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Coupled-channels calculations of 16O + 16O fusion
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Fusion data for 16O + 16O are analyzed by coupled-channels calculations. It is shown that the calculated
cross sections are sensitive to the couplings to the 2+ and 3− excitation channels even at low energies, where
these channels are closed. The sensitivity to the ion-ion potential is investigated by applying a conventional
Woods-Saxon potential and the M3Y+repulsion potential, consisting of the M3Y double-folding potential and a
repulsive term that simulates the effect of the nuclear incompressibility. The best overall fit to the data is obtained
with a M3Y+repulsion potential that produces a shallow potential in the entrance channel. The stepwise increase
in measured fusion cross sections at high energies is also consistent with such a shallow potential. The steps
are correlated with overcoming the barriers for the angular momenta L = 12, 14, 16, and 18. To improve the fit
to the low-energy data requires a shallower potential and this causes a even stronger hindrance of fusion at low
energies. It is therefore difficult, based on the existing fusion data, to make an accurate extrapolation to energies
that are of interest to astrophysics.
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I. INTRODUCTION

A major challenge in nuclear astrophysics is to measure
the cross sections for radiative capture and fusion reactions
with high precision and down to very low energies. Another
challenge is to develop models that can reproduce the existing
data and be used with confidence to extrapolate the cross
sections to the energies that are of interest to astrophysics.
Examples of reactions where these challenges exist are the
low-energy fusion of 12C + 12C, 12C + 16O, and 16O + 16O. It
was recently suggested [1] that the fusion rates that have been
used in the past for these reactions should be reduced because
of a hindrance phenomenon, and the implications for stellar
burning and nucleosynthesis were investigated in Ref. [2]. The
fusion hindrance has been observed experimentally at extreme
sub-barrier energies in many medium-heavy systems [3] but it
has not yet been observed convincingly in lighter systems. It
is therefore of interest to study the possible evidence for such
a phenomenon in light systems.

The theoretical description of light-ion fusion reactions,
for example, of the 16O + 16O fusion data [4], is often
limited to optical model calculations. An exception is the
study by Reinhard et al. [5] in which the ion-ion poten-
tial for 16O + 16O was derived from an adiabatic TDHF
calculation, and the fusion cross sections that were calcu-
lated have served as guidance for the extrapolation to low
energies. The purpose of this work is to use the coupled-
channels method to analyze the 16O + 16O fusion data of
Ref. [4] to investigate the influence of the couplings to the
2+ and 3− excitations of the reacting nuclei and to see whether
the fusion hindrance phenomenon is likely to exist in such a
light system.

The coupled-channels method has been used in numerous
analyses of the fusion data for medium-heavy nuclei. It has
been very successful in many cases in reproducing the data
at energies near and slightly below the Coulomb barrier,
typically down to 0.1 or 0.01 mb. Thus it has been possible
to generate the large enhancement that is needed to fit the

data at sub-barrier energies by including couplings to surface
excitation modes, primarily to the low-lying 2+ and 3− states,
and to two-phonon and mutual excitations of these states (see,
for example, the review article Ref. [6] and the proceedings
Refs. [7,8]). In some cases it is necessary to include couplings
to transfer channels (see Refs. [7,8]).

The definition of fusion in the coupled-channels approach is
usually based on ingoing wave boundary conditions (IWBC).
They are imposed at a distance somewhere inside the Coulomb
barrier, for example, at the minimum of the pocket in the
entrance channel potential. However, a short-ranged imaginary
potential has also been used to simulate the fusion. The two
ways of defining the fusion give essentially the same result in
most cases. This supports the view that the fusion is primarily
sensitive to the description in the vicinity of and outside the
Coulomb barrier, and the empirical proximity-type Woods-
Saxon potential [9], which is based on extensive analyses of
elastic-scattering data and also on the M3Y double-folding
potential, has served as a very realistic interaction in coupled-
channels calculations.

