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Complete set of polarization transfer coefficients for the 3He( p, n) reaction at
346 MeV and 0 degrees
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We report measurements of the cross-section and a complete set of polarization transfer coefficients for
the 3He(p, n) reaction at a bombarding energy Tp = 346 MeV and a reaction angle θlab = 0◦. The data are
compared with the corresponding free nucleon-nucleon values on the basis of the predominance of quasielastic
scattering processes. Significant discrepancies have been observed in the polarization transfer DLL(0◦), which
are presumably the result of the three-proton T = 3/2 resonance. The spin-parity of the resonance is estimated
to be 1/2−, and the distribution is consistent with previous results obtained for the same reaction at Tp =
48.8 MeV.
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I. INTRODUCTION

The search for resonances in the three-nucleon system with
isospin T = 3/2 has a long and interesting story. Evidence for
T = 3/2 (three-proton) resonance was found in the 3He(p, n)
reaction at the proton incident energy Tp = 48.8 MeV [1].
The maximum enhancement from the four-body phase space
was observed at the excitation energy Ex = 9 ± 1 MeV
with a width � = 10.5 ± 1 MeV in the three-proton system
(where Ex = 0 at the three-proton rest mass energy). Similar
enhancements have been observed for measurements at Tp =
24.9 MeV [2] and 197 MeV [3]. However, these studies have
attributed the observed enhancements to a 1S0 two-proton final
state interaction (FSI), rather than to a three-proton resonance.
In the impulse approximation, the (p, n) reaction occurs only
on the unpaired neutron in 3He and the two target protons
coupled to the 1S0 state act as spectator 2He. Thus, the
final state consists of three particles of p, n, and 2He, and
the three-body phase space calculations reasonably explain
the experimental enhancements from the four-body phase
space. Therefore, the interpretation of the enhancements in
the cross-section remains controversial.

Recently three-neutron T = 3/2 resonances have been
studied in the framework of configuration-space Faddeev
equations [4,5]. Unfortunately, these studies have indicated
the absence of three-neutron resonances. However, the calcula-
tions did not include three-nucleon force effects. Thus, if there
exists a three-nucleon resonance with T = 3/2, the properties
of this resonance would yield valuable information on the
T = 3/2 three-nucleon forces [6], on which experimental data
are scarce.
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In this article, we present the double-differential cross-
section and a complete set of polarization transfer coefficients
for the 3He(p, n) reaction at Tp = 346 MeV and a reaction
angle θlab = 0◦. Polarization transfer coefficients are sensitive
to the spin-parity Jπ of an excited state [7], and thus they
are sensitive to the presence of a resonance that has a fixed
Jπ , as was demonstrated for the spin-dipole resonances in
12N [8]. It should be noted that the polarization transfer
data for the 2H(p, n) reaction at the same incident energy
and θlab = 0◦–27◦ have been well described by the free
nucleon–nucleon (NN ) values in the optimum frame [9–11].
Thus, comparison of the measured 3He(p, n) data with the
corresponding free NN values enables us to assess whether
there exists a three-nucleon resonance. Significant differences
have been observed in our data that can be interpreted as
evidence for three-proton resonance effects. The resonance
properties have been discussed by comparing them with
distorted wave impulse approximation (DWIA) calculations.

II. EXPERIMENTAL METHODS

The data were obtained with a neutron time-of-flight
(NTOF) system [12] and a neutron detector and polarimeter
NPOL3 [13] at the Research Center for Nuclear Physics
(RCNP), Osaka University. The experimental setup and
procedure were similar to those reported previously [8,14,15].
Thus, in the following, we describe the detector system only
briefly and discuss experimental details relevant to the present
experiment.

A. Polarized proton beam

A high-intensity polarized ion source (HIPIS) at RCNP [16]
was used to produce the polarized proton beam. The beam
polarization direction was reversed every 5 s by selecting rf
transitions to minimize geometrical false asymmetries. The
beam was accelerated up to Tp = 346 MeV by using the AVF
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and Ring cyclotrons. One of seven beam pulses was selected
before injection into the Ring cyclotron, which then yielded a
beam pulse period of 431 ns. This pulse selection reduces the
wraparound of slow neutrons from preceding beam pulses. The
single-turn extraction was maintained during the measurement
to keep the beam polarization.

The superconducting solenoid magnets SOL1 and SOL2
located in the injection line from the AVF to Ring cyclotrons
were used to precess the proton spin direction. Each magnet
can rotate the direction of the polarization vector from the
normal N̂ into sideways Ŝ directions. These two magnets were
separated by a bending angle of 45◦, and the spin precession
angle in this bending magnet was about 85.8◦. Thus, the
longitudinal (L̂) and sideways (Ŝ) polarized proton beams
could be obtained at the exit of SOL2 by using the SOL1
and SOL2 magnets, respectively.

