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Exit doorway model for nuclear elastic breakup of weakly bound projectiles
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We develop the exit doorway model for elastic breakup of loosely bound projectiles. We argue that this
model could, in principle, supply an alternative simplified version of the continuum discretized coupled-channels
(CDCC) model. We show that the cross section for elastic breakup can be generally written as a product of the
cross section for inelastic excitation times a factor containing the excitation energy and width of the exit doorway
and is generally bombarding energy dependent. The excitation energy of the exit doorway is identified with the
Q value of the breakup channel. The width of the exit doorway is a measure of the energy range of the continuum
that is discretized. We apply the theory to derive closed expressions for the nuclear breakup cross sections in the
adiabatic limit using the Austern-Blair theory. We demonstrate the approximate validity of the scaling law that
dictates that the nuclear breakup cross section scales linearly with the radius of the target. We also compare our
results for the nuclear breakup cross section of 11Be, 8B, and 7Be on several targets with recent CDCC calculation.
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I. INTRODUCTION

The breakup of nuclei is a common occurrence when
the bombarding energy is high enough and/or the binding
energies are sufficiently low. In the case of weakly bound
nuclei the threshold for breakup is small and more so for
bound unstable nuclei. The mechanism of breakup is assumed
to consist of elongating the projectile, through the action of the
interaction, which eventually leads to the production of two or
more fragments. This interaction is composed of a short-range
nuclear piece and a longer-range electromagnetic (EM) one.

Two distinct processes occur in the breakup reaction. The
first is what is known as elastic breakup, where the target
nucleus is left in its ground state. The second, commonly called
inelastic breakup, the target nucleus may be excited and/or
one of the fragments is captured by the target. This latter
process is referred to as incomplete fusion. Several articles
have been written on the this decomposition of the breakup
cross section [1–3]. In the present article we concentrate our
discussion on the elastic breakup of loosely bound nuclei.
A lot of effort has been devoted in the past to the elastic
breakup of the deuteron (see, e.g., Ref. [4]). The elastic
breakup process is quite important as it supplies a mean to
extract important structure information about the fragmenting
nucleus. In particular, the knowledge of the electromagnetic
component of the elastic breakup cross section can be used to
obtain the B(Eλ) values of the exotic nucleus. To isolate the
EM elastic breakup, also called electromagnetic dissociation
cross section, one has to subtract from the data on elastic
breakup the nuclear contribution.

A debate has been going on in the literature concerning
the way the nuclear part of the elastic breakup cross section
depends on the mass of the target nucleus that supplies the
interaction. In most references [5–7], it is assumed that the
dependence goes as the cubic root of the mass number. In
Ref. [8], however, it is claimed that this dependence is more
like linear! In a recent article [9], through a careful continuum
discretized coupled-channels (CDCC) calculation, the former

dependence (A1/3) has been established, which corroborates
the contention that the nuclear breakup cross section should
follow the prediction of the Serber model [10].

It is interesting to compare the numerical CDCC calculation
alluded to above with those of simpler analytical models.
Specifically, the Austern-Blair adiabatic theory for inelastic
scattering comes to mind. If one assumes that the breakup
proceeds through a so-called exit doorway [11–13], then the
process can be treated as an inelastic excitation. The idea of exit
doorway has been used in the case of the influence of breakup
on fusion [11,12] and in the excitation of giant resonances [13]
with success. In a very recent article [14] a comparison of a
preliminary CDCC calculation for the breakup cross section
of the system 6He+27Al at low bombarding energies with a
simple formula derived by us using the Austern-Blair model
showed that such an idea is quite reasonable and encouraged
us to pursue the matter further. We do this in the present
article, where we fully develop the Austern-Blair model for
the nuclear elastic breakup reaction cross section assumed to
proceed through the excitation of an exit doorway [11–13].

