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The thermodynamic properties of nuclei are studied in a mean-field model by using a Skryme interaction.
Properties of two-component systems are investigated over the complete range of proton fraction from a system
of pure neutrons to a system of only protons. Besides volume, symmetry, and Coulomb effects we also include
momentum- or velocity-dependent forces. Applications of the results developed are then given and include
nuclear mechanical and chemical instability and an associated liquid-gas phase transition in two-component
systems. The velocity dependence leads to further changes in the coexistence curve and nuclear mechanical and
chemical instability curves.
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I. INTRODUCTION

One primary goal of medium-energy nuclear collisions is
a detailed study of the thermodynamic properties of strongly
interacting nuclear matter [1,2]. An important feature of these
properties is the existence of the liquid-gas phase transition.
The properties of the nuclear force (long-range attraction and
short-range repulsion) parallel those of a van der Waals system
[3] that qualitatively describes a liquid-gas phase transition in
atomic systems. The liquid-gas phase transition in nuclei is
the first phase transition seen in a strongly interacting system.
Relativistic heavy-ion collisions are being used to explore a
second phase transition from hadronic matter made of mesons
and baryons to a quark-gluon phase. Important differences
exist between the nuclear interaction and the interaction
between atoms. Because nuclei are made of neutrons and
protons, the phase transition is in a two-component or binary
system where symmetry energy effects and Coulomb effects
play an important role. Moreover, the nuclear force has a
velocity dependence. The presence of symmetry energy and a
Coulomb interaction effect and also a velocity dependence
in the nuclear interaction make the nuclear case a unique
and interesting binary system within the general scope of
such systems. Examples of other two-component systems are
binary alloys and liquid 3He. For 3He the two components
are spin-up and spin-down fluids. The phase structure in
such two-component systems has some important features. In
nuclear systems, isospin fractionation [1,2,4–7] is an example
where the monomer gas phase has a large neutron-to-proton
ratio. Reference [7] is the most recent reference on isospin
fractionation and contains further references to it. Both the
symmetry energy and Coulomb energy play an important role
in this phenomena of isospin fractionation. Nucleons carry
spin, but very little research has been done in understanding
the role of spin in the liquid-gas phase structure. However, the
crust of neutron stars has features associated with a superfluid
phase.

An early study of the nuclear liquid-gas phase transition [3]
treated the system as a one-component system of nucleons.
This study was then extended to two components by using a
Skyrme interaction [8]. A relativistic mean-field model was

also developed in Ref. [9], where the role of the symmetry
energy was studied in detail. The addition of the Coulomb
energy [10,11] resulted in asymmetries that changed the
mechanical and chemical instability regions and binodal
surfaces in pressure P , temperature T , and proton fraction
y associated with phase coexistence. For one-component
systems a phase diagram is the more familiar binodal curve of
pressure versus density or volume determined by a Maxwell
construction. Some other studies of one- and two-component
phase transitions can be found in Refs. [12–21]. The present
work is an extension of our research reported in Refs. [10,11].
An extended Skyrme interaction is now used in our present
study and, for example, includes effects associated with a
velocity dependence in the nuclear interaction. Here we will
use a simplified form of the velocity dependence. In particular
we will use an effective mass approximation for it that includes
a density-dependent behavior. Our primary goal is to see
what qualitative effects a momentum dependence has when
superimposed upon an interaction model that does not include
them. A momentum-dependence study was also given in
Ref. [22] using a more refined dependence. Our results differ
from that of Ref. [22] since we also include Coulomb and sur-
face effects. Coulomb effects lead to an asymmetric behavior in
proton fraction [10,11] of various quantities. In the absence of
Coulomb forces a symmetry exists around proton fraction y =
1/2. The velocity-dependent force modifies nuclear saturation
properties and the symmetry energy. Some recent extended
studies of symmetry energy can be found in Refs. [23,24].
The results given in the following show modifications in
chemical and mechanical instability curves arising from an
inclusion of a density-dependent effective mass. The velocity
dependence has a larger effect on the proton-rich instability
and coexistence features compared to the neutron-rich curves.
A detailed discussion is given in Sec. III and in associated
figures. The study of two-component nuclear systems with
arbitrary neutron/proton ratios will be useful for future RIB
(Rare Isotope Beam) Facility experiments and in astrophysical
studies such as in neutron stars.

Our paper is divided as follows. The next section discusses
the thermodynamic properties of nuclei. It is divided into two
subsections. General results based on a mean-field approach
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are presented in Sec. IIA. Specific results based on a Skyrme
force for the potential terms and low- and high-temperature
kinetic energy behavior appear in Sec. IIB, where the effects
of a velocity-dependent interaction and related effective mass
results are also discussed. Then in Sec. III we apply the
results of Secs. IIA and IIB to the specific issues of (A)
mechanical and chemical instability of nuclei and (B) the
liquid-gas coexistence curve. Results are presented in nine
figures and are discussed. Finally, in Sec. IV a summary and
conclusions are given.

II. THEMODYNAIC PROPERTIES OF NUCLEI IN A
MEAN-FIELD DESCRIPTION

A. General results

In this section we present results for the thermodynamic
properties of nuclear matter that are extended from the results
of Ref. [10] to include a velocity- or momentum-dependent
interaction. The matter is a two-component system of protons
and neutrons in equilibrium at some temperature T . We first
develop expressions for the total energy E as a function of
the density ρq of each component q and temperature T . The
behavior of the energy functional with ρq and T can be used to
obtain the behavior of the pressure P and chemical potential
µq for each component of type q. These quantities will also
be functions of ρq and T . They can then be used to study, for
example, a phase transition in the nuclear system.

To begin, we use the fact that, at a given temperature T =
1/β, the proton and neutron constituents are distributed in
phase space according to the Wigner function f as

f (�r, �p) =
∑

q

fq(�r, �p),

(1)

fq(�r, �p) = γ

h3
f̃q(�r, �p) = γ

h3

1

eβ(εq−µq ) + 1
.

The spin degeneracy factor γ = 2 and εq and µq are the single-
particle energy and the chemical potential, respectively, of
particle of type q. Then the particle density ρ and nucleon
number A are given by the following equations:

ρ(�r) =
∑

q

ρq(�r), ρq(�r) =
∫

d3pfq(�r, �p), (2)

A =
∑

q

Nq =
∫

d3rρ(�r),

(3)

Nq =
∫

d3rρq(�r) =
∫

d3r

∫
d3pfq(�r, �p).

Defining τ (�r) as

τ (�r) =
∑

q

τq(�r), τq(�r) =
∫

d3p
p2

h̄2 fq(�r, �p) (4)

gives the total energy E as

E =
∫

d3rE(�r) =
∫

d3r

∫
d3p

p2

2m
f (�r, �p)

+
∫

d3r

∫
d3pU (�r, �p) =

∫
d3r

[
EK (�r) + U (�r)

]
. (5)

The potential energy density is U (�r), and the EK (�r) = h̄2

2m
τ (�r)

is the kinetic energy density. The single-particle energy εq is
given by

εq = δE

δfq

= δE(�r)

δfq(�r, �p)
= p2

2m
+ δU

δfq

= p2

2m
+ uq(�r, �p). (6)

The uq = δU
δfq

is the single-particle potential of particle q,

which may in general be momentum dependent. The chemical
potential µq is given by εq at an effective Fermi momentum
p = pFq defined by the following equation:

µq = εq |p=pFq
= p2

Fq

2m
+ uq(�r, �pFq). (7)

To study a phase transition we need information about the
behavior of the pressure when the system is in equilibrium.
The general expression for the pressure can be defined
dynamically from the total momentum conservation law,
d
dt