The beam polarization was continuously monitored by two
sets of beam-line polarimeters, BLP1 and BLP2. These two
polarimeters were separated by a bending angle of 98◦, allow-
ing simultaneous determination of all of the components of
the polarization vector including the longitudinal component.
Each polarimeter consists of four pairs of conjugate-angle
plastic scintillators. The �p + p elastic scattering was used as
the analyzing reaction, and a self-supporting CH2 target with
a thickness of 1.1 mg/cm2 was used as the hydrogen target.
The elastically scattered and recoiled protons were detected in
kinematical coincidence with a pair of scintillators. The typical
magnitude of the beam polarization was about 0.60.

B. 3He target

The 3He target was prepared as a high-pressure cooled
gas target by using a target system developed for a liquid H2

target [17]. This target was operated at temperatures down
to 25 K and at absolute pressures up to 2.5 atm. Both the
cell temperature and pressure were continuously monitored
during the experiment, and the typical areal density was about
11 mg/cm2. The gas cell windows were made of 12-µm-
thick Alamid foil. Background (empty-target) spectra were
also measured to subtract the contribution from the Alamid
windows. We also measured data with D2 in the target cell at
25 and 50 K under 2.5 atm, and compared these with the data
for a solid CD2 target having a thickness of 228 mg/cm2. After
correcting for the difference in areal density of the gaseous
and solid targets, these data agreed within the systematic
uncertainty associated with the areal density of the gaseous
target (�7%), suggesting that the performance of the gaseous
target is well understood.

C. Neutron spin rotation magnet and NPOL3

A dipole magnet (NSR magnet) located at the entrance
of the time-of-flight (TOF) tunnel was used to precess
the neutron polarization vector from the longitudinal L̂′
into normal N̂ ′ directions so as to make the longitudinal
component measurable with NPOL3. In the measurement of
the longitudinal component of the neutron polarization, the
NSR magnet was excited so that the precession angle for the

neutron corresponding to the energy transfer ωlab = 5 MeV
became 90◦. Corrections for the over- and underprecessions to
the lower and higher energy neutrons were made to account for
the mixing between the longitudinal and normal components.

Neutrons were measured by the NPOL3 system [13] with
a 70 m flight path length. The NPOL3 system consists
of three planes of neutron detectors. The first two planes
(HD1 and HD2), which act as neutron detectors and neutron
polarization analyzers, are made of 20 sets of one-dimensional
position-sensitive plastic scintillators (BC408) with a size of
100 × 10 × 5 cm3. The last plane (NC), which serves as a
catcher for the particles scattered by HD1 or HD2, is made of a
two-dimensional position-sensitive liquid scintillator (BC519)
with a size of 100 × 100 × 10 cm3. Each of the three neutron
detectors has an effective detection area of 1m2.

III. DATA REDUCTION

A. Neutron detection efficiency

The neutron detection efficiency of NPOL3 (HD1 and HD2)
was determined using the 7Li(p, n)7Be(g.s. + 0.43 MeV) re-
action at θlab = 0◦ whose cross-section is known at Tp =
80–795 MeV [18]. The result is 0.053 ± 0.003 where the
uncertainty comes mainly from the uncertainty in both the 7Li
cross-section (3%) and the thickness of the 7Li target (3%).

B. Effective analyzing power

The neutron polarization was analyzed by using the �n + p

scattering in either neutron detector HD1 or HD2, and the
recoiled protons were detected with neutron detector NC. The
effective analyzing power Ay;eff of NPOL3 was determined
by using polarized neutrons from the Gamow–Teller (GT)
2H(p, n)pp(1S0) reaction at Tp = 346 MeV and θlab = 0◦. We
used two kinds of polarized protons with normal (pN ) and
longitudinal (pL) polarizations. The corresponding neutron
polarizations at 0◦ become p′

N = pNDNN (0◦) and p′
L =

pLDLL(0◦). The resulting asymmetries measured by NPOL3
are

εN = p′
NAy;eff = pNDNN (0◦)Ay;eff, (1a)

εL = p′
LAy;eff = pLDLL(0◦)Ay;eff . (1b)

Because the polarization transfer coefficients for the GT
transition satisfy [19]

2DNN (0◦) + DLL(0◦) = −1, (2)

Ay;eff can be expressed by using Eqs. (1) and (2) as

Ay;eff = −
(

2
εN

pN

+ εL

pL

)
. (3)

Therefore, the Ay;eff value can be obtained without knowing a
priori the values of Dii(0◦), and the result is Ay;eff = 0.130 ±
0.004 where the uncertainty is statistical.