The above view of the fusion process has been challenged
by the discovery of the fusion hindrance at extreme sub-barrier
energies. Because the hindrance sets in at a rather high
excitation energy of the compound nucleus, it was suggested
early that it had to be an entrance channel phenomenon [10]. It
was shown in Ref. [11] that the hindrance could be explained
by adjusting the ion-ion potential at small distances between
the reacting nuclei so it produced a shallow potential in
the entrance channel. In contrast, the empirical interaction
of Ref. [9] produces a relative deep pocket, and the M3Y
double-folding potential is unphysical because it produces a
pocket that is much deeper than the ground-state energy of the
compound nucleus. It was proposed in Ref. [11] that the new
low-energy fusion data offer the opportunity to investigate the
radial dependence of the ion-ion potential at short distances.

We have shown that a shallow potential can be con-
structed by correcting the M3Y double-folding potential with
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a repulsive term that simulates the effect of the nuclear
compressibility [12]. Thus we were able to explain success-
fully the fusion data for 64Ni + 64Ni [13], 28Si+64Ni [14], and
16O + 208Pb [15], ranging in cross sections from 20 nb to 1 b.
It is therefore of interest to apply this type of potential in the
analysis of the 16O + 16O fusion data to see how it will affect
the extrapolation to extreme sub-barrier energies.

With an increased sensitivity (at extreme sub-barrier en-
ergies) to the potential at small distances between the fusing
nuclei, one should also be concerned about the validity of the
basic assumptions in the coupled-channels approach, namely
that the structure input is that of the isolated nuclei. For
strongly overlapping nuclei, the modes of excitations may
be better described in terms of excitations of the compound
nucleus. Unfortunately, it is very difficult in the coupled-
channels approach to develop a model that includes a realistic
transition from a dinuclear description to a compound nu-
cleus description. Some justification for the coupled-channels
method can be found, for example, in calculations that are
based on the two-center Hartree-Fock method. Thus, in the
case of 16O + 16O, Zint and Mosel found that the individual
shell structures of the two 16O nuclei survive up to a remarkable
degree of overlap [16]. Moreover, the ion-ion potential they
determined gives a very shallow potential in the entrance
channel, in qualitative agreement with the empirical findings
from the analysis of elastic-scattering data [17] and also, as
we shall see, from the analysis of the fusion data.

II. COUPLED-CHANNELS DESCRIPTION

The fusion cross sections for the oxygen isotopes are
somewhat exceptional in the sense that they are rather
structureless [4], whereas fusion data for 12C + 12C [18] and
12C + 16O [19] contain very rich structures or resonances.
Because the coupled-channels calculations presented here
produce rather smooth and structureless cross sections at low
energies, the investigations will be restricted to the fusion of
16O + 16O.

The basic assumptions and ingredients in the coupled-
channels description of fusion reactions are summarized
below. The structure input for the 2+ and 3− states in 16O
[20,21] is shown in Table I. The channels for the two excited
states in 16O become closed when the center-of-mass (c.m.)
energy is less than the excitation energy, Ex ≈ 6–7 MeV. The
asymptotic boundary condition for the radial wave function
unL(r) in an open, inelastic channel n with angular momentum
L is the outgoing Coulomb wave,

unL(r) ∝ OL(qnr) = GL(ηn, qnr) + iFL(ηn, qnr),

TABLE I. Properties of the 2+ and 3− states in 16O. The B values
and Coulomb coupling strengths are from Ref. [20]. The nuclear
couplings are from α scattering [21].

Nucleus λπ Ex (MeV) B(Eλ)
(W.u.)

