ s

χ−χ
+ s1

χ ′−χ ′

)]
d	

(33)

for the nonshifted cross section. The explicit expression for
the shifted cross section is derived in a straightforward way,
by replacement of the shifted kinematics.

VI. NUMERICAL CALCULATION: APPLICATION TO
ep DVCS

Let us consider the case of unpolarized electron and
unpolarized proton target and give an estimation of the RC
to the cross section calculated in the Born approximation. We
consider, in particular the calculation for the reaction (2) as a
model for e± + p → e± + p + γ , replacing the muon mass
by the proton one.

The fourfold differential cross section, d4σ (φ) has been
calculated according to Eqs. (32) and (33) for kinematical
conditions as in Ref. [18]. The results for electron (a) and
positron (b) scattering are shown in Fig. 4 (in arbitrary units)
before (solid line) and after (dashed line) applying radiative
corrections. One can see that at φ = π the cross section for
electrons (positrons) has a minimum (maximum) and that RC
induce a φ dependent relative correction.

The calculated relative effect may be applied to the exper-
imental data. In Ref. [18] RC were calculated for e− + p →
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FIG. 4. (a) Differential cross section in arbitrary units as a func-
tion of φ for e−p → e−pγ (i.e., e−µ → e−µγ with Mµ = 1 GeV)
for the kinematics corresponding to [18]: Q2 = 2.3 GeV2, −t1 =
0.28 GeV2, xBj = 0.36 (solid line). The result after applying radiative
correction is also shown (dashed line). (b) Same for positron
scattering.

e− + p + γ following Ref. [7] and applied to the data with the
help of a Monte Carlo simulation. This procedure resulted in
a correction of the yield by a factor F = 0.91 ± 0.02 which
is constant with respect to φ, convoluted with �ε dependent
corrections, which were included in a Monte Carlo simulation
together with acceptance corrections. The overall effect was to
increase the experimental yield of about 20%, roughly constant
with φ.

In case of e−p, LLA radiative corrections induce on
one side a lowering of the cross section, with respect to
the calculated Born cross section and on the other side, a
change of the φ dependence. This strong φ dependence is an
effect of hard photon emission. In an exclusive measurements,

FIG. 5. Calculation of the charge asymmetry [Eq. (33)] in Born
(solid line) and LLA (dashed line) approximation (top). The relative
value in percent is also drawn (bottom). Same kinematics as in
Fig. 4.

FIG. 6. Helicity asymmetry in arbitrary units (top): Born calcu-
lation (solid line), radiatively corrected (dashed line). Relative value
of the corrections in percent (bottom). Same kinematics as in Fig. 4.

where the four momenta of all the particles involved are
precisely determined, the importance of this effect could be
quantitatively determined.

Let now consider the charge asymmetry:

Ach = dσ e−µ→e−µγ − dσ e+µ→e+µγ

dσ e−µ→e−µγ + dσ e+µ→e+µγ
. (34)

We can consider the calculation of Ach as a model for radiative
ep scattering (after replacing the muon mass with the proton
mass). In Born and LLA approximation Ach is shown in
Fig. 5 (top), and the relative difference in Fig. 5 (bottom).

The charge asymmetry is large, and may exceed 0.5 for
in plane kinematics. Radiative corrections are of the order of
5% with a smooth φ dependence. This quantity is especially
interesting as it is in principle measurable at electron positron
rings with fixed target.

Let us calculate the helicity dependent cross section
Eq. (14) and the LLA radiative corrections, as a function of
φ. The result is shown in Fig. 6. As expected, we obtain an
antisymmetric function, which can expanded in harmonics by
sin φ, sin 2φ, . . . , which coefficients have physical meaning
of all order twist contributions.

The radiative corrections to the helicity dependent cross
section are of the order of several percent, with a small
modulation in φ.

VII. CONCLUSIONS

We calculated radiative corrections to VCS in the high-
energy limit. The emission of hard photon in collinear
kinematics is also included. The sum of all contributions
(including soft photon emission) does not depend neither on
the fictitious photon mass λ or on the soft photon energy �ε,
and it is consistent with the renormalization group prediction.