[
∫

d3r
∫

d3p �pf ] = − ∫
d3r �∇r ·

↔
� = 0, by using the Vlasov

equation as developed in Ref. [21]:

∂fq

∂t
+ ( �∇pεq) · ( �∇rfq) − ( �∇rεq) · ( �∇pfq) = 0. (8)

A more general expression is obtained from the hydrodynamic
consideration of time dependent Hartree-Fock (TDHF) in
phase space as given in Ref. [25], which reads

�∇r ·
↔
� = − d

dt

[∫
d3p �p

∑
q

fq(�r, �p)

]

= −
∑

q

∫
d3p �p

(
∂fq

∂t

)

=
∑

q

∫
d3p �p �∇r · [( �∇pεq)fq]

+
∑

q

∫
d3pp̂ · ( �∇rεq)fq, (9)

where p̂ = �p/p is a unit vector in the direction of �p.
By using ( �∇rεq)fq = �∇r (εqfq) − εq

�∇rfq = �∇r (εqfq) − �∇rE ,
the dynamical pressure tensor �ij is given by

�ij =
∑

q

∫
d3ppi

(∇j
pεq

)
fq + δij

[∫
d3p

∑
q

εqfq − E
]

=
∑

q

∫
d3ppi∇j

p

(
δE
δfq

)
fq

+ δij

[∑
q

∫
d3p

(
δE
δfq

)
fq − E

]

=
∑

q

∫
d3ppi

[
pj

m
+ ∇j

p

(
δU

δfq

)]
fq

+ δij

[∑
q

∫
d3p

(
δU

δfq

)
fq − U

]
. (10)

Our previous study [10] focused on a momentum-independent
potential, which gave the following simpler results for the
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pressure tensor:

�ij =
∑

q

∫
d3p

pipj

m
fq + δij

[∑
q

(
δU

δρq

)
ρq − U

]

=
∫

d3p
∑

q

pipj

m
fq + δij

∑
q

ρρq

δ(U/ρ)

δρq

. (11)

The diagonal element of �ij is the pressure P = �ij , which
simplifies to

P = �ii =
∑

q

∫
d3p

p2
i

m
fq +

∑
q

δU

δρq

ρq − U

= PK +
∑

q

uqρq − U = PK + PP . (12)

Here PK = ∫
d3p

p2
i

m
f = 2

3EK is the kinetic part of the pressure
P , and the interaction potential part is PP = ∑

q uqρq − U =
ρ2 δ(U/ρ)

δρ
. At temperature T = 0 the pressure P is related to

the derivative of the energy per particle, E/A, with particle
number fixed as

P = �ii = −d(E/A)

dV
= ρ2 d(E/ρ)

dρ
. (13)

This result applies to a single-component system. In the
following we will give results at nonzero temperature for a
multicomponent system. We first proceed with a discussion of
the role of the momentum dependence and effective mass.

As mentioned, our study is based on a qualitative study
of the role of a momentum-dependent interaction and we
therefore use a simplifying approximation. Specifically, we
use an effective mass with a density dependence and this ap-
proximation greatly simplifies our analysis in two-component
asymmetric and finite nuclear systems. We still include both
Coulomb and surface effects since realistic nuclear systems
have such terms that are important in their description and
stability properties. More refined studies will be developed
in future work. When the momentum-dependent part is of
the form A(ρp, ρn)p2

h̄2 f , then it can be incorporated into the
Hamiltonian as an effective mass term. In Ref. [22], the
momentum dependence is obtained from∫ ∫

d3pd3p′ fτ (�r, �p)f ′
τ (�r, �p′)

1 + ( �p − �p′)2/	2
. (14)

We use an effective mass m∗
q/m approach [26] for Eq. (14),

which can further be approximated by expanding the
factor 1/[1 + ( �p − �p′)2/	2] to first order in 1 − ( �p −
�p′)2/	2. Specifically, we write the effective mass behavior
of m/m∗

q as

m

m∗
q

= 1 + Aq(ρ)
2m

h̄2 ,

(15)

Aq(ρ)τq(�r) = h̄2

2m∗
q

τq(�r) − h̄2

2m
τq(�r).

Moreover, we have U (�r) = U (ρ) + A(ρ)τ (�r) = U (ρ) +∑
q Aq(ρ)τq(�r) with τq(�r) of Eq. (4). A momentum-dependent

single-particle potential uq(�r, �p) is given by

uq(�r, �p) = δU (�r)

δfq(�r, �p)
= δU (ρ)

δρq

+ δA(ρ)τ (�r)

δρq

+ Aq(ρ)
p2

h̄2

= δU (�r)

δρq

+ Aq(ρ)
p2

h̄2 . (16)

The µq is related to uq(�r, �p) through the result

µq = p2
Fq

2m
+ uq(�r, �pFq)

=
(

1 + Aq(ρ)
2m

h̄2

)
p2

Fq

2m
+ δU (ρ)

δρq

+ δA(ρ)τ (�r)

δρq

=
(

1 + Aq(ρ)
2m

h̄2

)
p2

Fq

2m
+ δU (�r)

δρq

= p2
Fq

2m∗
q

+ δU (�r)

δρq

.

(17)

Also

�∇puq(�r, �p) = �∇p

(
δU (�r)

δfq

)
= Aq(ρ)

2 �p
h̄2 (18)

and∫
d3puqfq =

∫
d3p

(
δU (�r)

δfq

)
fq(�r, �p) = δU (ρ)

δρq

ρq(�r)

+ δA(ρ)τ (�r)

δρq

ρq(�r) + Aq(ρ)τq(�r)

= δU (�r)

δρq(�r)
ρq(�r) + Aq(ρ)τq(�r). (19)

Here ρ and τ are treated as independent variables. Then the
pressure tensor �ij is given by

�ij =
∑

q

∫
d3p

(
1 + Aq(ρ)

2m

h̄2

)
pipj

m
fq

+ δij

[∑
q

(
δU (�r)

δρq

)
ρq + A(ρ)τ (�r) − U (�r)

]

=
∫

d3p
∑

q

(
1 + Aq(ρ)

2m

h̄2

)
pipj

m
fq

+ δij

∑
q

[
ρ(�r)ρq(�r)

δ(U (ρ)/ρ)

δρq

+ ρq(�r)
δA(ρ)τ (�r)

δρq

]

=
∫

d3p
∑

q

pipj

m∗
q

fq

+ δij

∑
q

[
ρ(�r)ρq(�r)

δ(U (�r)/ρ)

δρq

+ A(ρ)τ (�r)

]
(20)

and the pressure P or diagonal element �ii = P is

P = �ii =
∑

q

(
1 + Aq(ρ)

2m

h̄2

) ∫
d3p

p2
i

m
fq

+
∑

q

δU (�r)

δρq

ρq + A(ρ)τ (�r) − U (�r)

054612-3



S. J. LEE AND A. Z. MEKJIAN PHYSICAL REVIEW C 77, 054612 (2008)

=
∑

q

∫
d3p

p2
i

m∗
q

fq +
∑

q

δU (�r)

δρq

ρq − U (ρ) = P ∗
K + PP .