βC
λ ( βR√

4π
)C

(fm)
( βR√

4π
)N

(fm)

16O 2+ 6.92 3.1(1) 0.35 0.30 0.27
3− 6.13 13.5(7) 0.72 0.61 0.40

for r → ∞, (1)

where h̄qn is the asymptotic relative momentum and ηn =
Z1Z2e

2/(h̄v) is the Sommerfeld parameter for channel n. The
outgoing wave is here expressed in terms of the regular and
irregular Coulomb wave functions FL and GL, respectively.
For a closed channel the condition (1) is replaced by

unL(r) ∝ W−ηn,L+1/2(2qnr), (2)

where W−η,L+1/2(z) is the Whittaker function.
The coupled equations are solved in the so-called rotating

frame approximation. A detailed discussion of the coupled-
equations in this approximation can be found, for example,
in Ref. [22]. The boundary conditions that are used at short
distances are the ingoing-wave boundary conditions (IWBC),
which are imposed at the location of the minimum of the
pocket in the entrance channel, and the fusion cross section is
determined by the ingoing flux. This model works quite well
at energies that are near and below the Coulomb barrier.

It is a common problem that one cannot always reproduce
the fusion data at extreme sub-barrier energies and at energies
far above the Coulomb barrier by using exactly the same model
assumptions in the two energy regimes. It has been suggested
that the problem can be solved by considering the effect of
decoherence [23] but calculations that demonstrate this point
were not carried out. The solution we have used [15] is to
supplement the IWBC at energies far above the Coulomb
barrier with a weak imaginary potential that acts near the
minimum of the pocket in the entrance channel. The need for
such an imaginary potential at high energies may reflect the
influence of an increasing number of reaction channels, which
cannot be considered explicitly in a practical calculation.

A. Standard Woods-Saxon potential

The real part of the ion-ion potential is commonly
parametrized as a Woods-Saxon potential,

V (r) = V0

1 + exp[(r − Rpot)/a]
, (3)

and the proximity type potential discussed in Ref. [9]
[Eq. (40)] will be used below. The results of coupled-channels
calculations that are based on this potential will be compared to
data and to calculations that use the M3Y+repulsion potential
[12]. These two types of potentials are basically identical at
large radial distances between the reacting nuclei, and they
produce essentially the same Coulomb barrier height. They
differ at short distances, as will be shown in the next section.
The Woods-Saxon potential produces a relatively deep pocket
in the entrance channel potential, whereas the M3Y+repulsion
potential can be adjusted to produce a shallow pocket and a
thicker Coulomb barrier. The latter two features help explain
the hindrance of fusion [12–15], which has been observed
in many heavy-ion systems at extreme sub-barrier energies.
The issue here is whether an analysis of the fusion data for
16O + 16O will show a sensitivity to the potential at short
distances.
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B. Fusion cross sections

The fusion cross sections for 16O + 16O that were measured
by Thomas et al. [4] are compared in Fig. 1 to coupled-
channels calculations and to the no-coupling limit, i.e., a one-
dimensional barrier penetration calculation. Both calculations
are based on the standard proximity type, Woods-Saxon
potential [9]. The uncertainty in the data was taken from the
published figures, except at center-of-mass energies larger than
8 MeV, where an (arbitrary) uncertainty of 5% was adopted,
because it was not possible to read the small experimental
uncertainty. Earlier measurements do exist, see, for example,
Refs. [24–26], but they are not shown here.

The proximity type, Woods-Saxon potential [9], in which
the radius has been adjusted to provide the best fit to the
16O + 16O fusion data [4], has the following parameters:
V0 = −42.14 MeV, Rpot = 6.083 fm, and a = 0.602 fm. The
solid curve (CCC) in Fig. 1 is the coupled-channels result one
obtains with this potential and it has a χ2/N = 1.5. The dashed
curve shows the no-coupling limit (NOC) one obtains with the
same potential. The fit to the data in the no-coupling limit can
be improved by adjusting the radius of the potential. The best
fit is achieved for Rpot = 6.133 fm and has a χ2/N = 4.2.
This is much larger than the χ2/N = 1.5 obtained in the
coupled-channels calculation and shows that the couplings to
the 2+ and 3− states do play a significant role.

It may be seen in Fig. 1 that the measured cross sections
fall off faster with decreasing energy than predicted by the
coupled-channels calculation at the lowest energies. This is
a signature of the onset of the fusion hindrance phenomenon
discussed earlier. The hindrance will be explored further in the
following sections.