The DLL(0◦) values of the 2H(p, n)pp reaction at Tp =
305–788 MeV have been reported by McNaughton et al. [20];
the results are shown in Fig. 1 with open circles. The error
bars represent both statistical and systematic uncertainties.
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FIG. 1. (Color online) Polarization transfer DLL(0◦) for the
2H(p, n) reaction at 0◦ as a function of incident energy Tp . The
solid circle is the present result, while the open circles show the data
by McNaughton et al. [20]. The solid curve represents the fit with a
second order polynomial.

The solid curve is the result of fitting with a second order
polynomial. The DLL(0◦) value at Tp = 346 MeV, which is
determined from Eq. (1b) by using the Ay;eff value obtained,
is indicated in Fig. 1 by the filled circle. Our DLL(0◦) value is
consistent with the energy dependence predicted on the basis of
previous data, demonstrating the reliability of our calibrations.

C. Background subtraction

Observables for the 3He(p, n) reaction were extracted
through a cross-section-weighted subtraction of the observ-
ables for the empty target from the observables for the full
target as

σ3He = σFull − σEmpty, (4a)

D3He = DFull − f DEmpty

1 − f
, (4b)

where σ represents the cross-section, D is one of the polar-
ization transfer coefficients Dii(0◦), and f = σEmpty/σFull. The
fraction f was estimated by using the cross-sections based on
the nominal target thicknesses and integrated beam current.

Figure 2 shows a representative set of spectra as a function
of ωlab. In both the full and empty target spectra, narrow peaks
are observed at ωlab = 12 and 17 MeV and a broad bump
is centered near 22 MeV. The narrow peaks result from the
14N(p, n)14O(2+, 7.7 MeV) and 12C(p, n)12N(1+, g.s.) reac-
tions on the Alamid windows. The broad bump is mainly due to
the spin-dipole resonances in 12N excited by the (p, n) reaction
on 12C in Alamid. The signal-to-background ratio, integrated
up to ωlab = 50 MeV, is about 1.3, which is significantly
better than that obtained in the previous experiment (0.17)
at Tp = 197 MeV [3]. This is mainly thanks to the use of the
relatively thin Alamid foil for the target windows.

The filled histogram in Fig. 2 shows the subtraction results.
The background contributions including narrow peaks and

FIG. 2. (Color online) Energy transfer spectra with an empty
target (dashed histogram) and a target filled with 3He gas (thin-solid
histogram) for the (p, n) reaction at Tp = 346 MeV and θlab = 0◦.
The narrow peaks are from (p, n) reactions on the elements of the
Alamid windows. The solid thick-solid histogram shows the spectra
for the 3He(p, n) reaction obtained by the subtraction of Eq. (4).

the broad bump are successfully subtracted without adjusting
the relative normalization, demonstrating the reliability of our
measurements. The vertical dashed line represents the energy
transfer for the three-proton rest system. Because there is no
bound state in the three-proton system, the spectrum of the
3He(p, n) reaction shows a rise due to this energy transfer.

IV. RESULTS

Figure 3 shows the double-differential cross-section I and
the complete set of polarization transfer coefficients DNN (0◦)
and DLL(0◦) for the 3He(p, n) reaction at Tp = 346 MeV
and θlab = 0◦. The data for the cross-section are binned in
1 MeV intervals, while the data for Dii(0◦) are binned in
2 MeV intervals to reduce statistical fluctuations. The slope
of the cross-section spectrum near the threshold is primarily
determined by the phase space factor and is consistent with that
at Tp = 197 MeV [3]. Palarczyk et al. [3] reported phase space
calculations and showed that the increase in cross-section
near the threshold is reproduced better by three-body than
by four-body phase space calculations. This means that the
present 3He(p, n) reaction can be described by n(p, n)p
quasielastic scattering on the neutron in 3He, whereas the two
protons in the relative 1S0 state act as a spectator. Thus, the
measured polarization transfer coefficients are expected to be
well described by the corresponding free NN values.