(21)

The P ∗
K = ∑

q P ∗
Kq with

P ∗
Kq =

(
1 + Aq(ρ)

2m

h̄2

) ∫
d3p

p2
i

m
fq

=
∫

d3p
p2

3m∗
q

fq = 2

3
E∗

K (22)

is the kinetic pressure with an effective mass correction
term, and the second equality is for an isotropic momentum
distribution. The potential part of the pressure PP is given by

PP =
∑

q

δU (�r)

δρq

ρq − U (ρ)

=
∑

q

[
ρρq

δ(U (ρ)/ρ)

δρq

+ ρq

δA(ρ)τ (�r)

δρq

]

=
∑

q

[
ρρq

δ(U (�r)/ρ)

δρq

+ Aq(ρ)τq(�r)

]

= ρ2 δ(U (ρ)/ρ)

δρ
+ ρ

δA(ρ)τ (�r)

δρ

= ρ2 δ(U (�r)/ρ)

δρ
+ A(ρ)τ (�r) = ρ2 δ(U (�r)/ρ)

δρ
+ E∗

K − EK.

(23)

Here EK = ∑
q

h̄2

2m
τq(�r) and

E∗
K =

∑
q

h̄2

2m∗
q

τq(�r) =
∑

q

(
1 + Aq(ρ)

2m

h̄2

)
h̄2

2m
τq(�r). (24)

Also in obtaining this result we use the fact that

∑
q

ρq

δU (ρ, ρq )

δρq

= ρ
δU (ρ, ρxq )

δρ
, (25)

which can be shown by looking at the derivative of
B(ρ)C(ρp)D(ρn) = B(ρ)C(ρxp)D(ρxn). Here the variation
ρ must be done after replacing ρq by ρxq .

Other thermodynamic variables, such as S,
, F , and G,
are given in Ref. [10]. The entropy S follows, from the
distribution f̃q of Eq. (1), as

S =
∑

q

Sq =
∫

d3rS =
∫

d3r
∑

q

Sq (26)

and

Sq = − γ

h3

∫
d3p[f̃q ln f̃q + (1 − f̃q) ln(1 − f̃q)]

= β

∫
d3pεqfq + β

∫
d3p

�p · �∇pεq

3
fq − βµq

∫
d3pfq.

(27)

In equilibrium, from Eqs. (10) and (27)

T S = E + P −
∑

q

µqρq = EK + PK −
∑

q

(µq − uq)ρq

= EK + PK −
∑

q

p2
Fq

2m
ρq. (28)

The last equality of Eq. (28) is the result of using Eq. (7). For
a momentum-dependent potential the entropy is now

T S = E + P −
∑

q

µqρq

= E∗
K + P ∗

K −
∑

q

(
µq − δU (�r)

δρq

)
ρq

= E∗
K + P ∗

K −
∑

q

(
1 + Aq(ρ)

2m

h̄2

)
p2

Fq

2m
ρq

= E∗
K + P ∗

K −
∑

q

p2
Fq

2m∗
q

ρq, (29)

where use has been made of Eqs. (17) and (21) to obtain this
result. General thermodynamic relations also determine the
entropy, pressure, and chemical potential [10].

B. Thermodynamic properties of nuclear matter based on a
Skyrme interaction

We now use a Skyrme interaction to develop expressions
for the potential U . Once the potential energy U in Eq. (5)
is known, then questions related to mechanical and chemical
instability and the possibility of a phase transition of the system
can be studied by using Eqs. (1)–(29). The potential energy U

determines εq and µq and the potential energy part of E and
P . Then for fixed T and Nq , the Wigner function f and pFq

are determined and thus the kinetic terms of E,µq , and P .
By using these results, the entropy S can be determined. For a
nuclear system of proton (ρp) and neutron (ρn), this gives the
local potential energy density as

U (ρq) = t0

2

(
1 + x0

2

)
ρ2 − t0

2

(
1

2
+ x0

)∑
q

ρ2
q

+ t3

12

(
1 + x3

2

)
ρα+2 − t3

12

(
1

2
+ x3

)
ρα

∑
q

ρ2
q

+ 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
ρτ

− 1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)] ∑
q

ρqτq

+Cρβρ2
p + Csρ

η. (30)

Here Cρβ = 4π
5 e2R2 and Csρ

η = 4πR2σ (ρ)
V

= (4πr2
0 σ )

V 1/3 ρ2/3

when we approximate the Coulomb and surface effects
as coming from a finite uniform sphere of radius R =
r0A

1/3 with total charge Z (UC = 3
5

e2Z2

RV
) [10]. The val-

ues for the force parameters used here are given in
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TABLE I. Skyrme parameters used here are in MeV and fm
units [11]. For t1 and t2, the SkM parameter values are used.

t0 x0 t3 x3 α

−1089.0 −1/6 17480.4 −1/2 1

Momentum
dependent

Momentum
independent

t1 251.11 0
x1 –1/2 –1/2
t2 –150.66 0
x2 –1/2 –1/2
Effective mass m∗/m 0.895626 1
Binding energy EB/A 13.1057 15.54447
Fermi energy EF 31.8018 34.2101
Saturation density ρ0 0.1283 0.143145
Symmetry energy SV 23.4791 24.39379
Compressibility κ 307.780 361.9045

Table I. We define an effective mass m∗
q as

m

m∗
q

= 1 + 2m

h̄2

{
1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
ρ

− 1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]
ρq

}
. (31)

Then the momentum-dependent potential term becomes

Aq(ρ) = h̄2

2m∗
q

− h̄2

2m
= 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
ρ

− 1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]
ρq

= h̄2

2m

[
−1 + 1 + 2m

h̄2

{
1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
ρ

− 1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

) ]
ρq

}]
. (32)

For a symmetric nucleus, N = Z, ρq = ρ/2, and thus

U (ρ) = 3
8 t0ρ

2 + 3
48 t3ρ

α+2

+ 3
16 (t1 + t2) ρτ + Cρβρ2

p + Csρ
η. (33)

This potential energy determines the interaction-dependent
terms of E, P , εq , and µq , which depend on densities without
an explicit T dependence.

For a momentum-dependent potential energy as in Eq. (30),
εq − µq = (p2 − p2

Fq)/(2m∗
q), where the effective mass m∗

q

is independent of the momentum-independent part of the
potential and the Wigner funcion of Eq. (1) becomes

f̃q(�r, �p) = 1

eβ(εq−µq ) + 1
= 1

eβ(p2−p2
Fq )/(2m∗

q ) + 1
. (34)

Thus we can evaluate the kinetic terms in E, P , and µq , which
are functions of T and pFq . Defining the Fermi integral Fα(η),

with effective mass m∗
q , as

Fα(ηq) =
∫ ∞

0

xα

1 + ex−ηq
dx

=
(

λ2
q

4πh̄2

)α+1 ∫ ∞

0

2p2α+1dp

1 + eβp2/2m∗
q−ηq

, (35)

ηq = β

(
µq − δU (�r)

δρq

)
= βp2

Fq

/
(2m∗

q)

= p2
Fq/(2m∗

qT ) = ln zq, (36)

λq =
√

2πh̄2/m∗
qT , (37)

we can write, for f (�r, �p) = f (�r, p),

ρq =
∫

d3pfq(�r, �p) = γ

h3

∫
d3p

1

eβ(p2−p2
Fq )/(2m∗

q ) + 1

= λ−3
q

2γ√
π

F1/2(ηq), (38)

ε∗
Fq ≡ p2

Fq

2m∗
q

= h̄2

2m∗
q

(
6π2

γ
ρq

)2/3

= m

m∗
q

εFq,

(39)

εFq = h̄2

2m

(
6π2

γ
ρq

)2/3

,

τq =
∫

d3p
p2

h̄2 fq(�r, �p) = γ

h3

∫
d3p

p2

h̄2

1

eβ(p2−p2
Fq )/(2m∗

q ) + 1

= 8γ
√

πλ−5
q F3/2(ηq) = 1

β

2m∗
q

h̄2

2γ√
π

λ−3
q F3/2(ηq)

