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K− pp bound states from Skyrmions
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The bound kaon approach to the strangeness in the Skyrme model is applied to investigating the possibility of
deeply bound K−pp states. We describe the K−pp system as two Skyrmion, around which a kaon field fluctuates.
Each Skyrmion is rotated in the space of SU(2) collective coordinate. The rotational motions are quantized to
be projected onto the spin-singlet proton-proton state. We derive the equation of motion for the kaon in the
background field of two Skyrmions at fixed positions. From the numerical solution of the equation of motion,
it is found that the energy of K− can be considerably small and that the distribution of K− shows molecular
nature of the K−pp system. For this deep binding, the Wess-Zumino-Witten term plays an important role. The
total energy of the K−pp system is estimated in the Born-Oppenheimer approximation. The binding energy of

the K−pp state is B.E. � 126 MeV. The mean square radius of the pp subsystem is
√
〈r2

pp〉� 1.6 fm.
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I. INTRODUCTION

In recent years, lots of theoretical or experimental efforts
to explore the possibility of nuclear K̄-bound states [1]
have been made. Although no firm evidence to show their
existence is known, there is one result reported by the FINUDA
collaboration [2] that may suggest the existence of the lightest
nuclear K̄-bound state, K−pp. In the experiment at DA�NE,
it was observed that � and p from K− absorption on 6Li,
7Li, and 12C at rest has a strong back-to-back correlation and
that the invariant mass spectrum of � and p shows a peak. The
collaboration advocates that the observation can be interpreted
as a signal of the formation of deeply bound K−pp state,
whose binding energy is 115 MeV and the width is 67 MeV.

This experiment is motivated by the idea proposed by
Akaishi and Yamazaki (AY) [1] suggesting the existence of
deeply bound K̄ nuclei. It is based on the assumption that
�(1405) baryon is a K̄N bound state formed by the strong
attraction in the I = 0 K̄N channel. One may then expect that
when a K− is injected in a nucleus it may attract surrounding
p’s to form a shrunken nucleus. The K− is bound deeply so
an absorption reaction, K−p → π�, is energetically closed,
and accordingly, it can have a long lifetime in a nucleus.

However, it has not yet been established that the peak
observed by FINUDA really corresponds to the state proposed
by AY. Magas et al. [3] claimed that the peak corresponds
mostly to the process K−pp → �p followed by final-state
interactions of the produced particles with the daughter
nucleus. Even if we suppose the peak to be a K−pp bound
state, it is strange that it is much deeper than the original AY
prediction [1]: the binding energy B.E. = 48 MeV and the
width � = 61 MeV. Recently, two groups [4,5] performed
K̄NN − π�N coupled-channels Faddeev calculations,
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based on the argument that K̄N -π� coupling is important [6]
when one considers the �(1405) or K−pp system. The
authors in Ref. [4] obtained B.E. = 55–70 MeV and
� = 95–110 MeV. The result in Ref. [5] are B.E. ∼ 80 MeV
and � ∼ 73 MeV. They are at odds with both of the result
by FINUDA and AY prediction. An attempt to describe the
K̄ nuclei as �(1405) hypernuclei has also been made in
Ref. [7].

A new experiment are planned to be performed at the Japan
Proton Accelerator Research Complex (J-PARC) searching for
the deeply bound K−pp state by the missing-mass spectrum of
the 3He(in-flight K−, n) reaction, together with the invariant-
mass spectra detecting all particles decaying from the K−pp

bound state. It would be naively expected that a clear signal
for formation of kaonic nuclei appears in this measurement,
because a lighter nucleus is chosen as a target. Indeed, it has
been suggested theoretically that a distinct peak of the K−pp

bound state can be observed in the spectrum of the 3He(in-
flight K−, n) reaction if some conditions for the K−pp optical
potential are satisfied [8].

Our interests in this article are whether the deeply bound
K−pp state can be realized in the context of the topological
soliton model of baryons, the Skyrme model [9]. For this pur-
pose, we employ the bound kaon approach to the strangeness
in the Skyrme model [10], which describes hyperons as the
bound states of an antikaon and a topological soliton of the
pion field (“Skyrmion”).

The Skyrme model is a low-energy effective theory of
quantum chromodynamics (QCD) at large number of colors.
In the limit of large number of colors, as was shown by t’Hooft,
QCD reduces to a theory of weakly interacting mesons. The
action of the Skyrme model is a chiral effective theory written
in terms of the Nambu-Goldstone boson fields. Nucleons
emerge as topological solitons of the SU(2)f sector in the
Skyrme Lagrangian [11].

One way to introduce the strangeness to the model is to
assume a kaon field fluctuating around the SU(2) Skyrmion
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(bound kaon approach [12]). One finds the existence of bound
states of the kaon and a Skyrmion, which can be identified to
be hyperons. The lowest bound state has the quantum number
l = 1, t = 1/2, where l is the orbital angular momentum
of the kaon and t the combined angular momentum and
isospin, T = L + I , respectively. The parity of the l = 1, t =
1/2 state is in total positive, which is assigned to positive-parity
hyperons. A notable feature is the presence of a bound state
in the negative-parity state, l = 0, t = 1/2, which lies above
the l = 1, t = 1/2 state. This state probably corresponds to
�(1405) baryon. Whereas the constituent quark models have
difficulties in describing �(1405), this approach predicts the
static properties of �(1405) [13] as well as octet and decouplet
baryons in good agreement with the empirical values. In
addition, an interaction originating from the WZW term acts on
the S = +1 state, e.g., pentaquark, repulsively, and the state is
pushed away into the continuum, whereas the interaction acts
attractively on the S = −1 state, leading to the formation of
the bound states.

Thus, the bound kaon approach is a theory naturally
describing both of the positive-parity hyperons and the lowest
negative-parity state, �(1405), on the same ground. It is also
worth mentioning that this approach has no parameter once
we adjust Fπ and e (for their definitions, see below) to fit
the N and the � masses in SU(2)f sector. Therefore, the K̄N

interaction, which is a key ingredient for the study of K̄ nuclei,
is unambiguously determined. In these respects, it is of great
significance to investigate the issue of the exotic nuclei such
as K−pp,K−ppn,K−pnn, and so on in the context of the
bound-kaon approach to the Skyrme model.

