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system at near-barrier energies
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C. P. 11801, México D. F. Centro, México
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A simultaneous optical model calculation of elastic scattering, complete fusion, and breakup cross sections
for energies around the Coulomb barrier is presented for reactions involving the weakly bound projectile 9Be
on the medium size target 144Sm. In the calculations, the nuclear polarization potential U is split into a volume
part UF , which is responsible for fusion reactions, and a surface part UDR, which accounts for direct reactions. A
simultaneous χ 2 analysis of elastic and complete fusion data shows that the extracted optical potential parameters
of the real VF and imaginary WF parts of UF and the corresponding parts VDR and WDR of UDR satisfy separately
the dispersion relation. Energy-dependent forms for the fusion and direct reaction potentials indicate that, at
the strong absorption radius, the direct reaction potentials dominate over the fusion potentials. Moreover, the
imaginary direct reaction potential results in a rather smooth function of E around the barrier energy. These
findings show that the threshold anomaly, usually present in reactions with tightly bound projectiles, is not
exhibited for the system 9Be + 144Sm. Within this formalism, the effect of breakup reactions on complete fusion
is studied by turning on and off the potentials responsible for breakup reactions.
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I. INTRODUCTION

Lately, special interest has been focused on the role that
the breakup process plays on fusion and other reaction
mechanisms in reactions involving weakly bound nuclei.
Similarly, intense research has been done concerning the
presence of the threshold anomaly in the elastic scattering
of those nuclei. The most studied systems with weakly bound
projectiles are those that include 9Be,6 Li,7 Li, and 6He. The
breakup separation energies for these nuclei are relatively
small, for instance, 9Be =⇒ 8Be + n =⇒ α + α + n with
Sn = 1.67 MeV or 9Be =⇒ 5He + α with Sα = 2.55 MeV,
6Li =⇒ α + d with Sα = 1.48 MeV, 7Li =⇒ α + t with Sα =
2.47 MeV, and 6He =⇒ 4He + 2n with S2n = 0.98 MeV.
Owing to the small breakup separation energies, reactions with
these projectiles show a strong breakup coupling, particularly
below the barrier energy, that has an important effect on fusion
and other reaction processes. However, reactions with these
weakly bound projectiles with a variety of targets with masses
ranging from medium to heavy show that the breakup yield has
considerable values even for energies well below the Coulomb
barrier. Therefore, it is a point of discussion that the threshold
anomaly (TA) usually observed in the scattering of tightly
bound nuclei should not be present in the scattering of weakly
bound projectiles. It is well known that the TA is related to a
strong variation of the optical potential around the Coulomb
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barrier. That is, the energy dependence of the strength of the
imaginary part of the optical potential shows a sharp decrease
as the bombarding energy approaches the barrier energy VB .
The corresponding strength for the real part of the optical
potential also varies very strongly around the barrier [1,2]. It
has recently been proposed that reactions involving the most
weakly bound nuclei show a different type of anomaly, the
so-called breakup threshold anomaly (BTA) [3–5], in which, in
contrast to the TA, the absorptive part of the nuclear potential
W (E) does not show a strong decrease as the bombarding
energy approaches the Coulomb barrier energy. Actually,
W (E) increases even below the barrier VB . Consequently, the
energy dependence of the real part of the optical potential
V (E), derived from W (E) by the dispersion relation, does not
show the usual bell-shape around VB associated with the TA.

With the purpose to investigate the presence of the TA
or other forms of behavior of the optical potential, several
studies have been done on reactions with stable weakly bound
projectiles on heavy and medium mass targets. The studies
of Keeley and co-workers [6,7] for 6Li and 7Li incident
on 208Pb show that for 7Li + 208Pb the usual TA shows up,
which is not the case for 6Li + 208Pb. Accordingly, this fact is
linked to the experimental result that the system 6Li + 208Pb
shows a higher α-breakup yield below the barrier energy
than 7Li + 208Pb. Since 9Be has a breakup threshold energy
close to that for 6Li, these authors suggest that the threshold
anomaly should also be absent for reactions involving 9Be.
However, Woolliscroft et al. [8,9] show that for the system
9Be + 208Pb, despite the high breakup and 1n-transfer cross
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section yields at sub-barrier energies, the usual TA is still
present. In another work for a similar system, 9Be + 209Bi,
Signorini and co-workers [10–12] do not come to any definitive
conclusion about the threshold anomaly, owing to the small
number of data below the Coulomb barrier.