= 2m

h̄2 EKq = 2m∗
q

h̄2 E∗
Kq, (40)

EKq = h̄2

2m
τq = 3

2
PKq =

∫
d3p

p2

2m
fq(�r, �p)

= γ

h3

∫
d3p

p2

2m

1

eβ(p2−p2
Fq )/(2m∗

q ) + 1

= 4γh̄2√π

m
λ−5

q F3/2(ηq) = m∗
q

m

1

β

2γ√
π

λ−3
q F3/2(ηq), (41)

E∗
Kq = h̄2

2m∗
q

τq = 3

2
P ∗

Kq =
∫

d3p
p2

2m∗
q

fq(�r, �p)

= γ

h3

∫
d3p

p2

2m∗
q

1

eβ(p2−p2
Fq )/(2m∗

q ) + 1

= 4γh̄2√π

m∗
q

λ−5
q F3/2(ηq) = 1

β

2γ√
π

λ−3
q F3/2(ηq). (42)

Here εFq is the chemical potential at absolute zero or Fermi
energy and pFq is the effective Fermi momentum at T [which
is related to density ρq through Eq. (38)]. The particle number
Nq = ∫

d3rρ(�r) determines the effective Fermi momentum
pFq(�r) or ηq at T , in terms of density ρq(�r):

ηq(ρq,T ) = β

(
µq − δU (�r)

δρq

)
= β

p2
Fq

2m∗
q

= F−1
1/2

(√
π

2γ
λ3

qρq

)
.

(43)
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For multi(two)-component systems with potential energy
given by Eq. (30), with a given ρq (or pFq) and T , the ther-
modynamic properties are as follows. The chemical potential
is given by

µq(ρq, T ) = T ηq(ρq, T ) + δU (�r)

δρq

= T ηq(ρq, T ) + t0

(
1 + x0

2

)
ρ + t3

12

(
1 + x3

2

)
× (α + 2)ρα+1 − t3

12

(
1

2
+ x3

)
αρα+1

− t0

(
1

2
+ x0

)
ρq + t3

12

(
1

2
+ x3

)
(α − 1)2ραρq

− t3

12

(
1

2
+ x3

)
2αρα−1ρ2

q

+ 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
τ

− 1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]
τq

+Cβρβ−1ρ2
p + 2Cρβρpδq,p + ηCsρ

η−1. (44)

The equation of state has a behavior determined by

P (ρq,T ) =
∑

q

2

3
E∗

Kq(ρq,T ) + ρ2 δ(U (ρ)/ρ)

δρ
+ ρ

δA(ρ)τ (�r)

δρ

=
∑

q

[
5

3
E∗

Kq(ρq,T ) − EKq(ρq,T )

]
+ ρ2 δ(U (�r)/ρ)

δρ

=
∑

q

[
5

3
E∗

Kq(ρq, T ) − EKq(ρq, T )

]

+ t0

2

(
1 + x0

2

)
ρ2

+ t3

12

(
1 + x3

2

)
(α + 1)ρα+2

− t0

2

(
1

2
+ x0

) ∑
q

ρ2
q − t3

12

(
1

2
+ x3

)

× (α + 1)ρα
∑

q

ρ2
q

+C(β + 1)ρβρ2
p + Cs(η − 1)ρη. (45)

The energy density is

E(ρq,T ) =
∑

q

EKq(ρq, T ) + U (�r) =
∑

q

E∗
Kq(ρq, T ) + U (ρ)

=
∑

q

E∗
Kq(ρq, T ) + t0

2

(
1 + x0

2

)
ρ2

− t0

2

(
1

2
+ x0

) ∑
q

ρ2
q + t3

12

(
1 + x3

2

)
ρα+2

− t3

12

(
1

2
+ x3

)
ρα

∑
q

ρ2
q + Cρβρ2

p + Csρ
η

(46)

and the entropy can be obtained from

T S(ρq, T ) =
∑

q

5

3
E∗

Kq(ρq, T ) −
∑

q

(
µq − δU (�r)

δρq

)
ρq

=
∑

q

5

3
E∗

Kq(ρq, T ) − T
∑

q

ηq(ρq, T )ρq. (47)

Once we evaluate F1/2(η) and F3/2(η), or more directly η =
F−1

1/2(χ ) and F3/2(η), we can evaluate various thermodynamic
quantities in terms of ρq and T .

For low-temperature and high-density limit where λ3ρ 	
1, that is, when the average de Broglie thermal wavelength λ is
larger than the average interparticle separation ρ−1/3, we can
use a nearly degenerate (Fermi gas) approximations [27] for
F1/2 to obtain

ηq(ρq,T ) = β

(
µq − δU (�r)

δρq

)
= β

p2
Fq

2m∗
q

= F−1
1/2

(√
π

2γ
λ3

qρq

)

= βε∗
Fq


1 − π2

12

(
T

ε∗
Fq

)2

+ · · ·



= β
h̄2

2m∗
q

(
6π2

γ

)2/3
[
ρ2/3

q − π2m∗
q

2

3h̄4

×
( γ

6π2

)4/3
T 2ρ−2/3

q + · · ·
]

, (48)

E∗
Kq(ρq, T ) = 2γ

β
√

π
λ−3

q F3/2(ηq) = 3

2
P ∗

Kq

= 3

5
ρqε

∗
Fq


1 + 5π2

12

(
T

ε∗
Fq

)2

+ · · ·



= 3h̄2

10m∗
q

(
6π2

γ

)2/3
[
ρ5/3

q + 5π2m∗
q

2

3h̄4

×
( γ

6π2

)4/3
T 2ρ1/3

q + · · ·
]

, (49)

τq(ρq, T ) = 2m∗
q

h̄2 E∗
Kq

= 3

5

2m∗
q

h̄2 ρqε
∗
Fq


1 + 5π2

12

(
T

ε∗
Fq

)2

+ · · ·



= 3

5

(
6π2

γ

)2/3

ρ5/3
q


1 + 5π2

12

(
T

ε∗
Fq

)2

+ · · ·



= 3

5

(
6π2

γ

)2/3
[
ρ5/3

q + 5π2m∗
q

2

3h̄4

×
( γ

6π2

)4/3
T 2ρ1/3

q + · · ·
]

. (50)

In the other limit where λ3
qρ is small, we have a nearly

nondegenerate Fermi gas (classical ideal gas) and the resulting
equations are given by an ideal gas in leading order with higher
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order corrections [27] as

ηq(ρq, T ) = β

(
µq − δU (�r)

δρq

)

= ln

[
ρqλ

3
q

γ

(
1 + 1

2
√

2

ρqλ
3
q

γ
+ · · ·

)]

≈ ln

(
ρqλ

3
q

γ

)
+ 1

2
√

2

(
ρqλ

3
q

γ

)
, (51)

E∗
Kq(ρq, T ) = 3

2
P ∗

Kq = 3

2
ρqT

[
1 + 1

25/2

ρqλ
3
q

γ

+
(

1

8
− 2

35/2

) (
ρqλ

3
q

γ

)2

+ · · ·

 , (52)

τq(ρq, T ) = 2m∗
q

h̄2 E∗
Kq = 2mq∗

h̄2

3

2
ρqT

[
1 + 1

25/2

ρqλ
3
q

γ

+
(

1

8
− 2

35/2

) (
ρqλ

3
q

γ

)2

+ · · ·

 . (53)

For a nuclear system with protons and neutrons with the
interaction given by Eq. (30), the nondegenerate Fermi gas
limit of Eqs. (51), (52), and (53) leads to the following
set of equations. The chemical potential has a behavior
determined by