We describe the K−pp system as two-Skyrmion around
which a kaon field fluctuates. Each Skyrmion is rotated in
the space of collective coordinate and its rotational motion is
quantized to be projected onto a relevant two-nucleon state.
We adiabatically treat the nucleon-nucleon radial motion and
derive the kaon’s equation of motion when the position of the
Skyrmions are fixed first. Then we obtain the energy of kaon as
a function of the relative distance between the two Skyrmions,
which tells us whether the kaon can be deeply bound to the
two-proton. For the existence of nuclear K̄ bound states, it
is necessary that K̄ gains sufficiently large binding energy in
nuclei. If such nuclei exist, the nuclear density distribution is
rearranged under the influence of the strong attraction in I = 0
K̄N . Then the nuclear part in K̄ nuclei is excited relative to
the original nuclear system. Therefore, the energy gained by K̄

must be large enough to compensate the energy loss of nuclear
component and to deeply bind the total system. If a strong
binding of K− is possible, it is also an interesting subject how
the mechanism responsible for the strong binding is explained
in the solitonic picture of baryons.

In our previous article [14], we have presented the deriva-
tion of the kaon’s equation of motion and its numerical
solution. It was shown that a strong binding of K− to pp can
occur. Needless to say, it cannot be taken as evidence for the
actual deep binding of the K−pp system until the two-proton
radial motion is treated. In the present article, we give a detailed
description of our approach and attempt to solve the dynamics
of the radial motion of the protons under the strong attaractive
force mediated by K−, in addition to the ordinary nuclear

force. Then we can estimate the binding energy of the total
K−pp system within the Born-Oppenheimer approximation.
The possible structure of the K−pp state is also discussed.

The organization of this article is as follows. In the second
section, we derive the kaon’s equation of motion and show its
numerical solutions in the third section. We solve the radial
motion of the two-proton in the fourth section. Discussion
and summary are given in the fifth section. Full expression
of the kaon Lagrangian and the useful formulas for collective
coordinate quantization are gathered in the appendices.

II. DERIVATION OF THE KAON’S EQUATION OF
MOTION

Let us begin with showing how the K− coupled to pp
is described in the bound kaon approach to the Skyrme
model. We consider two Skyrmions fixed at positions with
the relative distance, R, and assume the presence of the kaon
field fluctuating around the Skyrmions. The equation of motion
for the kaon in the background field of the Skyrmions is then
derived, from which we know the behavior of the K− coupled
to pp.

The action of the Skyrme model is given by

� =
∫

d4x

[
F 2

π

16
tr(∂µU †∂µU ) + 1

32e2
tr(∂µUU †, ∂νUU †)2

]
+�SB + �WZW, (1)

where U is the chiral SU(3) field built out of the eight Nambu-
Goldstone bosons. �SB is the symmetry breaking term [13]
given by

�SB =
∫

d4x

{
F 2

πm2
π + 2F 2

Km2
K

48
tr(U + U † − 2)

+ F 2
πm2

π − F 2
Km2

K

24
tr
[√

2λ8(U + U †)
] − F 2

π − F 2
K

48
tr

× [(
1 −

√
3λ8

)
(U∂µU †∂µU + U †∂µU∂µU †)

]}
, (2)

where mπ(K) and Fπ(K) are the mass and the decay constant of
the pion (kaon), respectively. The last term in Eq. (2) has a role
to renormalize the kinetic energy term for the kaon, whereas
the first two terms renormalize the mass term. �WZW is the
Wess-Zumino-Witten anomaly action [15]:

�WZW = − iNc

240π2

∫
d5xεµναβγ tr

× (U †∂µUU †∂νUU †∂αUU †∂βUU †∂γ U ), (3)

where Nc denotes the number of colors.
We assume the following “product” ansatz for the chiral

field representing KNN system,

U = U (1)UKU (2), (4)

where U (1) and U (2) are the fields of the baryon number B = 1
SU(2) Skyrmions located at r(1) = r − R/2 and r(2) = r +
R/2, respectively. Their explicit expressions are as follows,

U (i) =
(

u(i) 0

0 1

)
, u(i) = eiF [r(i)]τ ·r̂(i), (i = 1, 2), (5)
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where r(i) = |r(i)|, r̂(i) = r(i)/r(i), F (r) is the profile func-
tion of an isolated Skyrmion [11] and τ the Pauli matrices. UK

is the field carrying strangeness. Its form is

UK = exp

[
i
2
√

2

FK

(
0 K

K† 0

)]
, (6)

where K is the usual kaon isodoublet,

K =
(

K+

K0

)
. (7)

Each Skyrmion is rotated in the space of SU(2) collective
coordinate, A1 or A2, as

u(1) → A1u(1)A†
1, u(2) → A2u(2)A†

2. (8)

By substituting the ansatz, Eq. (4), with the replacement
Eq. (8) into the action, Eq. (1), we obtain the Lagrangian
for the kaon field in the presence of the background B = 2
Skyrmion. After expanding the Lagrangian up to the seceond
order in K , we obtain

L = (DµK)†DµK − m2
KK†K − 1

8
K†K

[
tr(∂µU

†
BB∂µUBB)

+ 1

e2F 2
K

tr(∂µUBBU
†
BB, ∂νUBBU

†
BB)2

]

− 1

e2F 2
K

{
2(DµK)†DνKtr(AµAν)

+ 1

2
(DµK)†DµKtr(∂νU

†
BB∂νUBB)

− 6(DµK)†[Aν,Aµ]DνK

}

− iNc

F 2
K

Bµ[K†DµK − (DµK)†K], (9)

where UBB represents the product of rotating solitons,

UBB = A1u(1)A†
1A2u(2)A†

2. (10)

In Eq. (9), the “covariant derivative” Dµ is defined by

DµK = ∂µK + VµK (11)

and

Vµ = [Lµ(1) + Rµ(2)]/2, Aµ = [Lµ(1) − Rµ(2)]/2, (12)

where

Lµ(1) = A1u
†(1)A†

1∂µ[A1u(1)A†
1],

(13)
Rµ(2) = A2u(2)A†

2∂µ[A2u
†(2)A†

2].

The last term in Eq. (9) comes from the WZW term and Bµ is
the baryon number current given by

Bµ = εµναβ

24π2
tr(U †

BB∂νUBBU
†
BB∂αUBBU

†
BB∂βUBB). (14)

Here we note that the Lagrangian, Eq. (9), has the same form
as that for B = 1 Skyrmion [10] except that the background
Skyrmion is not the single B = 1 Skyrmion but the product
of B = 1 Skyrmions, Eq. (10). It should be also noted that the
KNN interaction is unambiguously determined as in Eq. (9)
once the ansatz for U is given.