South American groups [13–26] and a European collabora-
tion led by Pakou [27–30] have extensively studied reactions
of stable weakly bound beams of 6Li, 7Li, and 9Be on light
mass targets such as 27Al, 28Si, and 64Zn. From these studies,
it has been determined that the usual TA is not present for
reactions involving the projectiles 6Li and 9Be. For the case
of medium mass targets, the only systems studied so far are
6,7Li + 138Ba [5,31], and the results are basically the same as
those found by Keeley and co-workers [6,7] for 6,7Li + 208Pb.
The main explanation for these results is that the appreciable
cross section observed for the 6Li breakup channel at low
energies, which in fact accounts for most of the total reaction
cross section, does not allow the decrease of the imaginary
absorptive potential. For 7Li-induced reactions, the breakup
cross section yield is not large, possibly because of its higher
α-breakup energy (Sα = 2.47 MeV), and different conclusions
are found. For scattering of the halo radioactive 6He nucleus,
the uncertainties and paucity of data did not allow definitive
conclusions to be drawn about the presence of the TA [32–35].
Very recently, some evidence has come to light for the presence
of BTA in the scattering of 6He by heavy targets [36,37]. For
the 9Be projectile, the behavior of elastic scattering is not
yet fully understood. In fact, different authors find conflicting
results about the TA for reactions of 9Be with several targets
such as 208Pb [8,9], 209Bi [10–12], and 64Zn [16,17,38].

The different results found in the study of the TA for systems
involving weakly bound nuclei should be related not only to the
value of the breakup threshold energy of the projectile but also
to the characteristics of the target. This is because the breakup
has contributions from the nuclear and Coulomb breakups.
Whereas the first is dominated by projectile structure details,
Coulomb breakup is more concerned with the dynamics of the
reaction and the target. For weakly bound projectiles and heavy
targets, the Coulomb breakup is very strong and its effects
on the surface optical potential are different from that of the
nuclear breakup [39–41]. Therefore, it is a very interesting
subject of research to continue the investigation of reactions
of 9Be on other targets, especially on medium mass targets
such as 144Sm, a target mass region not yet studied with this
projectile, and so to contribute to elucidate the source of the
discrepancies about the TA.

In this work, we consider the extensive measurements
for the reaction between 9Be with the medium mass target
144Sm [18,42] and perform a theoretical study of them using the
optical model for direct reactions. A preliminary short version
of these calculations has been published as a proceedings
contribution [43]. In this work we perform a simultaneous
calculation of elastic scattering, complete fusion, and breakup
cross sections within the optical model. Particular emphasis
focuses on two aspects: the TA and the effect that the breakup
process has on fusion.

We consider, in the following analysis, that both the real
and imaginary parts of the optical potential contain a volume
and a surface part, since different reactions occur at different

distances and therefore give rise to potentials of different
forms. This concept has been widely used in the literature
[44–49]. Satchler and collaborators [50–54] consider that,
at near-barrier energies, the volume part of the potential
corresponds to the absorption into fusion and has a short
range, corresponding to a reduced radius rF of the order of
1.0 fm and diffuseness of the order of 0.25 fm. For these
values, these authors successfully obtained simultaneous fits
of fusion and elastic scattering within a coupled channel
calculations approach, which takes into account coupling
to direct reaction channels. Udagawa and collaborators and
other authors [55–60] were also very successful in fitting
simultaneously near-barrier fusion and elastic scattering data
using an alternative approach. These authors also propose
dividing the total imaginary potential W into an inner potential
responsible for fusion WF and a surface potential WDR,
but in this approach, WF = W for r < RF and WF = 0
for r > RF , where RF = rF (A1/3

1 + A
1/3
2 ) and rF is treated

as an adjustable parameter to fit simultaneously fusion and
elastic scattering data. From this approach, it is assumed that
the volume part,WF , is solely responsible for the complete
fusion absorption process whereas the surface part, WDR, is
responsible for all other absorption processes. For several
systems, these authors found values of rF around 1.4 fm,
corresponding to a long=range fusion potential. In the present
work, the approach used is the one proposed by Udagawa and
co-workers [55,61] to describe fusion within the framework of
direct reaction theory. Thus, a Woods-Saxon optical potential
Ua = Va + iWa for the entrance channel a is considered,
where the imaginary potential Wa is split into volume and
surface parts; that is, Wa = Wa,F + Wa,DR.