µq(ρ, y, T ) = T ln

[(
λ3

q

γ

)
ρq

]
+ T

2
√

2

(
λ3

q

γ

)
ρq

+ 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)] 3

2
T

∑
q

2m∗
q

h̄2

×
[
ρq + λ3

q

25/2γ
ρ2

q

]

− 1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]
3

2
T

2m∗
q

h̄2

×
[
ρq + λ3

q

25/2γ
ρ2

q

]
+ t0

(
1 + x0

2

)
ρ

+ t3

12

(
1 + x3

2

)
(α + 2)ρα+1

− t3

12

(
1

2
+ x3

)
αρα+1 − t0

(
1

2
+ x0

)
ρq

+ t3

12

(
1

2
+ x3

)
(α − 1)2ραρq

− t3

12

(
1

2
+ x3

)
2αρα−1ρ2

q

+Cβρβ−1ρ2
p + 2Cρβρpδq,p + ηCsρ

η−1. (54)

The equation of state has a form given by

P (ρ, y, T ) = 5

2
Tρ + 5

2

T

2
√

2

∑
q

(
λ3

q

γ

) (
ρ2

q

2

)

− 3

2
T

∑
q

m∗
q

m

[
ρq + 1

2
√

2

(
λ3

q

γ

)(
ρ2

q

2

)]

+ t0

2

(
1 + x0

2

)
ρ2 + t3

12

(
1 + x3

2

)
(α + 1)ρα+2

− t0

2

(
1

2
+ x0

) ∑
q

ρ2
q

− t3

12

(
1

2
+ x3

)
(α + 1)ρα

∑
q

ρ2
q

+C(β + 1)ρβρ2
p + Cs(η − 1)ρη. (55)

The energy density is

E(ρ, y, T ) = 3

2
Tρ + 3

2

T

2
√

2

∑
q

(
λ3

q

γ

)(
ρ2

q

2

)

+ t0

2

(
1 + x0

2

)
ρ2 − t0

2

(
1

2
+ x0

) ∑
q

ρ2
q

+ t3

12

(
1 + x3

2

)
ρα+2 − t3

12

(
1

2
+ x3

)
ρα

∑
q

ρ2
q

+Cρβρ2
p + Csρ

η (56)

and the entropy is

T S(ρ, y, T ) = 5

2
Tρ − T

∑
q

ρq ln

(
λ3

q

γ
ρq

)

+ T

2
√

2

∑
q

(
λ3

q

γ

)(
ρ2

q

4

)
. (57)

The effective mass m∗
q and thus λq are, in general, isospin

dependent [26]. However, we will consider an isospin-
independent effective mass here for simplicity in this present
study. For the case of m∗

q = m∗ with λq = λ (such as the case
of x1 = x2 = −1/2), these equations become

µq(ρ, y, T ) = T ln

[(
λ3

γ

)(ρ

2
± (2y − 1)

ρ

2

)]

+ T

2
√

2

(
λ3

γ

)(ρ

2
± (2y − 1)

ρ

2

)

+ 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)] 3

2
T

2m∗

h̄2

×
[
ρ + λ3

2
√

2γ

[
1 + (2y − 1)2] (ρ

2

)2
]

− 1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]
3

2
T

2m∗

h̄2

×
[(ρ

2
± (2y − 1)

ρ

2

)

+ λ3

25/2γ

(ρ

2
± (2y − 1)

ρ

2

)2
]
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+ 3

4
t0ρ ∓

(
1

2
+ x0

)
t0(2y − 1)

(ρ

2

)

+ (α + 2)

16
t3ρ

α+1 − 1

6

(
1

2
+ x3

)
t3

×
[
α(2y − 1)2

(ρ

2

)2
± (2y − 1)

(ρ

2

)
ρ

]
ρα−1

+ 1

4
C [β + 2(1 ± 1)] ρβ+1

+C
[
(β + 1 ± 1)(2y − 1)

(ρ

2

)
ρ

+β(2y − 1)2
(ρ

2

)2
]

ρβ−1 + ηCsρ
η−1, (58)

P (ρ, y, T ) =
(

5

2
− 3

2

m∗

m

)
Tρ

+
(

5

2
− 3

2

m∗

m

)
T

2
√

2

(
λ3

γ

)(ρ

2

)2

+ 3

8
t0ρ

2 + (α + 1)

16
t3ρ

α+2 + (β + 1)

4
Cρβ+2

+ (η − 1)Csρ
η −

[
t0

(
1

2
+ x0

)

+
(

α + 1

6

)
t3

(
1

2
+ x3

)
ρα −

(
5

2
− 3

2

m∗

m

)

× T

2
√

2

(
λ3

γ

)
− (β + 1)Cρβ

]
(2y − 1)2

(ρ

2

)2

+ (β + 1)Cρβ+1(2y − 1)
(ρ

2

)
, (59)

E(ρ, y, T ) = 3

2
Tρ + 3

8
t0ρ

2 + 1

16
t3ρ

α+2

+ 3

2

T

2
√

2

(
λ3

γ

) (ρ

2

)2
+ 1

4
Cρβ+2 + Csρ

η

−
[
t0

(
1

2
+ x0

)
+

(
1

6

)
t3

(
1

2
+ x3

)
ρα

− 3

2

kT

2
√

2

(
λ3

γ

)
− Cρβ

]
(2y − 1)2

(ρ

2

)2

+Cρβ+1(2y − 1)
(ρ

2

)
, (60)

T S(ρ, y, T ) = Tρ

[
5

2
− y ln

(
λ3

γ
yρ

)

− (1 − y) ln

(
λ3

γ
(1 − y)ρ

)]

+ T

2
√

2

(
λ3

γ

)
[1 + (2y − 1)2]

2

(ρ

2

)2
. (61)

Here, for the proton density (ρp) and neutron density (ρn), we
defined the isoscalar density ρ, isovector density ρ3, proton

fraction y, and related quantities by

ρ = ρp + ρn, ρ3 = ρp − ρn = (2y − 1)ρ, y = ρp/ρ,

ρp = 1

2
(ρ + ρ3) = yρ, ρn = 1

2
(ρ − ρ3) = (1 − y)ρ,

∑
q

ρ2
q = 1

2

(
ρ2 + ρ2

3

)

= [1 + (2y − 1)2]

2
ρ2 = [1 + 2y(y − 1)]ρ2,

∑
q

ρ3
q = 1

4
ρ
(
ρ2 + 3ρ2

3

)

= [1 + 3(2y − 1)2]

4
ρ3 = [1 + 3y(y − 1)]ρ3. (62)

In the expression for µq [Eq. (58)], the plus sign is for the case
q = proton and the minus sign is for the case q = neutron.