We neglect the terms suppressed by 1/Nc in Eq. (9).
Because the time derivative of the collective coordinate is
Ȧ1,2 ∼ O(N−1

c ), we see A0, V0, and Bj are O(N−1
c ) from their

definitions, Eqs. (12) and (14),

A0, V0 ∼ O
(
N−1

c

)
, Bj ∼ O

(
N−1

c

)
. (15)

Then the Lagrangian for the kaon field up to O(N0
c ) terms

reads as follows,

L = (∂0K)†∂0K

[
1 + 1

2e2F 2
K

tr(∂jU
†
BB∂jUBB)

]

+K†DjDjK − m2
KK†K

− 1

8
K†K

[
− tr(∂jU

†
BB∂jUBB)

+ 1

e2F 2
K

tr(∂jUBBU
†
BB, ∂iUBBU

†
BB)2

]

+ 1

e2F 2
K

{
2K†Dj [DiKtr(AjAi)]

+ 1

2
K†Dj [DjKtr(∂iU

†
BB∂iUBB)]

− 6K†Dj ([Ai,Aj ]DiK)

}

− iNc

F 2
K

[K†∂0K − (∂0K)†K]B0 + O
(
N−1

c

)
. (16)

A comment is in order here. It should be noted that
in the Lagrangian, Eq. (16) UBB must be the product not of
the static solitons but of the rotating solitons, Eq. (10). In
the case of B = 1, the effect of rotation is suppressed in the
limit of large Nc because the collective coordinate enters the
Lagrangian only through its time derivative, which is O(N−1

c ).
As an example, lets us consider

tr[∂µU∂µU †], (17)

which appears in the coefficient of K†K in Eq. (9). For B = 1,
under the replacement

u → AuA† (18)

with A being a collective coordinate, Eq. (17) reads

tr(∂µu∂µu†) → tr(A∂iuA†A∂iu†A†) + O
(
N−1

c

)
= tr(∂iu∂iu†) + O

(
N−1

c

)
. (19)

Therefore, for B = 1, the soliton may be regarded as a static
one at Nc → ∞. However, in the present B = 2 case, because
each Skyrmion is rotated independently,

u → A1u(1)A†
1A2u(2)A†

2. (20)

Eq. (17) reads as follows,

tr(∂µu∂µu†)

→ tr[∂i(A1u(1)A†
1A2u(2)A†

2)∂i(A2u
†(2)A†

2A1u
†(1)A†

1)]

+O
(
N−1

c

)
= tr[A1∂iu(1)A†

1A2u(2)A†
2 + A1u(1)A†

1A2∂iu(2)A†
2

×A2∂
iu†(2)A†

2A1u
†(1)A†

1 + A2u
†(2)A†

2A1∂
iu†(1)A†

1]
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= tr[∂iu(1)A†
1A2u(2)∂iu†(2)A†

2A1u
†(1) + ∂iu(2)∂iu†(2)

+ ∂iu(1)∂iu†(1) + u(1)A†
1A2∂iu(2)u†(2)A†

2A1∂
iu†(1)]

+O
(
N−1

c

)
. (21)

Thus the collective coordinates themselves, which are not
suppressed by 1/Nc, enters the Lagrangian. As long as
assuming that two solitons rotate independently, Eq. (4), the
kaon inevitably couples not to static soliton but to rotating
solitons in the limit of Nc → ∞. Accordingly, we consider
the kaon under the background of the two-Skyrmion projected
onto a spin-isospin eigenstate of two-nucleon.

Our next task is to perform the collective coordinate
quantization and project the rotation of each Skyrmion onto the
relevant spin-isospin state. This procedure is done as follows.
First, we rewrite the Lagrangian, Eq. (16), in terms of the
adjoint matrix defined by

Dij (A) = tr(τiAτjA
†)/2, (22)

with A being a collective coordinate. The result, which is
quite lengthy, is displayed in Appendix A. The matrix Dij (A)
is known to be represented by the rotation matrix of rank 1.
The wave function of the nucleon in the space of collective
coordinate is also expressed by rotation matrix [11]:

〈A|NI3,J3〉 = 1

2π
(−1)I3+1/2D

1/2
−I3J3

(�), (23)

where I3 and J3 denote the third component of the isospin and
that of the spin, respectively, and � the Euler angles. Then, the
projection of the Skyrmions onto physical two nucleon states
is performed by sandwiching the Lagrangian, Eq. (16), with
two nucleon states and integrating the Euler angles,∫

d�1

∫
d�2〈N (1)N (2)|L|N (1)N (2)〉, (24)

where N (i) denotes the ith nucleon. We assume that the
proton-proton in the K−pp system is in spin-singlet and
project the rotational motion of the Skyrmions onto the
spin-singlet proton-proton state. Thus we consider

LppK ≡
∫

d�1

∫
d�2〈(pp)s=0|L|(pp)s=0〉, (25)

where |(pp)s=0〉 is the wave function corresponding to the
spin-singlet proton-proton state and is given by

|(pp)s=0〉 = 1√
N

(|N 1
2 , 1

2
(1)N 1

2 , −1
2

(2)〉 − |N (1) 1
2 , −1

2
N 1

2 , 1
2
(2)〉),

(26)

with N being the normalization constant. Equation (25) is
the Lagrangian for the kaon coupled to two protons. Detailed
description of the projection are shown in Appendix B.

Now, we derive the equation of motion for the kaon from
the Lagrangian, Eq. (25). First, we average the direction
of the line joining the two Skyrmions. To do that, we
put R/2 = [(R/2) sin α cos β, (R/2) sin α sin β, (R/2) cos α]
in the Lagrangian Eq. (25) and integrate the angles α

and β,

L̄ppK = 1

4π

∫ π

0
dα

∫ 2π

0
dβ sin αLppK. (27)

This corresponds to assuming that the proton-proton system
is in S wave. Then the background field becomes spherical,
which allows us to set the kaon field as

K(r, t) = k(r, t)Ylm(θ, φ), (28)

with Ylm(θ, φ) the spherical harmonics. This ansatz, Eq. (28),
is substituted into the Lagrangian, Eq. (27). We perform the
θ and φ integrations before taking the variation with respect to
k(r, t). Up to this step, quite long and involved calculations are
needed. Then the Euler-Lagrange equation for k(r, t) yields[

−f̄ (r; R)
d2

dt2
− 2iλ̄(r; R)

d

dt
− m2

K − V̄eff(r; R, l) + Ô
]

× k(r, t) = 0, (29)

where the operator Ô is defined as

Ô = c1(r; R)
∂

∂r
+ c2(r; R)

∂2

∂r2
. (30)

In Eqs. (29) and (30), the coefficients, f̄ (r; R) and λ̄(r; R) are
expressed as follows:

f̄ (r; R) = 1

4π

∫ π

0
dα

∫ 2π

0
dβ sin α

×
〈
1 + 1

2e2F 2
K

tr(∂jU
†
BB∂jUBB)