We propose that by means of the decomposition of Wa ,
the effect of the breakup of the projectile on fusion will be
more clearly isolated. It is expected that the conjugated energy
dependence of the fusion potential Wa,F and the direct reaction
potential Wa,DR will tell us the strength of the breakup effect on
fusion. For the system 9Be + 144Sm, direct reactions are mostly
breakup reactions, particularly near and below the Coulomb
barrier; hence they should be treated by Wa,DR. Actually, it
has been reported [18,42] that the inelastic excitations of the
144Sm target have cross sections of the order of 10% of breakup
reactions for energies in the range from 0.9VB to VB , where
VB is the barrier energy. However, for these low energies there
are no available complete elastic angular distributions that
could be studied in the present work. For the energy range
studied here (31 < Ec.m. < 39 MeV), inelastic cross sections
were found to be less than 5% of the total reaction cross
section [18,42].

The Woods-Saxon parameters of the optical potentials will
be extracted by a simultaneous χ2 analysis of complete fusion
and elastic scattering data. The direct reaction cross section
σDR = σR − σCF includes incomplete fusion σICF, inelastic
scattering σinel, and noncapture breakup σNCBU. In fact, σNCBU

for the nuclear system under consideration accounts for most of
the total reaction cross section at energies below the Coulomb
barrier.

The TA is studied by considering the energy-dependent
potentials Va,F (E), Va,DR(E),Wa,F (E), and Wa,DR(E) at the
strong absorption radius Rsa. Here, Va,F (E) and Va,DR(E) are
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the real parts of the fusion and direct reaction potentials and
the strong absorption radius Rsa is defined as the distance at
which the elastic S matrix takes the value |Sel(Rsa)|2 = 1/2. The
effect of breakup reactions on complete fusion is analyzed by
studying the effects of Va,DR(E) and Wa,DR(E) on the fusion
cross-section calculation.

The paper is organized as follows: In Sec. II a brief
description of the model is presented. In Sec. III, the χ2

analysis of the data and the results of the calculations are given.
The paper is concluded with Sec. IV, which is dedicated to a
brief summary and conclusions.

II. METHODOLOGY USED

The Hamiltonian H for the nuclear system is of the form

Ha = Ta + Va, (1)

where the distorted wave χ (+)
a satisfies the following expres-

sion:

(Ta + Va)χ (+)
a = Eaχ

(+)
a , (2)

and the potential Va is defined by

Va(r, E) = VCoul(r) − Va,0(r) − Ua(r, E). (3)

Here, VCoul(r) is the Coulomb potential, Va,0(r) is the energy-
independent average nucleus-nucleus potential as defined in
Ref. [62], and Ua(r, E) is the nuclear polarization potential,
which is given by [63–65]

Ua(r, E) = Va(r, E) + iWa(r, E). (4)

To simplify the notation, we will drop the subindex a, which
refers to the incident elastic channel. Then, the imaginary part
W is assumed to have two parts, that is,

W (r, E) = WF (r, E) + WDR(r, E), (5)

where WF accounts for complete fusion and WDR for all other
absorption processes. Thus, Eq. (4) can be written as U =
UF + UDR, where UF = VF + iWF and UDR = VDR + iWDR

with V = VF + VDR.

The strength of the real polarization potentials VF and VDR

can be derived from the imaginary potential strengths WF (E)
and WDR(E) by the dispersion relation

Vi(E) = Vi(Es) + (E − Es)

π
P

∫ ∞

0

Wi(E′)
(E′ − Es)(E′ − E)

dE′,

(6)
i = F, DR,

where Vi(Es) is the value of the potential at the reference
energy Es as defined in Ref. [2]. So, once the energy-dependent
forms for Wi(E), i = F, DR are calculated, the corresponding
real potentials Vi(E) can be found. It should be pointed out that
these energy-dependent forms for the strengths Wi(E), i =
F, DR, in the range from zero to infinity are determined by
fitting (normally by linear segments) the adjusted values found
by the χ2 analysis of the experimental data [1,2].