At fixed T and P , only one of either ρ or y is the independent
variable. Thus observables such as P, E/ρ, and S/ρ may have
a discontinuity in T or y when ( ∂ρ

∂T
)y,P or ( ∂ρ

∂y
)T ,P diverges. We

can study the behavior of thermodynamic quantities at a fixed
P using dP = 0 from Eq. (59),

dP =
{(

5

2
− 3

2

m∗

m

) [
ρ − 1

2

1

2
√

2

(
λ3

γ

) (ρ

2

)2

− 1

2

1

2
√

2

(
λ3

γ

)
(2y − 1)2

(ρ

2

)2
]}

dT

+
{[

5

2
− 3

2

(
m∗

m

)2
]

T + 3

4
t0ρ

+ (α + 2)(α + 1)

16
t3ρ

α+1

+
[

35

8
− 15

4

m∗

m
+ 3

8

(
m∗

m

)2
]

T

2
√

2

(
λ3

γ

) (ρ

2

)

+ (β + 2)(β + 1)

4
Cρβ+1 + η(η − 1)Csρ

η−1

−
[
t0

(
1

2
+ x0

)
+

(
α + 2

2

)(
α + 1

6

)
t3

(
1

2
+ x3

)
ρα

−
(

β + 2

2

)
(β + 1)Cρβ

−
(

35

8
− 15

4

m∗

m
+ 3

8

(
m∗

m

)2
)

T

2
√

2

(
λ3

γ

)]

× (2y − 1)2
(ρ

2

)

+ (β + 2)(β + 1)Cρβ(2y − 1)
(ρ

2

) }
dρ

−
{[

t0

(
1

2
+ x0

)
+

(
α + 1

6

)
t3

(
1

2
+ x3

)
ρα

− (β + 1)Cρβ −
(

5

2
− 3

2

m∗

m

)
T

2
√

2

(
λ3

γ

)]

× (2y − 1)
(ρ

2

)2
− (β + 1)Cρβ

(ρ

2

)2
}

4dy. (63)
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This equation gives yE(ρ) where both ∂P/∂y = 0 and
∂ρ/∂y = 0:

yE(ρ) = 1

2
+ 1

2

(β + 1)Cρβ[
t0

(
1
2 + x0

) + (
α+1

6

)
t3

(
1
2 + x3

)
ρα − (β + 1)Cρβ − (

5
2 − 3

2
m∗
m

)
T

2
√

2

(
λ3

γ

)] . (64)

The concentration yE(ρ) is independent of ρ for a momentum-
independent Skyrme interaction with x3 = −1/2 and β = 0
as considered in Refs. [10,11]. The x3 term and the density-
dependent effective mass for a momentum-dependent Skyrm
force introduce a small ρ dependence in yE . Equation (59)
shows that, for ρ-dependent yE , the P (ρ) curve for different
values of y at fixed T may cross at some ρ. Moreover, the
minimum pressure for a given T and ρ [i.e., (∂P/∂y)ρ,T = 0]
occurs at y = yE(ρ) �= 0.5 owing to the Coulomb effect. These
results were not seen in Ref. [9]. At yE , the pressure of the
coexistence curve is minimum and the liquid and gas phases
have the same proton fraction yE . The condition ∂P/∂y = 0
determines the equal fraction point yE .

III. APPLICATIONS TO NUCLEAR MECHANICAL AND
CHEMICAL INSTABILITY AND THE LIQUID-GAS

PHASE TRANSITION

A. Mechanical and chemical instability

We now use the results to discuss features of the instability
of nuclei, both mechanical and chemical, and the liquid-gas
phase transition. The region of mechanical instability is
determined by the condition

dP

dρ

∣∣∣∣
y,T

= 0. (65)

Figure 1 shows the behavior of the pressure P (ρ, y, T ) as a
function of ρ for several values of the proton fraction y. All
curves are at T = 10 MeV. The range of y is from y = 0, or
pure neutron matter, to y = 1, or pure proton systems. The
point y = 1/2 corresponds to symmetric systems. Without
a Coulomb interaction, results would be symmetric about
the point y = 1/2, which would also be the point of equal
concentration in a liquid-gas phase coexistence. Including a
Coulomb interaction shifts the equal concentration point to a
proton fraction of y = yE(ρ) ∼ 0.415 with a momentum de-
pendence included in the interaction and to y = yE = 0.41057
without a momentum dependence. The y = yE curve for both
the momentum-dependent and momentum-independent cases
has the lowest pressure versus density dependence (i.e., the
lowest P for a given value of ρ at a given T ). A higher
or lower y raises the pressure at a given density. Both
momentum-dependent and momentum-independent Skyrme
interaction results are shown for several values of y and they
are distinguished by the thickness of the lines as described
in the figure caption. The momentum dependence increases
the pressure in the range shown (thick lines compared to thin
lines) and introduces the density dependence of yE(ρ) given

by Eq. (64). The mechanical instability densities for each y

curve at T = 10 MeV are the points where the P (ρ, y, T )
curve has zero slope, dP/dρ|y,T = 0. The total region of
mechanical instability is obtained by a similar calculation of
P (ρ, y, T ) at different T . For a one-component system or a
symmetric system the mechanical instability region is a curve
somewhat similar to an inverted parabola with its peak at the
critical point. Allowing for systems with different values of y

gives a two-dimensional boundary surface for the mechanical
instability region. The intersection of the surface with different

FIG. 1. Pressure P (ρ) vs ρ at T = 10 MeV for various proton
fractions y. The upper solid curve is for y = 0, the dashed curve
for y = 0.2, the dash-dotted curve for y = 0.5, the dotted curve for
y = 0.8, and the dash-tripled-dotted curve for y = 1. The thick curves
are for the momentum-dependent Skyrme force and the thin curves
are for the momentum-independent Skyrme force. The lower thick
solid curve is for y = yE(ρ) of Eq. (64) (yE = 0.4106–0.4214 for
ρ = 0–0.15 fm−3) with momentum-dependent Skyrme force and the
lower thin solid curve is for y = yE = 0.41057 with momentum-
independent Skyrme force.
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FIG. 2. Proton fraction y(ρ) for P = 0, 0.015, 0.05, 0.1, 0.2,
0.3, 0.4, and 0.5 MeV/fm3 from inside to outside at T = 10 MeV.
The solid curves are for the momentum-dependent Skyme force
and the dashed curves are for the momentum-independent Skyrme
force. The thin straight lines are yE(ρ) for the corresponding force.

y planes gives the one-dimensional boundary curve or line of
mechanical instability for each corresponding value of y.

Figure 2 shows the proton fraction y versus the density ρ

for different fixed values of the pressure at a fixed temperature
of T = 10 MeV. The loops and curves are determined by
solving P (ρ, y, T ) = P for the values of P listed in the
figure caption and at the temperature T = 10 MeV. Figure 2
is obtained from Fig. 1 by drawing a horizontal line and
looking at the points where the horizontal line intersects the
set of P (ρ, y, T ) curves. This intersection can be at one, two,
or three points. Besides the innermost closed loop (P = 0)
shown in Fig. 2, a vertical line exists at ρ = 0 for P = 0 for
all y = 0–1. Similarly, for the second inner closed loop at
P = 0.015 MeV/fm3, a nearly parallel vertical line is present
at very low density. The rightmost point on each curve and
the leftmost point on a closed loop with dρ/dy|P,T = 0 are
at the point of equal concentration yE . Also shown are two
thin lines for yE(ρ). The dashed thin line is at yE = 0.41057
and is horizontal or density independent and corresponds to
the momentum-independent interaction. The solid thin line
is nearly horizontal with a slight density dependence and
has yE(ρ) = 0.4106–0.4214 for ρ = 0–0.15 fm−3. Horizontal
turning points on each curve occur at dy/dρ|P,T = 0. For
each T , there is a curve P (ρ)|y,T with an inflection point

for a particular y, which we call yI . At the pressure P =
P (ρ, yI , T ), the closed loop in Fig. 2 just breaks at the point
of y = yE on the left low-density side and creates two new
horizontal turning points with ∂y/∂ρ = 0. Figure 2 also shows
the result that a momentum-independent force has closed loops
outside those of a momentum-dependent force and open curves
to the right of those of a momentum-dependent force with the
same pressure P .