The dashed curves in Fig. 3 represent the corresponding free
NN values with the FA07 phase shift solution [21] of the on-line
Scattering Analysis Interactive Dial-in (SAID) Facility [22].
The uncertainty in the free NN values was evaluated by using
the modern nucleon-nucleon NN potentials of AV18 [23],
CD Bonn [24], Nijmegen 93 [25], and Paris [26]. The results
are represented in Fig. 3 by the shaded bands. The measured
DNN (0◦) values are close to the corresponding free NN values.
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FIG. 3. (Color online) The double-differential cross-section I

(top panel) and complete set of polarization transfer coefficients,
DNN (0◦) (middle panel) and DLL(0◦) (bottom panel), for the
3He(p, n) reaction at Tp = 346 MeV and θlab = 0◦. The dashed
curves are the corresponding free NN values with the FA07 phase
shift solution [21]. The shaded bands represent the uncertainty in the
free NN values estimated by using the up-to-date NN potentials, as
described in the text.

This supports the predominance of quasielastic scattering
processes in this reaction. However, significant discrepancies
are observed in DLL(0◦). The discrepancies at ωlab >∼ 30 MeV
might be due to the energy dependence of Ay;eff , which was
neglected in the present analysis.

The present analysis was based on the assumption of simple
quasielastic scattering, and thus the discrepancies at ωlab
<∼30 MeV do not necessarily evidence T = 3/2 three-proton
resonance. One possibility is the effects of the D state in
3He. The deuteron D-state effects for 2H(p, n) at the same
incident energy were studied by Sakai et al. [9] using the plane
wave impulse approximation code developed by Itabashi,
Aizawa, and Ichimura [27]. They concluded that the effects
on the cross-section at θlab = 0◦ are negligible at small energy
transfers where the 1S0 FSI process is dominant. We performed
the calculations using the same code to investigate the D-state
effects on the polarization transfer coefficients at energy
transfers up to 50 MeV. The D-state contributions to the
cross-section become appreciable beyond the FSI region as
increasing the energy transfer. However, their effects on the
polarization transfer coefficients are very small, namely, less
than 0.04 at ωlab < 50 MeV. Therefore, we expect that the
D-state effects on DNN (0◦) and DLL(0◦) for 3He(p, n) are also
small, and thus it is interesting to investigate the discrepancies
by assuming the effects due to the T = 3/2 three-proton
resonance contribution. In the following, we performed DWIA
calculations to determine the Jπ and strength of the resonance.

V. DISCUSSION

A. DWIA calculations

We performed full microscopic DWIA calculations by
using the computer code DW81 [28], which treats the knock-on
exchange amplitude exactly. The final states with Jπ = 1/2±
and 3/2± were investigated [5]. The one-body density matrix
elements for the transitions to these states by 3He(p, n) were
obtained with the shell-model (SM) code OXBASH [29]. The
SM calculations were performed in the 0s − 0p − 1s0d −
0f 1p configuration space by using the phenomenological
effective interaction optimized for A = 3 by Hosaka, Kubo,
and Toki [30]. For each transition, only the lowest-energy state
was investigated by DWIA calculations because the Dii(0◦)
values are primarily determined by Jπ [7]. The single-particle
radial wave functions were assumed to have a harmonic
oscillator shape with the range parameter b = 1.67 fm [31].
The optical model potential (OMP) was deduced from the
global OMPs optimized for 4He in the proton energy range
Tp = 156–1728 MeV [32]. The NN t matrix parameterized
by Franey and Love [33] at 325 MeV was used.

The DWIA calculation results are summarized in Table I.
To reproduce the observed Dii(0◦) values, the DNN (0◦)
value of the resonance should be close to the observed
value of ∼ − 0.2, whereas the DLL(0◦) value should be
significantly larger than the observed value of ∼ − 0.3. This
constraint is satisfied only in the case of Jπ = 1/2−. Thus,
in the following, we deduce the strength distribution of the
resonance by assuming Jπ = 1/2−.

B. Resonance contributions

Here we assume that the observed 3He(p, n) cross-section
comprises an incoherent sum of contributions from quasielas-
tic scattering and the resonance with Jπ = 1/2−. Thus,
the observed Dii(0◦) values can be expressed by using the
observed cross-section σ (0◦) as

DNN (0◦)

= σ 1/2−
(0◦)D1/2−

NN (0◦) + (σ (0◦) − σ 1/2−
(0◦))DQES

NN (0◦)

σ (0◦)
,

(5a)

DLL(0◦)

= σ 1/2−
(0◦)D1/2−

LL (0◦) + (σ (0◦) − σ 1/2−
(0◦))DQES

LL (0◦)

σ (0◦)
,

(5b)

TABLE I. DWIA predictions of the polarization trans-
fer coefficients DNN (0◦) and DLL(0◦) for the 3He(p, n)3p

reaction at Tp = 346 MeV and θlab = 0◦.