〉
, (31)

λ̄(r; R) = 1

4π

∫ π

0
dα

∫ 2π

0
dβ sin α

−Nc

F 2
K

〈B0〉. (32)

Here 〈· · ·〉 means taking an expectation value with re-
spect to the spin-singlet proton-proton state as in Eq. (25).
−V̄eff(r; R, l) and Ô correspond to the terms with and without
spatial derivative in the following equation, respectively,

−V̄eff(r; R, l) + Ô

=
∫ π

0
dθ

∫ 2π

0
dφ sin θYlm(θ, φ) · 1

4π

∫ π

0
dα

∫ 2π

0
dβ sin α

×
〈
DjDj − 1

8

[
− tr(∂jU

†
BB∂jUBB)

+ 1

e2F 2
K

tr(∂jUBBU
†
BB, ∂iUBBU

†
BB)2

]

+ 1

e2F 2
K

{
2Dj [Di tr(AjAi)]

+ 1

2
Dj [Dj tr(∂iU

†
BB∂iUBB)] − 6Dj ([Ai,Aj ]Di)

}〉
×Ylm(θ, φ). (33)

c1 and c2 in Ô and V̄eff(r; R, l) are read off from this
equation. Their explicit expressions are quite lengthy and are
not particularly instructive. Therefore we do not display them
here.

Let us expand the field k(r, t) in terms of its eigenmodes:

k(r, t) =
∑

n

[kn(r)eiωnta†
n + k̃n(r)e−iω̃nt bn], (ωn, ω̃n > 0),

(34)
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where an and bn are the annihilation operators for the
strangeness S = ∓1 states, respectively. Substituting Eq. (34)
into Eq. (29), we find the eigenmodes satisfy[

f̄ (r; R)ω2
n − m2

K − V
(−)
K (r; ωn,R, l) + Ô

]
kn(r) = 0, (35)[

f̄ (r; R)ω̃2
n − m2

K − V
(+)
K (r; ω̃n, R, l) + Ô

]
k̃n(r) = 0. (36)

Eqs. (35) and (36) are the equation of motions for S =
−1 and S = +1 states, respectively. In Eqs. (35) and (36),
V

(∓)
K (r; ω,R, l) plays a role of potential term and can be

separated into two terms,

V
(∓)
K (r; ω,R, l) = V

(∓)
WZW(r; ω,R) + V̄eff(r; R, l), (37)

where V
(∓)

WZW(r; ω,R) originates from the WZW term and
V̄eff(r; R, l) from remaining terms in the Skyrme Lagrangian.
V

(∓)
WZW(r; ω,R) is given by

V
(∓)

WZW(r; ω,R) = ∓2λ̄(r; R)ω. (38)

Thus the WZW term acts on the negative (positive) strangeness
states in attarctive (repulsive) way. kn(r) and k̃n(r) obey the
following normalization conditions,∫

4πr2dr[f̄ (r; R)(ωn + ωn′) + 2λ̄(r; R)]kn(r)kn′(r) = δnn′ ,

(39)∫
4πr2dr[f̄ (r; R)(ω̃n + ω̃n′ ) − 2λ̄(r; R)]k̃n(r)k̃n′(r) = δnn′ .

(40)

III. NUMERICAL SOLUTION OF THE
KAON EQUATION OF MOTION

We solved numerically the equation of motion, Eq. (35).
Figure 1 shows the obtained energy eigenvalue of K−, ω, as
a function of the Skyrmion-Skyrmion relative distance, R.
mπ, Fπ , and e were taken to be mπ = 0, Fπ = 129 MeV, and
e = 5.45, which were adjusted to fit the masses of N and
� [11]. The kaon mass was taken to be mK = 495 MeV. For the
ratio, FK/Fπ , we have examined two choices: FK/Fπ = 1.00
and the empirical value, FK/Fπ = 1.23. (In our previous work
[14], we adopted FK/Fπ = 1.00.)

TABLE I. Energy eigenvalue of S-wave
K− (ωl=0) and that of P wave (ωl=1) for five
cases of the proton-proton relative distance,
R. FK/Fπ is taken to be the empirical value,
FK/Fπ = 1.23.

R (fm) ωl=0 (MeV) ωl=1 (MeV)

1.0 121 369
1.5 262 402
2.0 356 435
2.5 411 460
3.0 442 475

We find that the lowest-lying mode is the S wave and that
the P wave lies above the S wave. Note that this order is natural
but different from the case of B = 1, where the lowest-lying
mode is P wave, as mentioned in the introduction. We see
that it is important to take into account the difference between
FK and Fπ . As was shown in Ref. [13], by setting FK/Fπ

equal to the empirical vaue, FK/Fπ = 1.23, hyperon masses
are well reproduced, while when we set FK/Fπ = 1 they are
overbound. The binding of K− to pp is also weaker when
taking the empirical value of FK/Fπ .

In Table I, the K− energy eigenvalues for several values
of R are displayed. Looking at the S-wave channel, the
binding of the kaon is extremely strong for smaller distance,
i.e., R <∼ 1.0 fm. In this region, the repulsive nucleon-nucleon
interaction dominates over the attractive interaction between
K− and pp. Nuclear matter in which average NN distance
is R � 1.0 fm is expected to be realized in the core region
of compact stars. Our result shows that K− in such high
density nuclear matter can be lighter than the pion. This might
be somehow related with the kaon condensation [16] that is
considered to occur in compact stars. As R is increased, the
binding becomes looser. However, at R = 2.0 fm, for instance,
which is close to the average inter NN distance in normal
nuclei, the binding is still deep: the binding energy is about
140 MeV (see Table I)

Next, we consider the R dependence of the K− distribution.
In Fig. 2, we plot the distribution of K− in the S wave [kaon
wave function k(r) normalized by the condition, Eq. (39)]
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FIG. 1. The energy eigenvalues of S- and P -wave K−, ω, as functions of the proton-proton relative distance, R. Two choices of the ratio
FK/Fπ are examined: FK/Fπ = 1.00 and the experimental value, FK/Fπ = 1.23.
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FIG. 2. S-wave K− distribution [normalized wave function k(r)] and baryon number density [Eq. (41)] for the relative distance of the two
Skyrmions, R = 1.5, 2.0, 2.5, and 3.0 fm. Both are in units of eFπ . The horizontal axis is the distance from the origin. FK/Fπ = 1.23 was
chosen. The baryon number density is multiplied by a factor 10.

for several cases of R,R = 1.5, 2.0, 2.5, and 3.0 fm. For
comparison, the baryon number denisity given by

〈B0〉 ≡
∫

d�1

∫
d�2〈(pp)s=0|B0|(pp)s=0〉, (41)

is also plotted. At R = 1.5 fm, it can be seen that K− is
localized in the narrow region between the two protons.
At relatively larger separation, R >∼ 2.0 fm,K− has large
probability to stay near the proton’s respective positions, which
is characteristic to molecular orbital states [14,17].