II. EXIT DOORWAY MODEL OF ELASTIC BREAKUP

The exit doorway concept has been used in the development
of reaction theories involving the the excitation of a doorway
in the final state, in contrast to the conventional cases where
such resonances are populated in the entrance channel [15]. In
the breakup reactions of halo nuclei one may envisage that the
process proceeds through the breakup exit doorway (dipole,
quadrupole, etc.) into the continuum. The exit “doorway” here
is not a resonance but rather a special threshold state. As
such, the detailed description of the exclusive reaction, where
the final channels are unspecified, will necessarily contain the
full information about the exit doorway (its energy, width,
etc.). This is the case that was encountered in the theory of
the excitation of multiple giant resonances [13] and of the

0556-2813/2008/77(5)/054609(6) 054609-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.77.054609
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influence of the threshold “doorway” on the fusion of halo
nuclei [11]. In the current article we will be content with the
inclusive quantity of the integrated breakup cross section and
the only reference to the exit doorway is made implicitly as
a final state with complex excitation energy that has to be
populated for breakup to occur. In an electromagnetic process,
the exit doorway is defined simply as

|dµ〉 = NOµ|0〉, (1)

where the operator Oµ is the excitation operator (dipole,
quadrupole, etc.) supplied by the EM field and |0〉 is the ground
state of the halo nucleus. The factor N is a normalization con-
stant. The above definition of the exit doorway is commonly
used to describe, e.g., giant resonances. Here we generalize its
use to describe the threshold excitation, which is coupled to
the continuum. We also consider the operator O to represent
a more general one containing both the EM and nuclear parts.

The full Hamiltonian that describes the colliding ions can
be written as

H = H0 + F, (2)

where H0 = h0 + K + V = h0 + H (0) is diagonal in open
channel space, h0 is the intrinsic part that describes the
structure of the projectile and the target nuclei, K is the kinetic
energy operator, and V is the optical potential that contains
the complex nuclear plus the Coulomb parts. The operator F

describes the coupling among the open channels.
The intrinsic Hamiltonian h0, which for simplicity is taken

here to represent the excitable projectile nucleus with the target
considered structureless, is now written as

h0 = |φ0〉E0〈φ0| + |d〉Ed〈d| +
∑

i

|i〉Ei〈i|

+
∑

i

[|d〉�i〈i| + |i〉�∗
i 〈d|] +

∑
ij

[|i〉�ij 〈j | + cc]. (3)

The first three terms on the right-hand side above refer to
the ground, exit doorway, and discretized continuum states,
respectively. The fourth term couples the doorway to the
discretized continuum states, and the last term represents the
continuum-continuum coupling. If we remove the doorway
from the above we get the CDCC intrinsic Hamiltonian

h0 = |φ0〉E0〈φ0| +
∑

i

|i〉Ei〈i| +
∑

i

[|φ0〉�i〈i| + |i〉�∗
i 〈φ0|]

+
∑
ij

[|i〉�ij 〈j | + cc]. (4)

The exit doorway modulated CDCC Hamiltonian, Eq. (2),
is our subject of study here. A full development of this new
CDCC will be left for a future work. Here we concentrate
our effort on understanding the consequence of reaching the
breakup continuum from the entrance channel only through
the exit doorway |d〉. For this purpose we ignore the last term
in Eq. (2) and remind ourselves that, whereas |φ0〉 and |i〉 are
eigenstates of h0, |d〉 is not.

The full doorway-modulated CDCC equations can be
obtained as follows. The full Schroedinger equation of the

colliding system is

[E − (H0 + F )]|ψ〉 = 0, (5)

which when projected onto the different channels gives

(
E − E0 − H

(0)
0

)
ψ+

0 =
∑

i

F0iψ
+
i (6)

(
E − Ei − H

(0)
i

)
ψ+

i = Fi0ψ
+
0 . (7)

We now invoke the exit doorway hypothesis,

F0i = F0dα
∗
di Fi0 = Fd0α

∗
id (8)

The overlaps αdi and α∗
id and can be easily obtained from

Eq. (2)(without the last term) [11,13],

|αdi |2 = (�↓/2π )
/[

(Ei − Ed )2 + (
�

↓
d

/
2
)2]

(9)

where �↓, the exit doorway spreading width describing its
average coupling to the continuum states of the projectile, is
related to the �i factors through

�↓ = 2π |�i |2ρ, (10)

where |�i |2 is an average value and ρ is the average density of
discretized continuum states in the vicinity of d. Clearly the
need to the continuum-continuum coupling terms would be
very important if exclusive cross sections are to be calculated,
because through them (and through the doorway) the elastic
channels coupling to the breakup channel continuum can be
fully acounted for. Including the c-c coupling term, would
result in a more complicated expression for |αdi |2 than that of
Eq. (9).