The energy-independent average nuclear potential V0(r)
and the fusion absorption potential WF (r, E) are assumed to

have the geometrical forms

V0(r) = V0f (r) (7)

and

WF (r, E) = WF (E)f (r), (8)

where

f (xi) = 1

1 + exp(xi)
, xi = r − Ri

ai

, i = 0, F. (9)

with Ri = ri(A
1/3
1 + A

1/3
2 ), ri being the reduced radius param-

eter and ai the diffuseness parameter.
The surface imaginary potential WDR(r, E) is defined by

WDR(r, E) = 4aDRWDR(E)
df (xDR)

dr
, (10)

where aDR stands for the direct reaction diffuseness and xDR =
(r − RDR)/aDR. The potentials VF (r, E) and VDR(r, E) are
assumed to have the same forms as WF (r, E) and WDR(r, E),
respectively, with the same diffuseness and reduced radius.
The parameters of V0(r),WF (r, E), and WDR(r, E) as well as
the strengths of VF (r, E) and VDR(r, E) will be extracted from
a simultaneous χ2 analysis of the elastic and complete fusion
data, as will be shown in the next section. It should be pointed
out that the breakup cross section may include contributions
from Coulomb and nuclear interactions, and therefore the
direct reaction potential may include both effects. Also, the
average nucleus-nucleus potential V0(r) of Eq. (3) may have
an energy dependence from nonlocality effects coming from
a knockon-exchange contribution. We shall not consider such
effects since they are negligible [51].

The radial-angle-integrated total reaction cross section is
calculated by using the full absorption potential W , that is,

σR(E) = 2

h̄v
〈χ (+)

a |W (E)|χ (+)
a 〉, (11)

where we have rewritten the subindex a to emphasize the
elastic channel. The fusion and direct reaction cross sections
are similarly obtained by

σi(E) = 2

h̄v

〈
χ (+)

a

∣∣Wi(E)
∣∣χ (+)

a

〉
, i = F, DR. (12)

The relative motion distorted waves χ (+)
a are solutions of

Eq. (2) with the full Woods-Saxon potential Ua of Eq. (4).
These will be used throughout the calculations; therefore all
the calculated cross sections will be consistent with elastic
scattering.

The fusion cross section σF (E) as given by Eq. (12) has
been used in a number of studies by Udagawa and collaborators
in reactions with stable tightly bound nuclei [55,61,66,67], as
well as with weakly bound ones [59,68,69].

III. DESCRIPTION OF THE CALCULATIONS AND
RESULTS

A. Simultaneous χ 2 analysis of elastic scattering and complete
fusion

We start this section by presenting the definitions of com-
plete fusion and other mechanisms associated with breakup
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and total fusion [70]. Complete fusion (CF) is the fusion
of the whole projectile with the target. In addition to the
sequential complete fusion (SCF) process, the breakup of
the projectile (BU) is a direct reaction process that can lead
to two other different reaction mechanisms: 1. noncapture
breakup (NCBU), which occurs when neither of the fragments
is captured by the target, and 2. incomplete fusion (ICF), which
is the fusion of part of the projectile with the target that follows
the breakup of the projectile. These mechanisms depend on the
subsequent interactions between the projectile fragments and
target nucleus. The total breakup cross section is given by
σBU = σNCBU + σICF. Total fusion (TF) is the sum of CF with
all possibilities of ICF.

As for the 9Be projectile, fusion of 8Be with the target
following 9Be =⇒ 8Be + n is considered as a CF mechanism.
This is so since it is not possible to experimentally distinguish
this process from the fusion of 9Be with the target [42,71,
72]. Thus, what one calls ICF for the 9Be + 144Sm system
is the fusion of one α particle with the target, following the
sequential breakup 9Be =⇒ 8Be + n =⇒ α + α + n. For the
reaction 9Be + 144Sm, σICF was found experimentally to be of
the order of 10% of σTF at low energies [18,42]. The total
reaction cross section is thus σR = σBU + σCF + σinel, where
the breakup cross section σBU is the sum of the noncapture
breakup cross section σNCBU and that of incomplete fusion,
σICF. An estimation of the inelastic cross section σinel has been
given in Refs. [18,42] for the excitation of the first 2+and 3−
states of the target. In this work, a calculation of σR-σCF will be
compared to the experimental values of σNCBU + σICF + σinel.

Now, we begin the calculations by performing a simultane-
ous χ2 analysis of elastic scattering and CF data for the system
9Be + 144Sm at the energies Elab = 33, 34, 35, 37, 39, and
41 MeV. As a first step, we search the potential V0 of Eqs. (3)
and (7), which is an energy-independent potential related to the
relative motion of the interacting nuclei [62]. The parameters
of this average potential V0(r) can be found by fitting the
elastic scattering data at the energy Elab = 32 MeV. Since
this potential is energy independent this can be determined at
any chosen energy. As an absorption potential, we choose
a volume Woods-Saxon potential with parameters rW =
1.4 fm, W = 64.3 MeV, and aW = 0.36 fm. As mentioned
before, rF = 1.4 fm is a value found for simultaneous fits
of fusion and elastic scattering data for a large variety of
systems [55–60]. The derived parameters for V0(r) are V0 =
25 MeV, r0 = 1.22 fm, and a0 = 0.52 fm, which correspond
to a shallow potential, similar to the ones required in the fit of
elastic scattering data of weakly bound projectiles such as 6Li
and 9Be [51]. This derived real potential predicts the height
and position of the Coulomb barrier as 32 MeV and 10.2 fm,
respectively, for the angular momentum l = 0.