IV. PROTON-PROTON RADIAL MOTION

Now, we solve the dynamical problem of proton-proton
radial motion under the strong attaractive potential mediated
by K−, in addition to the ordinary nucleon-nucleon potential.
We assume that the radial motion of the two-proton is governed
by the following Hamiltonian,

H = TNN (R) + VNN (R) + VKNN (R), (42)

where TNN is the NN kinetic energy term,

TNN = − 1

MN

1

R2

∂

∂R

(
R2 ∂

∂R

)
. (43)

Here, the nucleon is regarded as not a soliton with finite size
but a pointlike particle with the mass MN = 939 MeV and
its motion is assumed to be nonrelativistic. VNN (R) is the
state-independent central part of the NN potential obtained
from the product of B = 1 Skyrmion [18]. We have neglected
the contribution from the spin and the isospin-dependent part

because they give a minor contribution compared with the
state-independent part. The last term is the energy generated
by the bound kaon in S wave,

VKNN (R) = ωl=0(R) − mK, (44)

where ωl=0(R) is the S-wave kaon’s energy obtained in the
previous section. VKNN corresponds to the K−-pp “potential.”
In Fig. 3, we show the behavior of VNN (R), VKNN (R), and
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FIG. 3. Potential terms in Eq. (42) as functions of the proton-
proton relative distance, R. The upper curve is the proton-proton
potential in the absence of K−, VNN (R). The lower one represents
the K−-pp potential, VKNN (R). The middle one corresponds to their
sum, VNN (R) + VKNN (R), the effective proton-proton potential in the
K−pp system.
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TABLE II. Calculated total energy of the K−pp bound state
relative to 2MN + mK and its decomposition. The root mean square
radius of NN subsystem,

√
〈r2

NN 〉, is also shown. For the definition of
each component, see the text.

FK/Fπ 〈TNN 〉
(MeV)

〈VNN 〉
(MeV)

〈VKNN 〉
(MeV)

Total
(MeV)

√
〈r2

NN 〉
(fm)

1.00 50.4 97.3 −380.5 −232.7 1.46
1.23 42.0 74.5 −239.2 −125.5 1.63

their sum. VNN (R) has repulsive core at short distances
and one-pion exchange tail at long distances. Medium-range
attraction cannot be produced within the product ansatz of
B = 1 Skyrmions [19]. However, the attractive force generated
by bound kaon, VKNN (R), is so strong that it overcomes
the strongly repulsive VNN (R). As a result, the effective
NN potential in the K−pp system, VKNN (R) + VNN (R), is
strongly attractive in the medium range.

The energy of the K−pp state relative to 2MN + mK,E, is
obtained by solving the Schrodinger equation,

H�N = E�N. (45)

In Table II, we show the binding energy of K−pp measured
from 2MN + mK (threshold) and its decomposition into the
NN kinetic energy, 〈TNN 〉, the NN potential energy, 〈VNN 〉,
and the kaon’s energy, 〈VKNN 〉, obtained by solving Eq. (45).
The expectation value, 〈O〉, is defined by

〈O〉 ≡
∫ ∞

0
4πR2dR�N (R)∗O�N (R)

/

×
∫ ∞

0
4πR2dR�N (R)∗�N (R). (46)

The root-mean-square radius for NN subsystem,
√
〈r2

NN 〉, is
also shown.

When the FK/Fπ is taken to be the experimental value,
FK/Fπ = 1.23, the binding energy of the K−pp bound state
is estimated to be

BK−pp � 126 MeV. (47)

Another fact worth noting is the smallness of the NN kinetic
energy, 〈TNN 〉 ∼ 40 MeV. As long as looking at this fact, the
Born-Oppenheimer approximation seems to be not so poor.
The root-mean-square radius of the two-nucleon subsystem is√〈

r2
NN

〉 � 1.6 fm, (48)

which is smaller than the average inter-NN distance in normal
nuclei.

V. DISCUSSION AND SUMMARY

Lets us consider the mechanism responsible for the strong
binding of K− to pp. This is turned out to be attributed to the
WZW term. It is known that in B = 1 sector the existence
of the WZW term leads to various important results. The
WZW term is included in the action from the requirement that

the effective theory written in terms of the Nambu-Goldstone
bosons should reproduce the anomaly the fundamental theory
possesses. The Skyrme Lagrangian without the term has
a fictitious symmetry: an invariance under U ↔ U †. This
symmetry forbids processes changing even-oddness of meson
number, e.g., K+K− → π+π−π0. The WZW term breaks this
extra symmetry [15]. In addition, for odd Nc, the WZW term
ensures that the quantized Skyrmion has a half-odd spin and
thus behaves as a fermion. The effect of the WZW term goes
beyond these rules. In the bound kaon approach, the interaction
Lagrangian of the kaon and the nucleon that comes from the
WZW term has the form of

LWZW = − iNc

F 2
K

[K†∂0K − (∂0K)†K]B0. (49)

This is nothing but the so-called Tomozawa-Weinberg term.
This term gives an effective attractive contribution to negative
strangeness states that is crucial for obtaining the correct values
of the masses of ground state hyperons. In particular, without
the term, the S-wave bound state of a kaon and a Skyrmion,
which corresponds to �(1405), does not exist. Also in the
present B = 2 case, the role of the WZW term is revealed to
be important. In the equation of motion, Eq. (35), there exist
two terms, V

(−)
WZW and V̄eff in Eq. (37), which effectively play

a role of the potential acting on the kaon. Among them, it is
V

(−)
WZW that originates from the WZW term. To see the effects

of the WZW term, we switched off V
(−)

WZW and calculated the
kaon’s energy. The result for the S-wave K− is shown in
Fig. 4. One observes that the WZW term additionally gives a
substantial attractive contribution to the binding of the kaon.
Here, we should note that V (−)

WZW is stronger than that for B = 1
because the interaction Eq. (49) is proportional to the baryon
number density. It is therefore quite a natural result that K−
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FIG. 4. The energy eigenvalue of K− as a function of the proton-
proton relative distance, R, compared with the case when the Wess-
Zumino-Witten term is switched off. The ratio of the decay constant
is taken to be FK/Fπ = 1.23. The bottom and upper curves are the
energies of K− in S and P waves, respectively. The middle one
represents the energy of S-wave K− when the Wess-Zumino-Witten
term is switched off. P -wave K− is unbound when the Wess-Zumino-
Witten term is switched off.
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is bound to a two-proton more deeply than to a one proton.
However, this does not necessarily mean that the larger the
baryon number B becomes the deeper the binding of the kaon
is, because V

(−)
WZW does not necessarily become stronger with

the increasing B: V
(−)

WZW is proportional to the kaon’s energy
[see Eq. (38)].