Equations (5) and (6) can be recast into the following, after
setting E0 = 0 and Fij = 0,

[
E − H

(0)
0

]
ψ

(+)
0 = αdiF0dψ

(+)
i (11)[

E − Ei − H
(0)
i

]
ψ

(+)
i = α∗

idFd0ψ
(+)
0 . (12)

The breakup cross section, within the exit doorway model
then becomes

σbup =
∑

i

ki

k0
|αdi |2|〈ψ (−)

i |Fd0|ψ (+)
0 〉|2 (13)

≈ |kd |
k0

|〈ψ (−)
d |Fd0|ψ (+)

0 〉|2, (14)

where the sum over i has been performed by appropriate
contour integration over Ei . Note that the Q value in ψ

(−)
d

is complex owing to the nonzero width of the exit dooway
whose energy is Ed − i�

↓
d /2. A simple way to see how the

complex Q value arises is to eliminate ψ
(+)
i in Eq. (5) in

favor of ψ
(+)
0 by employing Eq. (6), which gives ψ

(+)
i =

[1/E − Ei − H
(0)
i + iε]Fi0ψ

(+)
0 . With this Eq. (5) bec-

omes {E − E0 − H
(0)
0 − ∑

i F0i [1 /E − Ei − H
(0)
i + iε]Fi0}

ψ
(+)
0 = 0. With the exit doorway hypothesis,
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the polarization potential contribution,
∑

i F0i[1/

E − Ei − H
(0)
i + iε]Fi0 becomes

∑
i

F0d

�↓/2π

(Ei − Ed )2 + (�↓
d /2)2

1

E − Ei − H
(0)
i + iε

Fd0

≈ F0d

1

E − (Ed − i�
↓
d /2) − H

(0)
d + iε

Fd0.

This suggests defining the exit doorway scattering-wave
function by setting H

(0)
i = H

(0)
d such that Eqs. (10) and (11)

become (
E − H

(0)
0

)
ψ

(+)
0 = F0dψ

(+)
d (15)[

E − (Ed − i�
↓
d /2) − H

(0)
d

]
ψ

(+)
d = Fd0ψ

(+)
0 . (16)

The “inelastic” cross-section is thus given by Eq. (13) above
with the aforementioned proviso that the Q value of the excited
state is complex. The width of this Q value is a measure of the
continuum contribution to the coupling.

At this point we comment on the inclusion of the
continuum-continuum coupling, namely the last term in
Eq. (3). In this situation the amplitudes αdi are obtained by
matrix diagonalization and, among other things, the resulting
overlap probability |αdi |2 deviates from the Breit-Wigner form
of Eq. (8). A possible form that may incorporate some of the
c-c effects is a Lorentzian:

|αdi|2 = 2

π

�
↓
d E2

i(
E2

i − E2
d

)2 + �
↓2
d E2

i

The above form results in an equation for ψ
(+)
d with a

modified form factor that depends on the position and width
of the exit doorway Ṽd0 ≈ f (Ed, �

↓
d )Vd0, where f (Ed, �

↓
d ) is

generally complex. Accordingly the cross section would be
σ bup = |f (Ed, �

↓
d )|2σDWBA. In the limiting case of �d � Ed ,

the factor f (Ed, �
↓
d ) is approximately given by (1 − i�

↓
d

2Ed
)1/2,

resulting a cross section given by σ ≈
√

1 + ( �
↓
d

2Ed
)2 · σDWBA. In the

case of coupling to the breakup continuum considered here,
the other limit, �↓

d � Ed is more appropriate, as Ed is roughly
given by the Q value of the breakup (�1 MeV), whereas �

↓
d

measures the extent in continuum excitation the discretization
is performed (≈10 MeV).