J π DNN (0◦) DLL(0◦)

1/2+ −0.17 −0.56
1/2− −0.11 0.18
3/2+ −0.15 −0.65
3/2− 0.16 −0.33
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FIG. 4. (Color online) (a) The estimated J π = 1/2− T = 3/2
resonance cross-section (solid histograms and curves) compared with
the total cross-section (solid circles) for the 3He(p, n) reaction at
Tp = 346 MeV and θlab = 0◦. The thick and thin lines are the results
of fitting for ωlab < 30 and 50 MeV, respectively. (b) The DNN (0◦)
values including the J π = 1/2− resonance contributions with Eq. (5)
(solid histogram) compared with the experimental data (solid circles).
The band represents the uncertainty of the fitting for ωlab < 30 MeV
due to the uncertainty of the experimental data. The dashed curve
represents the corresponding free NN values with the FA07 phase
shift solution [21]. (c) Same as panel (b), but for DLL(0◦).

where D
1/2−
ii (0◦) and D

QES
ii (0◦) are the Dii(0◦) values for the

resonance with Jπ = 1/2− and the quasielastic scattering (free
NN scattering), respectively, and σ 1/2−

is the cross-section of
the resonance. The shape of σ 1/2−

is described by a Bright–
Wigner (Lorentz) function, and threshold (phase space) effects
are taken into account. The center ω0, width � (full width at
half maximum), and amplitude of σ 1/2−

are determined to
satisfy Eq. (5) by using the D

1/2−
ii (0◦) and D

QES
ii (0◦) values

evaluated from the DWIA calculations and free NN values,
respectively.

The thick and thin lines in Fig. 4 show the results of fitting
for ωlab < 30 and 50 MeV, respectively. The solid histograms
and curves in the top panel represent the σ 1/2−

values. The
solid histograms in the lower two panels are the Dii(0◦)
values evaluated by Eq. (5). The shaded bands represent the
errors of the fitting results for ωlab < 30 MeV due to the
uncertainty of the experimental data. The dashed curves show
the D

QES
ii (0◦) values of the quasielastic scattering contribution.

By considering the contributions from Jπ = 1/2−, both the
DNN (0◦) and DLL(0◦) values are well reproduced.

The center of σ 1/2−
is almost independent of the fitting

region, and the results are ω0 = 16 ± 1 and 17 ± 1 MeV for
the fitting regions of ωlab < 30 and 50 MeV, respectively.
However, the width depends on the fitting region and the results
are � = 11 ± 3 and 19 ± 6 MeV for ωlab < 30 and 50 MeV,
respectively. In the case of ωlab < 50 MeV, the large � value
of 19 MeV makes it difficult to interpret this contribution
as a resonance. On the contrary, if we adopt the results for
ωlab < 30 MeV where the systematic uncertainties of the data
coming from the energy dependence of Ay;eff are small, the
interpretation as a resonance is reasonable due to the relatively
narrow width of 11 MeV. If we choose the excitation energy
Ex = 0 of the three-proton system to be at the three-proton
rest mass energy, ω0 = 16 MeV corresponds to Ex = 10 MeV.
Thus, it is very interesting to note that our results are consistent
with the results of Ex = 9 ± 1 MeV and � = 10.5 ± 1 MeV
for a possible T = 3/2 resonance observed by the same reac-
tion [1]. Because the present analyses have been based on the
simple quasielastic scattering mechanism, detailed theoretical
investigations are highly required to confirm the discrepancies
observed in DLL(0◦) as the three-proton resonance effects.

VI. SUMMARY AND CONCLUSION

The cross-section and a complete set of polarization transfer
coefficients were measured for the 3He(p, n) reaction at
Tp = 346 MeV and θlab = 0◦. The data are compared with the
corresponding free NN values under the assumption that the
quasielastic scattering processes are predominant. Significant
deviations were observed from the corresponding NN values
in the polarization transfer DLL(0◦). These discrepancies can
be attributed to the three-nucleon T = 3/2 resonance whose
spin-parity Jπ is estimated to be 1/2− in DWIA calculations.
The center ω0 and the width � of the resonance are estimated
to be ω0 = 16 ± 1 MeV and � = 11 ± 3 MeV by using the
data at ωlab < 30 MeV, the systematic uncertainties of which
are small. The estimated strength distribution is consistent
with previous results obtained from the same reaction at Tp =
48.8 MeV. However, the present data are not conclusive evi-
dence for the three-nucleon resonance and call for theoretical
calculation that incorporates the Coulomb interaction and the
T = 3/2 three-nucleon forces to settle the interpretation of the
present data.
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