The K− distribution shown in Fig. 2 suggests that the K−pp

state is a molecular orbital state. This observation is quite
natural in the following sense. The two protons in the K−pp

system should keep some distance so as to avoid the repulsive
core of the nuclear potential. For the two-proton with finite
separation, it can be shown that the potential acting on the
kaon, V

(−)
K (r; ω,R, l) in Eq. (37), is a double-well potential

that is most attractive at the proton’s respective position. It
is the molecular orbit that the kaon occupies under such a
double-well potential. If the K−pp is really a molecular orbital
state, it is plausible that the binding of K− to two-proton is
stronger than to one proton because K− experiences the strong
attraction from the two protons without increase of the kinetic
energy [17].

The system considered in our article is the bound state
of K− and two-Skyrmion projected onto pp state. More
realistic treatment is to rotate not only the solitons but also
the kaon field in the collective coordinate space and perform
the quantization of the rotations and the projection of the
system onto spin-isospin eigenstates. If this task is achieved,
the components other than K−pp may be included1. This
elaborate task, however, is left for our future work.

In summary, we have applied the Skyrme model to a study
of the lightest K̄-nuclear bound state, K−pp. We have derived
the equation of motion for the kaon coupled to a two-proton
at a fixed position. The two-proton is expressed by a two-
Skyrmion whose rotational motion in the space of collective
coordinate is quantized and projected onto spin-singlet proton-
proton state. Numerical solution of the equation of motion
shows that K− can be strongly bound even for relatively large
interproton-to-proton distances. Next, we have solved the two-
proton radial motion by assuming that the protons move under
the strong attractive potential generated by K− in addition
to the ordinary NN potential. Then we have found that K−pp

state can be realized as a very deeply bound and compact state,
whose binding energy is BK−pp � 126 MeV and the mean
inter-NN distance is

√
〈r2

NN 〉 � 1.6 fm. The obtained value of
the binding energy is surprisingly close to the experimental
result obtained by FINUDA collaboraton, Bexp.

K−pp = 115 MeV.
However, considering the crudeness of our treatment, we are
not allowed to satisfy this agreement.
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1It should be noted that this model does not necessarily means the
hyperons to be K̄N bound states but quantized states of the bound
system of a SU(2)f soliton and kaon fluctuating around the soliton.

APPENDIX A: FULL EXPRESSION OF THE KAON
LAGRANGIAN

In this appendix, we rewrite the Lgrangian, Eq. (16), in
terms of the adjoint matrix, Eq. (22). The adjoint matrix is
included in UBB, Vj , and Aj . Vj and Aj can be rewritten using
the adjoint matrix as follows,

Vj = iτm
1
2

[
Dmi(A1)Li

j (1) + Dmi(A2)Ri
j (2)

]
, (A1)

Aj = iτm
1
2

[
Dmi(A1)Li

j (1) − Dmi(A2)Ri
j (2)

]
. (A2)

Here Li
j (1) and Ri

j (2) are defined as

Li
j (1) = δ̂(1)ji

1

r(1)
C(1)S(1) + r̂(1)j r̂(1)iF

′(1)

+ εjik r̂(1)k
1

r(1)
S(1)2, (A3)

Ri
j (2) = −δ̂(2)ji

1

r(2)
C(2)S(2) − r̂(2)j r̂(2)iF

′(2)

+ εjik r̂(2)k
1

r(2)
S(2)2, (A4)

where

δ̂(α)ji = δji − r̂(α)j r̂(α)i , (A5)

F (α) = F [r(α)], F ′(α) = dF (α)

dr(α)
, (A6)

C(α) = cos F (α), S(α) = sin F (α), (α = 1, 2). (A7)

Now we use these equations to rewrite the Lagrangian in terms
of the adjoint matrix and Skyrmion profile function. Let us
show the result for each term in Eq. (16).

A. (∂0 K )†∂0 K term

tr(∂jU
†
BB∂jUBB) in the first term of Eq. (16) is expressed as

follows,

tr(∂jU
†
BB∂jUBB)

= 2
[
Li

j (1)Li
j (1) + Ri

j (2)Ri
j (2) − Dik(A†

1A2)2Li
j (1)Rk

j (2)
]
.

(A8)

B. K † K term

The first term in the square bracket of the fourth term is
given in Eq. (A8). The second term in the square bracket is
rewritten as follows,

1

e2F 2
π

tr(∂µUBBU
†
BB, ∂νUBBU

†
BB)2

= 4

e2F 2
π

([
Lk

j (1)Lk
i (1) + Rk

j (2)Rk
i (2)

][
Ll

j (1)Ll
i(1)

+Rl
j (2)Rl

i (2)
] − [

Li
j (1)Li

j (1) + Ri
j (2)Ri

j (2)
]2

+Dkn(A†
1A2)

{ − 2
[
Lk

j (1)Rn
i (2) + Lk

i (1)Rn
j (2)

]
× [

Ll
i(1)Ll

j (1) + Rl
i (2)Rl

j (2)
] + 4Lk

j (1)Rn
j (2)

× [
Ll

m(1)Ll
m(1) + Rl

m(2)Rl
m(2)

]}
055202-8
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+Dkn(A†
1A2)Dlm(A†

1A2)
{[

Lk
j (1)Rn

i (2) + Lk
i (1)Rn

j (2)
]

× [
Ll

i(1)Rm
j (2) + Ll

j (1)Rm
i (2)

]
− 4Lk

j (1)Rn
j (2)Ll

i(1)Rm
i (2)

})
. (A9)

C. Terms containing D j K

In this subsection, we display the results for the terms
containing spatial “covariant derivative,” DjK . The second
term in Eq. (16) is rewritten as

K†DjDjK = K†{∂2
j − 1

4

[
Li

j (1)Li
j (1) + Ri

j (2)Ri
j (2)

]
+ iτmDmi(A1) 1

2

[
∂jL

i
j (1) + Li

j (1)∂j

]
+ iτmDmi(A2) 1

2

[
∂jR

i
j (2) + Ri

j (2)∂j

]
+Dik(A†

1A2)
[− 1

2Li
j (1)Rk

j (2)
]}

K. (A10)

The three terms in the curly bracket of the fifth term have
very lengthy expressions.