We applied the calculation, which is rigorous for the
µ case, to proton scattering, after correcting for the mass.
The proton structure can be taken into account in terms of
electromagnetic form factors, which are function of t1 and
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are not influenced by the conversion procedure to the shifted
kinematics. However, let us note that taking into account
nucleon form factors may violate the current conservation
condition [19]. A self-consistent procedure requires an ad
hoc modification of the nucleon propagator. This can be done
including the excited states of the nucleon, such as the �

resonance [20,21].
It appears that elastic and inelastic processes partly compen-

sate the effects of the strong interaction. Based on arguments
of analyticity and unitarity, which are exact in frame of
QED [12], and which have been recently applied to strong
interaction (form factors and photoproduction on hadron cross
sections) [13,22], one can expect that, taking into account the
complete set of inelastic states in the intermediate state of the
virtual Compton amplitude, an almost complete cancellation
takes place, up to the contribution of structureless proton. Such
compensation of elastic and inelastic contributions for the
nucleon block is related to the validity of superconvergence
sum rules in current algebra. They were proved in the frame
of QED in Ref. [12] for small transfer momentum. In the
present work, similar arguments are applied for the kinematics
(6), which corresponds to rather large transfer momenta.
In such kinematical conditions, this statement has not been
rigorously proved and should be considered as a hypothesis.
The contribution of the left cut is one of the higher twist
contributions, which can be tested applying the formalism of
generalized parton distributions to the experimental data.

The present results apply to DVCS conditions, as the
considered kinematics includes |t1| � |t | (see Figs. 4–6).
We considered above the leading twist contributions to the
differential cross section [see Eq. (10)]. The technique of GPD
nevertheless provides to take higher twists contributions. In our
approach, it consists in taking into account mass corrections
to the differential cross section (10), i.e., the terms of the order
(1 + O(M2/s)). Their importance was discussed in detail and
analyzed in Ref. [11] and found not to exceed 10% from
the twist two contribution. The same estimation is valid in
our case. The present calculation applies to the kinematics
outside the narrow peaks at |t | = 0 and (or) |t1| = 0 and the
numerical results were given for the kinematical conditions of
the experiment [18].

The main aim of the present work is to calculate higher order
radiative corrections to the radiative eµ (ep) scattering, in LSF
approach and to calculate such corrections for specific observ-
ables, as the charge and helicity asymmetry. In the asymmetry
ratios considered above, the effects of the proton structure
(including single proton state and the excited hadronic states)
will have an additional smoothing. In this context, we believe
that such a structureless approach for proton is realistic.

The effect of hard photon emission is considerable, and
the ‘returning mechanism’ which is essentially expressed in
form of convolution of the shifted Born cross section with the
electron LSF, may become important. At our knowledge, such
mechanism was not considered in the previous literature for
the reaction under consideration here.

Comparing with the scheme adopted to correct the exper-
imental data, (i.e., taking into account first order RC, partly
calculated with the help of a Monte Carlo and partly applying
a constant factor to the final results) the present approach

suggests a φ dependent correction, mostly due to hard photon
emission. The importance of this effect could be tested in a
truly exclusive experiment and it may affect the extraction of
the physical information from the Fourier analysis of the φ

dependence of the relevant observables.
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APPENDIX

The emission of collinear photons from the initial electron
induces a shift of the kinematical invariants and of the phase
volume.

Firstly, let us consider the kinematics without photon
emission (nonshifted). Introducing the set of new variables
defined above and after performing the integration on the
photon variables one has

d	 = 1

(2π )5

ε′
−dε′

−p′2dp′

4ε′ dO− dO ′δ((q + q1)2). (A1)

Using the Lab frame ( �p = 0, �q1 = − �p′) and choosing the
z axes along the direction of �q, we obtain

dO− dO ′
−δ((q + q ′

1)2) = 2πdc dc′ dφδ(t1 − Q2 + 2q0q10

− 2|�q|p′c′) = π

|�q|p′ dc dφ, (A2)

with c = cos θ, θ is the angle between incident and outgoing
electron momenta �p− and �p′

−, and c′ = cos θ ′ is the cosine of
the angle between �q and �p′. Using the definitions

Q2 = 2ε−ε′
−(1 − c), t1 = M2 − 2Mε′, (A3)

we obtains

dε′
− = Q2

2M

dxBj

x2
Bj

, �q ′2 = q2
0 + Q2,

q0 = ε− − ε′
− = Q2

2MxBj

,

(A4)

dε′ = dt1

2M
, dc = dQ2

2ε−ε′−
,

|�q| = Q2R

2xBjM
,

and R is given in Eq. (8). After some algebra we obtain the
phase volume in terms of the new variables:

d	 = (2π )−4

16R
d�4, d�4 = dxBj dt1 dQ2 dφ

sxBj

,

(A5)
s = 2Mε−.
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Let us chose the y axis transverse to the electron scattering
plane �ny || �p′