III. THE M3Y+REPULSION POTENTIAL

The calculation of the M3Y+repulsion potential is de-
scribed in Ref. [12] but some of the essential features are
summarized here. First, one calculates the M3Y double-
folding potential (including the exchange term). This requires
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FIG. 1. The fusion cross sections for 16O + 16O measured by
Thomas et al. [4] are compared to coupled-channels calculations
(CCC) and to the no-coupling limit (NOC). Both calculations are
based on the Woods-Saxon potential described in the text.

as input the proton and neutron densities of projectile and
target. The densities of protons and neutrons were assumed to
be identical for 16O and the form of density was assumed to
be a Fermi function with radius R = 2.5 fm and diffuseness
a = 0.52 fm. The radius was adjusted so that the measured
RMS charge radius of 2.737(8) fm [27] was reproduced.

The repulsive term associated with the nuclear incompress-
ibility is also obtained from the double-folding procedure using
a repulsive effective NN interaction of the form Vrepδ(r). The
density that is used in connection with the repulsive term has
the same radius as the ordinary densities mentioned above
but the diffuseness arep is chosen differently. Thus there are
two parameters in the calculation of the repulsive interaction,
the strength Vrep and the diffuseness arep of the density. They
are constrained, as explained in Ref. [12], so the total nuclear
interaction for completely overlapping nuclei, UN (r = 0), is
consistent with the equation of state ε(ρ) at normal nuclear
matter density ρ and ε(2ρ) at twice the nuclear matter density.
This condition was expressed in Ref. [12] by the relation

UN (r = 0) = 2Aa[ε(2ρ) − ε(ρ)] ≈ Aa

9
K. (4)

Here Aa is the mass number of the smaller nucleus, so the
equation expresses the change in energy one has by embedding
the smaller nucleus inside the larger. The last approximation
relates this change in energy to the nuclear incompressibility,
K = 9ρ2[d2ε(ρ)/dρ2].

The entrance channel potential obtained from the
M3Y+repulsion potential is illustrated in Fig. 2 for a range
of values of the diffuseness parameter arep. The strength of
the repulsive interaction Vrep was adjusted in each case to
produce the nuclear incompressibility K = 234 MeV. This
is the value that has been obtained from the Thomas-Fermi
equation of state for symmetric nuclear matter [28]. The
smallest value of arep, which is 0.3 fm, produces a pocket
that is as deep as the energy of the compound nucleus 32S. The
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FIG. 2. The M3Y+repulsion entrance-channel potential is shown
for arep = 0.41 fm, and for arep = 0.3–0.4 fm in steps of 0.025 fm. The
Woods-Saxon, the Gobbi [17], and the pure M3Y entrance channel
potentials are also shown, and the energy of the compound nucleus
32S is indicated.
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largest value, arep = 0.41 fm, produces a pocket at 2.4 MeV
and has a Coulomb barrier of 10.01 MeV.

The thin solid curve in Fig. 2 is the entrance channel
potential one obtains with the pure M3Y potential (including
the exchange term). It has an unrealistic and extremely deep
pocket, which is far below the energy of the compound nucleus.
The entrance potential, which is based on the Woods-Saxon
potential discussed in the previous section, is shown by the
lower thick dashed curve. It is slightly deeper than the ground
state of the compound nucleus and it has a Coulomb barrier of
10.10 MeV.

Finally, the upper thick dashed curve in Fig. 2 is the
shallow Gobbi potential [17], which, by the way, is in
surprisingly good agreement with the potential obtained in
the two-center Hartree-Fock calculation of Ref. [16]. It is seen
that the M3Y+repulsion and Gobbi potentials have almost
the same depth but the thickness of the Coulomb barrier is
different. It turns out that the thicker barrier provided by the
M3Y+repulsion potential gives a much better fit to the fusion
data when applied in the coupled-channels calculations.