The function f (Ed, �
↓
d ) can be calculated in such a

situation, and the result is to add to the factor i�
↓
d

2Ed
a contribution

arising from the integration along the imaginary excitation
energy axis of the exit doorway Green function weighted
by the Lorentzian (see Ref. [12], Eq. A10). The existence
of this integral in |f (Ed, �

↓
d )|2 renders this factor energy

dependent. For simplicity we leave this energy-dependent
factor out in this article. The important point we are making
here is that a DWBA calculation with complex excitation
energy in the final state, and with a form factor of the type
f (Ed, �

↓
d )Vd0, should be an adequate candidate to treat the

elastic breakup process. Such exit doorway treatment of the
elastic breakup of the deuteron has been reported earlier
in Refs. [16,17], following a hitherto not-so-well-known

treatment of the photodistintegration of the deuteron advanced
by Schwinger [18].

The halo nucleus 11Be is in fact quite similar to the deuteron
insofar as the dipole response is concerned; the existence
of a threshold peak of a predominantly dipole nature in the
dissociation spectrum. This peak is then taken to be the exit
doorway [16]. Of course, in contrast to the deuteron, 11Be also
exhibits the usual giant dipole resonance at about 20 MeV of
excitation enegy. It was argued [16,19] that in such one-neutron
halo nuclei, one may speak about the coherent production of
these “soft” and “hard” dipole modes in the context of what
might be called a nuclear instance of Schödinger cat state in
halo nuclei [16].

In the following we take the exit doorway to be excited
states of different multipolarities, defined as in Eq. (1),
and with complex energies and use the Austern-Blair sud-
den/adiabatic theory [20,21]. We employ the distorted-wave
Born approximation (DWBA) for ψ

(+)
0 and ψ

(−)
d . Within the

adiabatic approximation, the complex Q value in the final
channel distorted wave is ignored, and the only reference to
the exit doorway in what follows resides in the important factor

|f (Ed, �
↓
d )|2 =

√√√√1 +
(

�
↓
d

2Ed

)2

(17)

that multiplies the cross section.

III. THE AUSTERN-BLAIR THEORY

The elastic breakup cross section and its dependence on the
target masss can be analyzed within the DWBA. In Ref. [4],
the DWBA was used to calculate the proton spectrum in the
deuteron elastic breakup in combined EM and nuclear field of
a gold target. In Ref. [16] the exit doorway model was used
to study some features of the deuteron photodissociation cross
section (see discussion in the previous section). Here we use
the DWBA to obtain the angle- and energy-integrated total
nuclear elastic breakup cross section for several loosely bound
nuclei. If we treat the elastic breakup as an inelastic multipole
process, the amplitude TLM = 〈ψ (−)

d |Fd0|ψ (+)
0 〉 would look like

TLM =
∑
lf

(2lf + 1)1/2(i)li−lf 〈lf L; 00|li0〉

〈lf L; −MM|li0〉RL
lf ,li

(kf , ki)

e
iσlf

(kf )+σli
(ki )Ylf ,−M (θ, 0). (18)

The unpolarized cross section of the dipole transition is then
obtained from the expression

dσL/d� = µ

(2πh̄2)2

kf

ki

M=L∑
M=−L

|TLM|2. (19)

The radial integrals RL
lf ,li

(kf , ki) for pure nuclear excitation
are given by

RL
lf ,li

(kf , ki) = (4π/kf ki)
∫

drflf (kf , r)FL(r)fli (ki, r),

(20)
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where the form factors FL(r) are given by the following
expressions for the monopole L = 0, dipole L = 1, and
quadrupole excitations L = 2 [22,23],

F0(r) = −δ
(N)
0

[
3V (r) + r

dV (r)

dr

]
(21)

F1(r) = −δ
(N)
1

(
3

2

) (
�RP

RP

) [
dV (r)

dr
+

(
R

3

)
d2V (r)

dr2

]
(22)

F2(r) = −δ
(N)
2

dV (r)

dr
, (23)

with �RP = Rn − Rp being the difference between the rms
radii of the neutron and proton distributions of the projectile
and V (r) the elastic-scattering channel optical potential. The
quantities Rn and Rp can be extracted from the analysis of
Refs. [24–26]. In Ref. [26] a power expansion in �RP was
employed in the analysis of α-inelastic scattering from neutron
skin nuclei.