− × �p− and the x axis �nx ||�q × �ny . So we can
parametrize the four-vectors as a = (a0, az, ax, ay):

p− = ε−{1, c−, s−, 0}, p′
− = ε′

−{1, c′
−, s ′

−, 0},
q = {q0, |�q|, 0, 0}, p′ = {ε′, p′c′, p′s ′ cos φ, p′s ′ sin φ}.

(A6)

From the conservation law �p− = �p′
− + �q, �q = �k1 + �p′ we

obtain

c′ = MxBj

p′R

(
1 − t1

Q2
− t1

2M2xBj

)
, s ′ =

√
1 − c′2,

c− = 1

R

(
1 + 2M2xBj

s

)
, s− =

√
1 − c2−, (A7)

c′
− = 1

R

(
1 − 2M2x2

Bj

sxBj − Q2

)
, s ′

− =
√

1 − c′2−.

The energy of the scattered electron is

ε′
− = ε−

(
1 − Q2

sxBj

)
> 0. (A8)

So the variables Q2, s, xBj must obey the condition (A8). All
the kinematical invariants can be expressed in terms of the
variables: u, u1, and s1 as follows:

χ− = s − Q2 + u, χ ′
− = Q2 − u1 − s1, χ

′ = −t1 − u − s1,
(A9)

χ = 2M2 + Q2

xBj

− 2Mε′,

with

s1 = 2p′
−p′ = 2ε′

−[ε′ − p′(c′
−c′ + s ′

−s ′ cos φ)],

u1 = −2pp′
− = −2ε′

−M, (A10)

u = −2p−p′ = −2ε−[ε′ − p′(c−c′ + s−s ′ cos φ)].

The remaining variables are

ε′ = M − t1

2M
, p′ =

√
ε′2 − M2. (A11)

Let us consider now the shifted kinematics, which consists
in the replacement q → qx = p−x − p′

−. It is convenient

to introduce a shifted Bjorken variable: x ′
Bj = xQ2

2Mqx0
, with

the following relation: x
x ′

Bj

= 1
xBj

− s(1−x)
Q2 . Particular attention

should be devoted to the calculation of the integral on the
variable c′:

Y =
∫

dc′δ[−xQ2 + t1 + 2qx0q10 + 2�qx �p′], (A12)

which arises due to the fact that the direction of �qx does not
coincide with the direction of �q. The result of the integral

FIG. 7. Allowed kinematical region x > x0(φ).

(A12) can be written as

Y = 1

2|�qx |p′
1

I
, I =

∣∣∣∣dc′
x

dc′

∣∣∣∣ ,
(A13)

c′
x = c′(x)cx + s ′(x)sx cos φ, cx = cos �̂q �qx,

where cx can be written as

cx = 1

RR′

[
1 + 2M2xBjx

′
Bj (1 + x)

Q2x

]
,

R′ =
√

1 + 4M2x ′2
Bj

xQ2
, sx =

√
1 − c2

x.

In Eq. (A13) we introduce the notation c′(x), s ′(x) for the
correspondent variables of c′ and s ′ in shifted kinematics.

Keeping in mind the two possible solutions of Eq. (A13)
c′
±(x), s ′

±(x), the quantity I must be understood as

1

I
= |c′

xsx cos φ − cx

√
D0| + |c′

xsx cos φ + cx

√
D0|

2
√
D0(c2

x + s2
x cos2 φ)

;

(A14)
D0 = c2

x + s2
x cos2 φ − c′2

x ,

and

c′
x = Mx ′

Bj

p′R′

(
1 − t1

xQ2
− t1

2M2x ′
Bj

)
. (A15)

All kinematical invariants may be obtained from the corre-
sponding ones defined above for non shifted kinematics, by
replacing s → sx,Q2 → Q2x and ε− → ε−x.

The lower limit of integration x0(φ) in Eq. (11) is obtained
from the condition: D0 > 0. The curve x = x0(φ) is plotted in
Fig. 7, for the kinematics as in [18]. The kinematically allowed
region is delimited by x0(φ) < x < 1, above the curve.
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