A. Fusion cross sections

The thick solid curve in Fig. 2, which is based on the
diffuseness parameter arep = 0.41 fm, is the entrance channel
potential that provides the best fit to the fusion data in the
coupled-channels calculations. The calculated cross section is
shown by the solid curve in Fig. 3 and it has a χ2/N = 1.3. The
quality of the fit is only slightly better than what was obtained
in the previous section using the standard Woods-Saxon
potential. The slight improvement is difficult to see but it is
achieved mainly at the lowest energies.

The χ2/N is shown in Fig. 4 as function of the diffuseness
parameter arep. There are two minima, one at a small value,
arep ≈ 0.325, and one at arep = 0.41 fm, which is by far the
best solution. It is of interest to compare arep to the values that
have been used for other systems. Thus for the 64Ni + 64Ni
system we obtained the best fit to the data for arep =
0.403 fm [12]. For 28Si+64Ni the value was 0.392 fm [14],
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FIG. 3. The fusion data for 16O + 16O [4] are compared to
coupled-channels calculations (CCC) and to the no-coupling limit
(NOC). Both calculations are based on the M3Y+repulsion potential
with arep = 0.41 fm.
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FIG. 4. The χ 2/N obtained from the 16O + 16O fusion data [4]
and coupled-channels calculations. The χ 2/N is shown as function of
the diffuseness parameter arep, which determines the repulsive term
in the M3Y+repulsion potential.

and for the very asymmetric system 16O + 208Pb we had to use
the smaller value arep = 0.35 fm [15].

The discrepancy with the data is emphasized in Fig. 5
where ratios of the measured and calculated fusion cross
sections are shown. The solid circles are the coupled-channels
results and the open circles show the results in the no-
coupling limit obtained with the same potential, namely the
M3Y+repulsion potential with arep = 0.41 fm. The effect
of the couplings to the 2+ and 3− excitations is to bring
the cross-section ratio closer to 1. However, there are still
some minor deviations from 1. For example, the ratio of
the measurement and the coupled-channels calculation (solid
circles) shows a decreasing trend with decreasing energy below
8 MeV and it is less than 1 at the lowest energy point. This is
a signature of the experimental fusion hindrance with respect
to the coupled-channels calculation.
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FIG. 5. Ratio of experimental [4] and calculated cross sections
shown in Fig. 3.
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IV. THE S FACTOR AT LOW ENERGIES

It is unfortunate that the quality of the fit of the coupled-
channels calculations to the 16O + 16O fusion data is es-
sentially the same whether we use the Woods-Saxon or
the M3Y+repulsion potentials. From the empirical knowl-
edge of the fusion hindrance phenomenon [3] one would
have expected that the M3Y+repulsion potential would
provide a much better description of the low-energy data.
However, the improvement is modest. One would need
measurements at even lower energies to be able to see a
stronger sensitivity to the ion-ion potential at short distances.

A good way to emphasize the low-energy behavior of the
measured and calculated fusion cross sections is to plot the
S factor for fusion defined by

S = Ec.m.σf exp(2πη), (5)

where η is the Sommerfeld parameter. The experimental
S factors are compared in Fig. 6 to the two coupled-channels
calculations that were discussed earlier. The top dashed curve
is based on the Woods-Saxon potential, whereas the solid curve
is based on the M3Y+repulsion potential. The latter provides
a slightly better fit to the data at the lowest energies but the
error bars are large so the overall improvement in terms of a
χ2/N is modest, as discussed in the previous section.

The two coupled-channels calculations shown in Fig. 6 start
to deviate as the energy is reduced. The calculation that is based
on the M3Y+repulsion potential (the solid curve) develops a
maximum near 4 MeV. The reason is that the entrance channel
potential has a pocket at 2.4 MeV, and this forces the S factor
to vanish below that energy when the fusion is determined
by IWBC. It is interesting that the value of the S factor at
4 MeV (solid curve) is in fair agreement with the prediction
of the adiabatic TDHF calculation [5]. However, the S factor
for fusion obtained in the adiabatic TDHF calculation keeps
increasing with decreasing energy [5].