In the adiabatic limit, ki = kf = k, and for large orbital
angular momenta, lf = li = l, the radial integral can then be
evaluated in closed form following the procedure of Austern
and Blair [20,21]. For the dipole and quadrupole cases we have

R
(1)
l,l (k) = −iδ

(N)
1 (πh̄2/µ)

(
3

2

)(
�RP

RP

)

×
[
dS

(N)
l (k)

dl
+

(
R

3

)
d2S

(N)
l (k)

dl2

]
(24)

R
(2)
l,l (k) = −iδ

(N)
2 (πh̄2/µ)

dS(N)(k)

dl
, (25)

where δ
(N)
L is the nuclear deformation length given by δ

(N)
L =

β
(N)
L RP with β

(N)
L being the nuclear deformation parameter

and RP is the radius of the excited projectile.
The above expression for the radial integrals can be

associated with the nuclear elastic breakup radial integral. Thus
we can obtain analytical expression for the integrated nuclear
breakup cross section by simply integrating the cross-section
formula, Eq. (2). In performing this calculation the angular
momentum coupling coefficients are evaluated exactly and the
sum over li can be performed by putting the Coulomb phase
shifts both as functions of lf ≡ l. The amplitude of Eq. (13) is
given now by

TLM = i
√

2
∞∑
l=0

(2l + 1)1/2RL
l,l(k)e2iσl (k)Yl,−M (θ, 0). (26)

with the condition that TLM = 0 if L + M is odd. The
integrated pure nuclear breakup cross section containing dipole
and quadrupole contributions then becomes the following:

σ bup =NDW|f (Ed, �
↓
d )|2

{[
δ

(N)
1

]2
(

3

2

)2 (
�RP

RP

)2

+ [
δ

(N)
2

]2

}

×
∞∑
l=0

(2l + 1)

∣∣∣∣dS(N)(k)

dl

∣∣∣∣
2

, (27)

where δ
(N)
L is the nuclear deformation length given by δ

(N)
L =

β
(N)
L RP with β

(N)
L being the nuclear deformation parameter

and RP is the radius of the excited projectile and where terms

proportional to the second derivative of S
(N)
l (k) have been

dropped and the usual, energy-dependent, DWBA normaliza-
tion coefficient, NDW, is indicated.

A simple estimate of the above formula can be made by
approximating the sum in l by an integral in λ = l + 1/2:

∞∑
l=0

(2l + 1)

∣∣∣∣dS(N)(k)

dl

∣∣∣∣
2

→
∫ ∞

0
2λ

∣∣∣∣dS(N)(k)

dλ

∣∣∣∣
2

dλ = I.

(28)

Assuming a real nuclear S matrix that depends on λ through
[1 + exp(λ − �)/�]−1 then the derivative of S would peak
around the grazing angular momentum � with a width given by
�. The integral (28) is then obtained as I = �

3�
for �/� � 1.

Using � = kR � = ka, with R = r0pA
1/3
p + r0tA

1/3
t and a

being the diffuseness of the optical potential we find the simple
formula for σ :

σ bup = NDW|f (Ed, �
↓
d )|2

×
{[

δ
(N)
1

]2
(

3

2

)2(
�RP

RP

)2

+ [
δ

(N)
2

]2

}
R

3a
. (29)

The quantity |f (Ed, �
↓
d )|2 in the above two equations is a

constant normalization factor that depends on the exit doorway
nature of the excited state and can be calculated following the
work of Ref. [12] (see discussion above). In the application
to follow, we introduce the following notation for the cross
section:

σ bup = c

{[
δ

(N)
1

]2
(

3

2

)2 (
�RP

RP

)2

+ [
δ

(N)
2

]2

}
R

3a
, (30)

where we have introduced the overall normalization c,

c = NDW|f (Ed, �
↓
d )|2. (31)

It is clear that σ bup depends linearly on the radius of the
target and, more importantly, on the square of the nuclear
dipole and quadrupole deformation lengths. Thus, the A