The first term in the bracket:

2K†Dj [DiKtr(AjAi)]

= 2K†(− 1
2∂j

[
Ll

j (1)Ll
i(1) + Rl

j (2)Rl
i (2)

]
∂i

+ 1
4

[
L

p

j (1)Lp

i (1) + R
p

j (2)Rp

i (2)
][

Ll
j (1)Ll

i(1)

+Rl
j (2)Rl

i (2)
] + Dlk(A†

1A2) 1
2∂j

[
Ll

j (1)Rk
i (2)

+Ll
i(1)Rk

j (2)
]
∂i − Dpm(A†

1A2)Dlk(A†
1A2)

× 1
4

[
L

p

j (1)Rm
i (2) + L

p

i (1)Rm
j (2)

][
Ll

j (1)Rk
i (2)

+Ll
i(1)Rk

j (2)
] − iτnDnq(A1) 1

4

{
∂jL

q

i (1)
[
Ll

j (1)Ll
i(1)

+Rl
j (2)Rl

i (2)
] + [

Ll
j (1)Ll

i(1) + Rl
j (2)Rl

i (2)
]
L

q

j (1)∂i

}
− iτnDnq(A2) 1

4

{
∂jR

q

i (2)
[
Ll

j (1)Ll
i(1) + Rl

j (2)Rl
i (2)

]
+ [

Ll
j (1)Ll

i(1) + Rl
j (2)Rl

i (2)
]
R

q

j (2)∂i

}
+ iτnDnq(A1)Dlk(A†

1A2) 1
4

{
∂jL

q

i (1)
[
Ll

j (1)Rk
i (2)

+Ll
i(1)Rk

j (2)
] + [

Ll
j (1)Rk

i (2) + Ll
i(1)Rk

j (2)
]
L

q

j (1)∂i

}
+ iτnDnq(A2)Dlk(A†

1A2) 1
4

{
∂jR

q

i (2)
[
Ll

j (1)Rk
i (2)

+Ll
i(1)Rk

j (2)
] + [

Ll
j (1)Rk

i (2)

+Ll
i(1)Rk

j (2)
]
R

q

j (2)∂i

})
K. (A11)

The second term:

1
2K†Dj [DjKtr(∂iU

†
BB∂iUBB)]

= K†(∂j

[
Ln

m(1)Ln
m(1) + Rn

m(2)Rn
m(2)

]
∂j

− 1
4

[
Li

j (1)Li
j (1) + Ri

j (2)Ri
j (2)

]2]
−Dnk(A†

1A2)2∂jL
n
m(1)Rk

m(2)∂j

+Dil(A
†
1A2)Dnk(A†

1A2)Li
j (1)Rl

j (2)Ln
m(1)Rk

m(2)

+ iτlDli(A1) 1
2

{
Li

j (1)
[
Ln

m(1)Ln
m(1) + Rn

m(2)Rn
m(2)

]
∂j

+ ∂j

[
Ln

m(1)Ln
m(1) + Rn

m(2)Rn
m(2)

]
Li

j (1)
}

+ iτlDli(A2) 1
2

{
Ri

j (2)
[
Ln

m(1)Ln
m(1) + Rn

m(2)Rn
m(2)

]
∂j

+ ∂j

[
Ln

m(1)Ln
m(1) + Rn

m(2)Rn
m(2)

]
Ri

j (2)
}

+ iτlDli(A1)Dnk(A†
1A2)2

[ − Li
j (1)Ln

m(1)Rk
m(2)∂j

− ∂jL
n
m(1)Rk

m(2)Li
j (1)

] + iτlDli(A2)Dnk(A†
1A2)

× 2
[−Ri

j (2)Ln
m(1)Rk

m(2)∂j − ∂jL
n
m(1)Rk

m(2)Ri
j (2)

])
K.

(A12)

The third term:

−6K†Dj [Ai,Aj ]DiK

= −3K†[− 1
4

{[
Ll

j (1)Ll
j (1) − Rl

j (2)Rl
j (2)

][
Lk

i (1)Lk
i (1)

−Rk
i (2)Rk

i (2)
] − [

Lk
j (1)Lk

i (1) − Rk
j (2)Rk

i (2)
]

× [
Ll

j (1)Ll
i(1) − Rl

j (2)Rl
i (2)

]}
− iτmDmk(A1)

(
εknl∂jL

n
i (1)Ll

j (1)∂i

− 1
2

{
Lk

i (1)
[
Ll

j (1)Ll
j (1) − Rl

j (2)Rl
j (2)

]
−Lk

j (1)
[
Ll

i(1)Ll
j (1) − Rl

i (2)Rl
j (2)

]}
∂i

+ 1
2∂j

{
Lk

i (1)
[
Ll

i(1)Ll
j (1) − Rl

i (2)Rl
j (2)

]
−Lk

j (1)
[
Ll

i(1)Ll
i(1) − Rl

i (2)Rl
i (2)

]})
− iτmDmk(A2)

(
εknl∂jR

n
i (2)Rl

j (2)∂i

+ 1
2

{
Rk

i (2)
[
Ll

j (1)Ll
j (1) − Rl

j (2)Rl
j (2)

]
−Rk

j (2)
[
Ll

i(1)Ll
j (1) − Rl

i (2)Rl
j (2)

]}
∂i

− 1
2∂j

{
Rk

i (2)
[
Ll

i(1)Ll
j (1) − Rl

i (2)Rl
j (2)

]
−Rk

j (2)
[
Ll

i(1)Ll
i(1) − Rl

i (2)Rl
i (2)

]})
+ iτmDmk(A1)Dlr (A†

1A2)
{
εkln∂jL

n
j (1)Rr

i (2)∂i

− 1
2Lk

j (1)
[
Ll

i(1)Rr
j (2) − Ll

j (1)Rr
i (2)

]
∂i

− 1
2∂jL

k
i (1)

[
Ll

j (1)Rr
i (2) − Ll

i(1)Rr
j (2)

]}
+ iτmDmk(A2)Dlr (A†

1A2)
{
εkrn∂jL

l
i(1)Rn

j (2)∂i

+ 1
2Rk

j (2)
[
Ll

i(1)Rr
j (2) − Ll

j (1)Rr
i (2)

]
∂i

+ 1
2∂jR

k
i (2)

[
Ll

j (1)Rr
i (2) − Ll

i(1)Rr
j (2)

]}
+Dpr (A†

1A2)
[
εklpLk

i (1)Ll
j (1)Rr

j (2)∂i

+ εklrL
p

j (1)Rk
i (2)Rl

j (2)∂i + εklp∂jL
k
i (1)Ll

j (1)Rr
i (2)

+ εklr∂jL
p

i (1)Rk
i (2)Rl

j (2)
] + Dkr (A†

1A2)Dlt (A
†
1A2)

× 1
4

[
Lk

i (1)Rr
j (2) − Lk

j (1)Rr
i (2)

]
× [

Ll
j (1)Rt

i (2) − Ll
i(1)Rt

j (2)
]]

K. (A13)

D. WZW term

The last term in Eq. (16), which is proportional to the baryon
number density, B0, comes from the WZW term. B0 can be
written in terms of L and R as

B0 = − 1

12π2

{
εijkεpqr

[
L

p

i (1)Lq

j (1)Lr
k(1)

−R
p

i (2)Rq

j (2)Rr
k(2)

] + Dps(A
†
1A2)3εijk

× [
εqrsL

p

i (1)Rq

j (2)Rr
k(2) − εqrpRs

i (2)Lq

j (1)Lr
k(1)

]}
.