The region of chemical instability [spinodal in µ(y)|P,T ] is
determined by the condition

dµq

dy

∣∣∣∣
P,T

= 0 (66)

for each component q = p or n. These conditions for either
protons or neutrons give the same relation since

ydµp + (1 − y)dµn = 1

ρ
dP. (67)

This general condition will be used later in our discussion of
results given in various figures. The result is also useful for
checking numerical results. The chemical instability condition
can be rewritten in terms of derivatives of the chemical
potential and pressure with respect to the density variable ρ and
proton fraction y. Namely, the chemical instability condition
can be obtained from the following relation [11]:

dP

dρ

∣∣∣∣
y,T

dµq

dy

∣∣∣∣
ρ,T

= dP

dy

∣∣∣∣
ρ,T

dµq

dρ

∣∣∣∣
y,T

. (68)

The expressions developed for the proton and neutron chemical
potentials are functions of the variables (ρ, y, T ). The equation
of state P (ρ, y, T ) can then be used to find their behavior in
terms of (y, P, T ) or (ρ, P, T ). The behavior with y of the
proton chemical potential µp(ρ, P, T ) → µp(y) and neutron
chemical potential µn(ρ, P, T ) → µn(y) at various values of
the pressure P and at a fixed temperature T = 10 MeV is
shown in Fig. 3. The chemical instability region boundaries
are determined by the points where the slope of each chemical
potential with respect to y is zero. Further discussion of
the chemical spinodal line is given in the next section. The
behavior of the proton chemical potential µp(ρ, P, T ) →
µp(ρ) and neutron chemical potential µn(ρ, P, T ) → µn(ρ)
with density ρ at various fixed values of the pressure P

and at a fixed temperature T = 10 MeV is shown in Fig. 4.
Figures 2 and 4 show some similarities in the behavior of the
plotted quantities (i.e., inner closed loops at low pressure, to
outer curves that almost form closed loops with increasing
pressure, to open curves with further increase in pressure).

B. Liquid-gas phase transition and the coexistence curve

For a one-component system the coexistence curve is a
line obtained by the familiar Maxwell construction, as already
noted. For a two-component system the coexistence region is
a surface obtained as follows. The condition for coexistence
between the two phases requires the proton chemical potentials
to be the same in two phases and, similarly, the neutron
chemical potentials must be the same in the two phases at a
given pressure and temperature. Note that the proton fraction
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FIG. 3. Chemical potential µp(y) and µn(y) for P =
0.015, 0.05, 0.1, 0.2, and 0.5 from top to bottom curves for protons
(solid curve) and from bottom to top curves for neutrons (dashed
curve) at T = 10 MeV. Thick curves are for the momentum-
dependent Skyrme force and the thin curves for the momentum-
independent Skyrme force.

need not be the same in each of the two phases. In fact,
the liquid phase should be a more symmetric system than
the gas phase because of the symmetry potential, as seen in
Refs. [10,11]. Figures 5–9 show features of the coexistence
curves together with the mechanical and chemical instability
curves.

The condition of phase coexistence corresponds to the
rectangular box geometrical construction in the chemical
potential plots of Fig. 3 or of Fig. 4. Namely, the chemical
potential equality condition µp(y1, P , T ) = µp(y2, P , T ) and
µn(y1, P , T ) = µn(y2, P , T ) leads to a rectangular box in
Fig. 3 with vertical sides connecting µp(y1, P , T ) to
µn(y1, P , T ) for side 1 and µp(y2, P , T ) to µn(y2, P , T ) for
side 2. The horizontal sides are the chemical potential equality
conditions at y1 and y2 for neutrons and for protons. The
rectangular box shrinks in its horizontal direction in µq-y
plots as the point of equal concentration, where the liquid and
gas phases have the same proton fraction, is approached (the
lowest point of the coexistence curve in Fig. 5).

Figure 5 shows various features of the coexistence region
in pressure versus proton fraction. The coexistence regions
are marked by the dark thicker solid line for a momentum-
dependent force and the dark thicker dashed line for a

FIG. 4. Same as Fig. 3 but for µp(ρ) and µn(ρ) vs ρ.

momentum-independent force. Also shown are associated
chemical instability regions as a thinner solid line and thinner
dashed line. The calculations are done at a temperature of
10 MeV. For a two-component system, the coexistence and
instability regions are two-dimensional surfaces in pressure,
temperature, and proton fraction as previously mentioned.
The pressure-proton fraction behavior shown is a consequence
of cutting these surfaces with a constant-temperature plane.
The results at T = 10 MeV are the loops shown. Other
temperatures can be obtained in a similar fashion. For a
momentum-independent force the chemical instability region
basically lies inside the coexistence curve and peaks at the
top of the coexistence loop, the critical points. The condition
dP/dy|T = 0 with d2P/dy2|T < 0 gives a critical point
on the coexistence curve and the condition dy/dP |T = 0
gives the point with maximal asymmetry at the leftmost and
rightmost points of the coexistence curve. The proton-rich
y � yE and neutron-rich y � yE loops are very asymmetric
because of the Coulomb interaction. The inclusion of velocity-
or momentum-dependent interactions leads to further mod-
ification of the coexistence curve and chemical instability
curves. This modification is easily seen in the figure by
comparing the dashed momentum-independent curves with
the solid momentum-dependent case. The figure shows that
the momentum-dependent interaction that was used has a
larger effect on the asymmetric proton-rich loop (y > yE),
significantly reducing its maximum pressure. The maximum of
the neutron-rich loop (y < yE) remains somewhat unchanged
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FIG. 5. Pressure P vs proton fraction y for coexistence loop
(thick curves) at T = 10 MeV. The solid curve is for the momentum-
dependent Skyrme force and the dashed curve is for the momentum-
independent Skyrme force. The thin curves are the chemical instabil-
ity boundary curves for each case of Skyrme interaction respectively.
For both momentum-dependent and momentum-independent cases
the maxima of the chemical instability loop and the coexistence
loop occur at the same point where the curves are tangent to each
other as discussed in the text. The point of equal concentration is
yE ∼ 0.415 for the momentum-dependent case and yE = 0.41057
for the momentum-independent case.

with a small increase. Another effect is to shift the two loops
inward toward the equal concentration point yE . A third effect
is to shift the lowest pressure point, which occurs at the equal
concentration yE , upward, with the value of yE remaining
nearly unchanged. Finally, it should be noted that the peaks
of the coexistence and chemical instability curves are at
the same point where the curves are tangent to each other.
We see no indication of a truncation effect in our model where
the coexistence curve intersects the chemical instability curve
before reaching the peak critical point. A truncation effect
gives a limiting pressure (below the maximum pressure of the
chemical instability curve) above which a liquid-gas phase
transition cannot take place [22].