It is not clear a priori whether the S factor for the fusion
of 16O + 16O should develop a maximum at low energy. It
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FIG. 6. S factors for the coupled-channels calculations shown in
Figs. 1 and 3 are compared to the data [4]. Also shown are coupled-
channels calculations that are based on shallower potentials, with
arep = 0.425 and 0.43 fm, respectively. The diamond is the adiabatic
TDHF results [5]. The lowest thick curve is the extrapolation made
by Jiang et al. [1].

does not have to do that because the ground-state Q value for
producing 32S is positive. It is only for negative Q values one
can argue that the S factor must have a maximum at some
positive center-of-mass energy [3].

There is an alternative extrapolation method [3] that is based
on the logarithmic derivative of the energy-weighted fusion
cross section,

L(E) = 1

Ec.m.σf

d(Ec.m.σf )

dE
. (6)

This quantity has a nearly linear dependence on energy at
extreme sub-barrier energies in most of the medium-heavy
systems that have been studied experimentally. The linear
dependence makes it fairly easy to extrapolate the data to
the energy where the S factor has a maximum [3].

A better parametrization of L(E) was adopted in Ref. [1].
By considering all of the 50 data points that have been
measured below 8.5 MeV [4,24–26] it was concluded that the
S factor for the fusion of 16O + 16O must have a maximum
close to 7 MeV. The extrapolation to lower energies that
was obtained in Ref. [1] is shown in Fig. 6 in terms of the
S factor by the lowest, thick curve. The low-energy fusion
cross sections predicted by this extrapolation are even more
suppressed than the coupled-channels calculation that is based
on the M3Y+repulsion potential.

Apparently, there are certain features of the data that are
not reproduced by the coupled-channels calculations presented
here. Some indications of that can be seen in the cross-section
ratios shown in Fig. 5. For example, the seven lowest data
points form an isolated group that is disconnected from the rest
above 8.5 MeV. It is not clear what causes the discontinuity; is
it a remnant of a resonance or is it an experimental problem?
In any case, one can adjust the M3Y+repulsion potential
so that the coupled-channels calculations reproduce the the
energy dependence of the seven lowest points, i. e., so that
the cross-section ratio σexp/σcalc becomes a constant. This
can be achieved with a diffuseness parameter in the range
arep = 0.425–0.43 fm, which produces a pocket in the entrance
channel potential in the range of 4.5 to 5.2 MeV. The S factors
obtained from such calculations are also shown in Fig. 6. The
results are in fair agreement with the extrapolation method
proposed by Jiang et al. [1]. That is not surprising because the
latter extrapolation was also based on low-energy data.

Fusion should in principle be allowed down to zero energy
because the ground state of the compound nucleus 32S is at a
much lower energy (see Fig. 2). To describe the fusion at such
low energies would require an extension of the model used
here, for example, along the lines proposed in Ref. [29].

V. FUSION AT HIGH ENERGIES

Another way to test the ion-ion potential is to compare to
cross sections that have been measured at energies far above the
Coulomb barrier. Here the data are often suppressed compared
to calculations that are based on a conventional Woods-
Saxon potential, with a relatively deep entrance potential
[30]. We have previously shown that the shallow entrance
channel potential, produced by the M3Y+repulsion potential,
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FIG. 7. The measured fusion cross sections for 16O + 16O (solid
circles [4]; diamonds [31]) and coupled-channels calculations that
are based on the Woods-Saxon (top dashed) and M3Y+repulsion
potential (with arep = 0.41, solid curve). The thin dashed curves
show the dependence on the maximum angular momentum Lmax.
All calculations include a short-range imaginary potential.

gives a better description of the high-energy fusion data for
16O + 208Pb [15]. However, it was necessary to supplement
the nuclear interaction with a weak, short-ranged imaginary
potential. It is interesting that the same conclusions apply to
to the high-energy fusion of 16O + 16O.