(A14)
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APPENDIX B: SPIN-ISOSPIN PROJECTION

In this appendix, we show the procedure of spin-isospin
projection in detail. The first step is to replace the adjoint
matrix in the Lagrangian with Wigner D function. For
example,

Dmi(A1) → D1
MM ′

i
(�1), (B1)

Dij (A†
1A2) = Dmi(A1)Dmj (A2) → D1

MM ′
i
(�1)D1

MM ′
j
(�2).

(B2)

Next, we sandwich them between the relevant nucleon wave
function, Eq. (23), and integrate the Euler angle. We demon-
strate the procedure by taking two examples below. For later
use, we display two basic formulas for D functions,

D
J1

M1M
′
1
(�)DJ2

M2M
′
2
(�)

=
J1+J2∑

J=|J1−J2|
〈J1J2M1M2|JM〉〈J1J2M

′
1M

′
2|JM ′〉DJ

MM ′(�),

(B3)∫
d�D

J1∗
M1M

′
1
(�)DJ2

M2M
′
2
(�)

= 8π2

2J1 + 1
δ(J1, J2)δ(M1,M2)δ(M ′

1,M
′
2). (B4)

A. Example 1

In this subsection, we calculate the matrix element
〈I3 − J3|D1

M1M
′
1
(�)|I3J3〉 as an example. Here and hereafter,

we denote the nucleon state with the third component of the
isospin I3 and that of the spin J3 simply by |I3J3〉. This matrix
element is given by the following integral,

〈I3 − J3|D1
M1M

′
1
(�)|I3J3〉

≡ 1

(2π )2
(−1)2I3+1

∫
d�D

1/2
−I3−J3

(�)∗D1
M1M

′
1
(�)D1/2

−I3J3
(�).

(B5)

Here, from Eq. (B3), we note that

D1
M1M

′
1
(�)D1/2

−I3J3
(�)

=
3/2∑

J=1/2

〈
1

1

2
M1 − I3

∣∣∣∣ JM

〉 〈
1

1

2
M ′

1J3

∣∣∣∣ JM ′
〉
DJ

MM ′ (�)

=
〈
1

1

2
M1 − I3

∣∣∣∣ 1

2
M

〉 〈
1

1

2
M ′

1J3

∣∣∣∣ 1

2
M ′

〉
D

1/2
MM ′(�)

+
〈
1

1

2
M1 − I3

∣∣∣∣ 3

2
M

〉 〈
1

1

2
M ′

1J3

∣∣∣∣ 3

2
M ′

〉
D

3/2
MM ′(�).

(B6)

We substitute this equation into Eq. (B5) and integrate
the Euler angle using Eq. (B4). The result reads as

follows,

〈I3 − J3|D1
M1M

′
1
(�)|I3J3〉

=
〈
1

1

2
M1 − I3

∣∣∣∣ 1

2
M

〉 〈
1

1

2
M ′

1J3

∣∣∣∣ 1

2
M ′

〉

× δ(−I3,M)δ(−J3,M
′)

= (−1)1/2−I3

√
2

3
δ(0,M1)

[
−δ(−1,M ′

1)δ

(
1

2
, J3

)

+ δ(1,M ′
1)δ

(
−1

2
, J3

)]
. (B7)

B. Example 2

The second example is the matrix element of two D

functions: 〈I3 − J3|D1
M1M

′
1
(�)D1

M2M
′
2
(�)|I3J3〉 given by

〈I3 − J3|D1
M1M

′
1
(�)D1

M2M
′
2
(�)|I3J3〉

= 1

(2π )2
(−1)2I3+1

∫
d�D

1/2
−I3−J3

(�)∗D1
M1M

′
1

× (�)D1
M2M

′
2
(�)D1/2

−I3J3
(�). (B8)

Using Eq. (B3) two times, we obtain

D1
M1M

′
1
(�)D1

M2M
′
2
(�)D1/2

−I3J3
(�)

= 〈11M1M2|00〉〈11M ′
1M

′
2|00′〉D1/2

−I3J3
(�)

+〈11M1M2|1M3〉〈11M ′
1M

′
2|1M ′

3〉
(〈

1 1
2M3 − I3

∣∣ 1
2M

〉
× 〈

1 1
2M ′

3J3

∣∣ 1
2M ′〉D1/2

MM ′(�) + 〈
1 1

2M3 − I3

∣∣ 3
2M

〉
× 〈

1 1
2M ′

3J3

∣∣ 3
2M ′〉D3/2

MM ′(�)
) + 〈11M1M2|2M3〉

× 〈11M ′
1M

′
2|2M ′

3〉D2
M3M

′
3
(�)D1/2

−I3J3
(�). (B9)

We substitute this equation into Eq. (B8) and carry out the
integration of the Euler angle using Eq. (B4) to obtain

〈I3 − J3|D1
M1M

′
1
(�)D1

M2M
′
2
(�)|I3J3〉

= 〈11M1M2|1M3〉〈11M ′
1M

′
2|1M ′

3〉
〈
1

1

2
M3 − I3

∣∣∣∣ 1

2
M

〉

×
〈
1

1

2
M ′

3J3

∣∣∣∣ 1

2
M ′

〉
δ(−I3,M)δ(−J3,M

′)

= (−1)1/2−I3

√
2

3

1

2
[δ(M1, 1)δ(M2,−1)

− δ(M1,−1)δ(M2, 1)]

{
[δ(M ′

1, 1)δ(M ′
2, 0)

− δ(M ′
1, 0)δ(M ′

2, 1)]δ

(
−1

2
, J3

)
− [−δ(M ′

1,−1)δ(M ′
2, 0) + δ(M ′

1, 0)δ(M ′
2,−1)]

× δ

(
1

2
, J3

)}
. (B10)
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