Figure 6 shows plots in y versus ρ of phase coexistence
curves, instability boundary loops for both chemical and
mechanical instability, and features of ∂µq/∂ρ|y,T = 0 for
proton and neutrons. The thin curves are for a momentum-
independent interaction and the thick curves are for a
momentum-dependent interaction. The calculations are done

FIG. 6. The coexistence curves (dash-dotted line), chemical
instability boundary curves (solid line), and mechanical instability
boundary curves (dashed line) at T = 10 MeV. Also shown are the
∂µq/∂ρ = 0 curves for protons (dotted line) and for neutrons (short
dash line) at T = 10 MeV. The dash-triple-dotted line is for yE(ρ).
The thick lines are for the momentum-dependent Skyrme force and
the thin lines are for the momentum-independent Skyrme force. The
momentum-dependent loops are inside the momentum-independent
loops.

at a fixed temperature of 10 MeV. Some features common
to both cases are as follows: The mechanical and chemical
instability boundary curves are closed loops with the mechan-
ical loop (dashed line) inside the chemical instability loop
(solid line). These two loops touch at yE , the dash-triple-dotted
line. The concentration yE(ρ) increases slightly with ρ for
a momentum-dependent interaction whereas it is constant
(horizontal) for a momentum-independent interaction. The ρ

dependence of yE(ρ) come from the ρ dependence of the
effective mass and also from the x3 term, as can be seen in
Eq. (64). Also intersecting at these same points are ∂µp/∂ρ =
0 and ∂µn/∂ρ = 0. Different features and behaviors exist for
the two cases. The momentum-dependent case (thick curves)
has behaviors that are compressed in these y-ρ plots. The
coexistence curves have a different quantitative but similar
qualitative behavior in the two cases. The coexistence loop
(dash-dotted line) is outside the other two loops and tangent
to chemical instability loop at two points. These two points
are the critical points of low and high y, which are shown in
Fig. 5 where the two loops touch at the peak of each loop.
Comparing the two cases quantitatively, we see a compression
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FIG. 7. Chemical potential µp (upper panel) and µn (lower panel)
for various boundary curves at T = 10 MeV. The meanings of the
curves are the same as in Fig. 6.

of the results of the momentum-dependent case (thick curves)
with respect to the results of the momentum-independent case
(thin curves). The thick loops are inside of thin loops.

Figures 7 and 8 show chemical potentials for both proton
µp and neutron µn and pressure P along the various curves of
coexistence and chemical and mechanical instabilities. Curves
in Fig. 7 illustrate the behavior of each chemical potential with
density on the left panel and proton fraction on the right panel.

FIG. 8. Pressure P for various curves. The meanings of the curves
are the same as in Fig. 6.

FIG. 9. Chemical pressure µq vs pressure P for various boundary
curves. The left panel is for the proton µp and the right panel is for
the neutron µn. The meanings of the curves are the same as in Fig. 6.

Curves in Fig. 8 are pressure versus density on the left side
and pressure versus proton fraction on the right. The separate
pressure-proton fraction behavior in Fig. 8 was already shown
in Fig. 5, but now these two figures contain additional plotted
quantities, which are the ∂µq/∂ρ|y,T = 0 curves. The chemical
potential density curves in Fig. 7 have features similar to
those discussed in Fig. 6. Both momentum-dependent and
momentum-independent cases of Fig. 7 and Fig. 8 show
tangent points of the solid line and dash-dotted line. Also seen
in these figures is the compression or shrinking of various
curves for the momentum-dependent case with respect to the
momentum-independent case. The thick loops are inside of
thin loops. Figure 5 shows that the momentum-dependent
interaction leaves the point of equal concentration nearly
unchanged (i.e., from y = 0.4106 to y ≈ 0.415).

Figure 9 shows the behavior of the boundary curves of the
proton and neutron chemical potentials with pressure for both
momentum-dependent and momentum-independent Skyrme
interactions. A comparison of the thick curves (momentum-
dependent case) and thin curves (momentum-independent
case) shows that the qualitative behavior is the same. Quantita-
tive difference exist with the momentum-independent behavior
being an enlargement of the momentum-dependent shape. The
coexistence arc and the chemical instability loop meet at the
cusp. The behavior shown in these figures also confirms that
no truncation effects exist in our study.

IV. SUMMARY AND CONCLUSIONS

In this paper we studied the thermodynamic properties of
a two-component system of hadronic matter made of protons
and neutrons. Our analysis is based on a mean-field model
using a local Skryme interaction and includes both velocity-
or momentum-dependent and momentum-independent inter-
actions, besides volume, symmetry, and Coulomb effects.
We have used a somewhat simplified description of the
velocity dependence of the nuclear interaction. In particular we
have used a density-dependent effective mass approximation.
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Effective mass approximations are frequently used in physics
to capture the main effects and they lead to a simpler set of
equations and a corresponding simpler analysis. As noted we
still keep Coulomb and surface terms, which are present in
realistic nuclear systems. It is the interplay of volume, surface,
symmetry, and Coulomb and momentum-dependent terms that
is studied here. In fact, the interplay of such terms makes nuclei
a unique system for studying phase transitions and chemical
and mechanical instability in binary systems. We then applied
the basic thermodynamic relations that we developed to issues
related to the mechanical and chemical instability of nuclei
and features associated with a liquid-gas phase transition in
this system.

Because of the two-component nature of real nuclear
systems, the analysis involves a study of the behavior in
proton fraction, density, and temperature (y, ρ, T ) and also
proton fraction, pressure, and temperature (y, P, T ). We
studied systems with proton fraction y = 0–1, where y = 0
corresponds to a system of pure neutrons and y = 1 is for
a system of pure protons. An important system with large
neutron excess is a neutron star. The study of nuclear systems
with arbitrary proton/neutron ratios is also important for future
RIB experiments and for medium-energy collisions where
the liquid-gas phase transition is studied experimentally. In
a liquid-gas phase transition the liquid and gas phase have
different proton fractions because of symmetry and Coulomb
effects. The proton fraction in the liquid phase reflects a
more symmetric system than the gas phase where a higher
asymmetry exists. The process of producing a larger neutron
excess in the gas phase is referred to as isospin fractionation,
and a review can be found in Refs. [1,2,4–7]. The process is
modified somewhat by the Coulomb interaction, which leads
to proton diffusion of some protons from the liquid phase back
into the gas phase, as discussed in Refs. [10,11].

One of the unique aspects of nuclear systems is a velocity
or momentum dependence in the two-body interaction. Here,
we also study the role of this momentum dependence in the
thermodynamic properties of the system. Then, we extend
the discussion of its role to nuclear instabilities and phase
transitions and make a comparison with the case without
momentum dependence. A characteristic pattern of qualitative
similarities and quantitative differences appears between a

momentum- or velocity-dependent Skryme interaction and
a momentum- or velocity-independent Skryme interaction.
These patterns can be seen in Figs. 1–9 and are discussed
in detail in Sec. III, which we briefly summarizes now.

Figure 1 shows that the momentum dependence increases
the pressure at a given density. Figures 2 and 4 show proton
fraction versus density and chemical potential versus density
at several pressures and at a fixed temperature. The qualitative
features are the same between momentum-dependent and
momentum-independent forces. However, sizable quantitative
differences are present between the two types of interactions.
For example the solid loops (momentum-dependent interac-
tion) in proton fraction versus density of Fig. 2 are reduced
versions of the same dashed loops (momentum-independent
interaction). Similarly, the chemical instability boundaries for
a momentum-dependent Skryme interaction are found to be
reduced versions of the same boundaries for momentum-
independent Skyrme interactions, as can be seen from Fig. 5
and a comparison of the thin curves of Figs. 6–9 with the
corresponding thick curves of these figures. Figure 5 also
shows that momentum-dependent terms reduce the height of
the proton-rich asymmetric loop (y > yE) and leave the height
of the neutron asymmetric loop (y < yE) almost unchanged
while the lowest pressure point, which is the point of equal
concentration yE , is shifted upward with the value of yE

remaining nearly unchanged. From Fig. 5 we also see that
the chemical instability loops lie on top of each other for
protons and neutrons, as required by the general connection
of Eq. (67). Also seen is that the chemical instability loop is
inside the coexistence loop and tangent to it at the maxima of
each loop. The largest and smallest y in the coexistence loops
are shifted inward toward the point of equal concentration yE .
Figures 6 and 7 shows that the mechanical instability loop is
inside the chemical instability loop and tangent at the equal
proton fraction yE(ρ) without touching it at the peak.
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