The results of coupled-channels calculations that are based
on the M3Y+repulsion potential and a short-ranged imaginary
potential that acts near the minimum of the potential pocket
are compared in Fig. 7 to the data of Tserruya et al. [31]. The
data exhibit an oscillatory or stepwise increasing behavior
that was also seen in the earlier data by Kolata et al. [32].
This behavior is qualitatively reproduced by the calculation
(solid curve). The stepwise increase in the calculated cross
section is correlated with overcoming the potential barriers for
L = 12, 14, 16, and 18. This can be seen by comparing to the
thin dashed curves that show the cross sections one obtains by
imposing different values of the maximum angular momentum
Lmax in the calculations. Note that only even values of L are
considered for a symmetric system.

The coupled-channels calculations that are based on the
deep Woods-Saxon potential are shown by the upper thick
dashed curve in Fig. 7. It is seen that the data are suppressed
compared to this calculation and that the stepwise behavior sets
in at a higher energy and a higher angular momentum (L = 16
to be precise, compared to L = 12 in the solid curve.) Thus
the high-energy 16O + 16O fusion data show a clear preference
for the shallow potential produced by the M3Y+repulsion
interaction.

The analysis of the elastic-scattering data for 16O + 16O by
Gobbi et al. [17] also revealed the need for a shallow potential.
The potential they obtained is illustrated by the upper thick
dashed curve in Fig. 2. The minimum of the pocket is in this
case at 0.78 MeV, which is slightly deeper that the 2.4 MeV
pocket produced by the M3Y+repulsion potential (with arep =
0.41 fm). Thus it appears that both the elastic-scattering data
and the high-energy fusion data prefer a shallow pocket in the
entrance channel.

It should be mentioned that the Gobbi potential does not
provide a good description of the low-energy fusion data by
Thomas et al. [4], although it has a shallow pocket. The
reason is that the Coulomb barrier is not as thick as the
one produced by the M3Y+repulsion potential (see Fig. 2.)
As a consequence, the fusion data are hindered compared to
calculations that are based on the Gobbi potential.

VI. CONCLUSIONS

It has been shown that the calculated fusion cross sections
for 16O + 16O are sensitive to couplings to the 2+ and 3−
excited states of 16O even at low energies, where the excitation
channels are closed. Unfortunately, the overall quality of the
fit to the fusion data by Thomas et al. [4] is not very sensitive
to the ion-ion potential at short distances between the reacting
nuclei. It is only at the very lowest energies that there is a
preference for a shallow potential in the entrance channel.

The potential that gives the best fit to the fusion data by
Thomas et al. [4] is the M3Y double-folding potential that has
been corrected for the effect of the nuclear incompressibility.
This M3Y potential is calculated with a density that is
consistent with the measured charge radius of 16O, and it
produces a very realistic height of the Coulomb barrier. The
repulsive interaction that simulates the effect of the nuclear
incompressibility is calculated with parameters (the nuclear
incompressibility and a diffuseness parameter) that are similar
to those that have been used previously to reproduce the
low-energy fusion data for medium-heavy systems.

The fusion cross sections obtained in coupled-channels
calculations are in fairly good agreement with measurements
at high energies when the calculations are based on the shallow
M3Y+repulsion potential. In particular, the oscillatory or
stepwise increasing behavior is reproduced very well, whereas
the calculations that are based on the deeper Woods-Saxon do
not reproduce the data. The evidence for a shallow entrance
channel potential is corroborated by the empirical optical
potential for the elastic-scattering obtained by Gobbi et al.
[17].

The S factor obtained in the coupled-channels calculations
that give the best fit to the data by Thomas et al. has a maximum
at a center-of-mass energy near 4 MeV. The value of the S

factor at this energy is close to the value that was predicted
more than 20 years ago in an adiabatic TDHF calculation.
However, if the potential is adjusted to improve the fit only to
the low-energy data, one obtains an even stronger hindrance
of fusion at lower energies. This is in qualitative agreement
with the empirical extrapolation proposed recently by Jiang
et al. [1]. To confirm the hindrance experimentally one would
have to measure the fusion cross section down to an energy of
5–6 MeV.
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