1/3
T

dependence is established.
Several models have been developed for the calculation

of the low-lying multipole strength. Semianalytical, albeit
realistic, models based on the use of the asymptotic normal-
ization coefficient of the bound-state wave function of the
loosely bound nucleus, in conjunction with the separation
energy of the removed nucleon and on its scattering length,
have been shown to account well for dB(Eλ)

dE
distributions for

several one-nucleon halo nuclei [27,28]. In the calculation
to follow, however, we use the cluster model to calculate
deformation lengths for the different multipolarities [29–31],
which gives a bit larger values of B(Eλ), and correspondingly
larger deformation lengths, than those of Refs. [27,28]. The
cluster model assumes that the projectile is composed of two
clusters, a core of mass and charge Ac and Zc and a “valence”
particle with Ab and Zb. The separation energy is denoted
by Q, the Q value of the breakup. Calling the spectroscopic
factor of finding the cluster configuration in the ground state
of the projectile, S one obtains the following expression for
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the distribution of B(Eλ) in the excitation energy Ex [29,31].

dB(Eλ)

dEx

= SN2
0

2λ−1

π2
(λ!)2(2λ + 1)

(
h̄2

µcb

)λ

× Q1/2(Ex − Q)λ+1/2

E2λ+2
x

×
[

ZbA
λ
c + (−1)λZcA

λ
b

Aλ
p

]2

e2, (32)

where N0 is normalization factor that takes into account the
finite range, r0 of the c + b potential. The latter is assumed to be
such as to give a Yukawa type wave function at large distances,
ψbc(r) = N0

√
K/(2π ) e−Kr

r
with K =

√
2µbcQ/h̄2 and N0 =

eKr0√
1+Kr0

. It is easy to obtain B(Eλ) by simply integrating of
Eq. (32) and employing the expression:∫ ∞

0

yλ+ 1
2

(y + 1)2λ+2
dy = (−)2λ+3π

(2λ + 1)!sin
[(

λ + 3
2

)
π

]
×

2λ+1∏
k=1

(
λ + 3

2
− k

)
, (33)

We get for the cluster-model deformation lengths δ2
1 and δ2

2
the following:

[
δ

(N)
1

]2 =
(

2π

3

AP

ZP NP

)2
B(E1)

e2
= N2

0 S

(
2πAP

3ZP NP

)2

× 3

16π

h̄2

µbc

(
AcZb − AbZc

AP

)2 1

Q
, (34)

[
δ

(N)
2

]2 =
(

4π

3ZP RP

)2
B(E2)

e2
= N2

0 S

(
4π

3ZP RP

)2

× 5

32π

(
h̄2

µbc

)2 (
A2

cZb + A2
bZc

A2
P

)2
1

Q2
, (35)

where p(= b + c) refers to the projectile.
For our three nuclei discussed here, we have 11Be =

10Be + n,8B =7Be + p and 7Be = 4He + 3He, which define
their cluster character, with the corresponding breakup Q

values, 0.504, 0.137, and 1.587 MeV. The factor N2
0 S could

be related to the asymptotic normalization coefficient (ANC)
of the bound state wave function and is taken as a parameter
to be adjusted so as to account for the experimentally known
B(Eλ). We have used for the matter radii the values (in fm)
RP = 2.90 ± 0.05, 2.50 ± 0.04, and 2.31 ± 0.02 for 11Be,
8B, and 7Be, respectively. These values were collected from
Refs. [32,33].

Simple estimate of �RP

RP
can be obtained from Refs. [22,23],

who gave �RP

RP
≈ |N1/3

p −Z
1/3
p |

A
1/3
p

. In Table I we present the results

of the deformation lengths obtained using the cluster model of
formulas (34) and (35). The value of δN

2 for 8B obtained from
Eq. (35) is way too high (21.58 fm). This is due to the neglect,
in the cluster model (originally developed for neutron-halo
nuclei), of the Coulomb repulsion effects between the core and
the halo proton. We have therefore opted to employ an upper
value for this deformation length in this nucleus to conform

TABLE I. Deformation lengths for the 7Be, 8B, and 11Be
projectiles. The deformation lengths for 7Be and 8B have been
calculated using formulas (34) and (35) using N 2

0 S = 1. For the
11Be the δ

(N)
1 and δ

(N)
2 (in units of fm) are the values from Ref. [5].

Projectile δ
(N)
1 δ

(N)
2

(
�R

R

)2
c

7Be 0.33 1.58 0.00576 0.61
8B 1.91 2.5 0.0179 0.55
11Be 0.84(2) 1.27(25) 0.0214 2.01

to the accepted wisdom that it has to be within the confines
of the value of the radius. The value we cite in the table is
2.5 fm. For 11Be, we used B(E1) = 1.05 ± 0.06 e2fm2 [5]
and we get [δ(N)

1 ]2 = 0.71 ± 0.04 fm2. Further, δ
(N)
2 = 1.27 ±

0.25 fm from the same reference. The factor c =
N |f (Ed, �

↓
d )|2 in Eq. (30) normalizes the cross section.

In Fig. 1 we compare our results of Eq. (30) using a =
0.65 fm and r0t = 1.2 fm with the CDCC calculation of
Ref. [9] at Elab = 200A MeV for 11Be, 44A MeV for 8B,
and 100A MeV for the weakly bound nucleus 7Be. Clearly we
underestimate the CDCC calculation. The reason resides in the
neglect, in our model, of the higher-order channel-coupling
terms alluded to above. We also show in Fig. 1 the comparison
with the CDCC calculation for 8B and 7Be. Clearly the scaling
law is better obeyed in the “normal” nucleus 7Be as has already
been discussed in Ref. [9]. The value of the factor c is of the
order of the unity for the “normal” nuclei 7Be and for the 8B.
For the 11Be breakup a higher normalization is required, which
is due in part to higher-order effects that are not accounted for

FIG. 1. CDCC calculations for the nuclear breakup (dots) as a
function of the target mass, compared to the results of Eq. (30). See
text for details.
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by our DWBA description and because of the larger-than-unity
value of the exit doorway factor |f (Ed, �

↓
d )|2 [12].

Equation (30) can be rewritten for the 11Be as

σ bup ≈ 17(RP + RT )(mb). (36)

The above expression for σ bup is independent of the
bombarding energy. The CDCC calculation shows a clear
trend of a decreasing σ bup with the bombarding energy. We
trace this to the energy-dependent factor referred to above,
c [12], that contains the exit doorway factor |f (Ed, �

↓
d )|2

and to higher-order effects not accounted for by the DWBA
(partly contained in the energy-dependent factor NDW). For the
purpose of comparison with the CDCC results from Ref. [9],
we rewrite Eq. (36) as:

σ bup = A(E) + B(E)A1/3
T (mb), (37)

where the coefficients A(E) and B(E) are found to be system
dependent. For halo nuclei, A(E) was found to be negative,
whereas it is positive for the normal nucleus 7Be. Further, both
coefficients are slowly decreasing functions of the bombarding
energy. Our DWBA-based formula applied for the 11Be,
Eq. (36), has A = 17RP and B = 17r0t . Neither coefficients
are dependent on energy. In fact in the CDCC calculation
of Ref. [9] the values of the coefficients A(E) and B(E)
for the three cases studied above, namely for 11Be (Elab =
200A MeV), 8B (Elab = 44A MeV) and 7Be (Elab =
100A MeV) are, respectively (in units of mb), ( −114, 70.6),
(8.17, 30.7), and (43.8, 4.23), to be contrasted with our values
from Eq. (30), (49.3, 20.4), (45.1, 21.65), and (18.04, 9.37).

IV. CONCLUSIONS

In this article we developed the exit doorway model
of elastic breakup. The proper treatment of the continuum
can be made by including several exit doorways that are
coupled among themselves. This would take into account the
continuum-continuum coupling effects. The obtained elastic
breakup cross section within the DWBA theory has the general
form σ bup = |f (Ed, �

↓
d )|2σDWBA where the exit doorway fac-

tor |f (Ed, �
↓
d )|2 is generally bombarding energy dependent.

We have applied the model to elastic breakup of weakly bound
projectiles. The obtained elastic breakup cross-section σ bup

exhibits the scaling law, albeit approximately especially in
11Be as is the case in the CDCC calculation [9] and should
serve to supply a simple mean for an estimate of the nuclear
breakup contribution. The geometric dependence R/a in the
expression, Eq. (30), is quite similar to the one obtained using
the so-called free dissociation (FD) model [34,35]. This latter
model gives σFD = π

12 (4 ln 2 − 1)RT

κ
, where κ =

√
(2µQ)
h̄

[35].
As such, the range of validity of our model is similar to that
of the FD model. Our model has the advantage of relating
the nuclear elastic breakup cross section to the deformation
lengths of the fragmenting projectile.
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