Now, to fit the elastic scattering angular distributions and
fusion cross sections, we use the following parametrization for
the fusion potential WF (r, E). The radius parameter rF is fixed
at 1.4 fm and thus the strength WF (E) and the diffuseness aF

are calculated by the χ2 analysis. For the surface potential
WDR(r, E), we set aDR = 0.72 fm, then WDR(E) and the
reduced radius rDR are calculated. Since the geometric forms
of VF (r, E) and VDR(r, E) are assumed to be the same as
WF (r, E) and WDR(r, E), respectively, with the same reduced

TABLE I. Calculated values for the diffuseness aF and reduced
radius rDR of the fusion and direct reaction potentials.

Ec.m. (MeV) a
F

(fm) rDR (fm) χ 2/N

31.05 0.570 1.61 0.21
32 0.513 1.63 0.65
32.94 0.560 1.63 0.45
34.82 0.534 1.66 0.56
36.7 0.670 1.67 0.90
38.59 0.670 1.68 0.90

radius and diffuseness parameters, only the energy-dependent
strengths VF (E) and VDR(E) are also determined in the χ2

analysis. So, in Figs. 1(a) and 1(b), we show the results for
the potential strengths WF (E),WDR(E), VF (E), and VDR(E),
which are represented by the dots; in Table I, the calculated
values for aF and rDR are presented. For the energy range
investigated, near the Coulomb barrier, one can observe
fluctuations in the value of the diffuseness aF , compatible with
an energy-dependent behavior of WF , typical of near-barrier
energy scattering.

The straight lines in Fig. 1(a) are linear fits to the extracted
potentials; these lines are used to integrate the dispersion
relation. The curves in Fig. 1(b) correspond to this integration
for the real polarization potentials VF (E) and VDR(E). As
can be observed, our calculations show that the dispersion
relation is satisfied. Also, it is interesting to point out that the
surface real potential VDR(E) becomes repulsive for the whole
energy range studied (above the experimental barrier energy
VB = 31.05 MeV).

The results of the simultaneous fits of the elastic scattering
and complete fusion with the potential strengths of Fig. 1
with diffuseness and radial parameters of Table I are shown in
Figs. 2 and 3, respectively. Figure 3 also shows the total

FIG. 1. Potential strengths as derived from the χ2 analysis for
the fusion and direct reaction potentials (dots). The lines in part
(a) correspond to linear fits; those in part (b) are the results of the
dispersion relation.
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FIG. 2. Results of the ratios of elastic scattering cross sections
to Rutherford cross sections. The experimental data are taken from
Ref. [18].

reaction cross sections derived from the elastic scattering
data and/or calculations by using the potential that fits these
data. The calculations were performed by using the FRESCO

code [73]. In Fig. 4, the calculations for σR-σCF are given in
comparison with the data for σNCBU + σICF + σinel extracted
from Refs. [18,42]. It should be pointed out that σR-σCF

corresponds to the calculation of the direct reaction cross
section using Eq. (12).

B. The threshold anomaly

One of the most interesting features of this model, that
of separating the incident flux absorption into fusion and
direct reaction parts, represented by the potentials WF , VF

and WDR, VDR, respectively, is that it allows us to study their

FIG. 3. Calculated complete fusion and total reaction cross
sections. The data are those of Ref. [18].

FIG. 4. Results of the direct reaction cross section σDR = σR-σCF,
compared to the corresponding data [18].

energy variation in a separate manner. As can be observed
in Figs. 1(a) and 1(b), WF and VF show a strong variation
around the barrier energy, which is characteristic of the TA
usually present in reactions between stable tightly bound
nuclei. However, WDR and VDR do not seem to present this
strong variation, since they are rather smooth functions of
E. However, because the geometric forms of the fusion and
direct reaction potentials are different, the potential strengths
of Figs. 1(a) and 1(b) cannot by themselves provide enough
information on the relative importance of both mechanisms in
the region of strong absorption. For this reason, it is convenient
to consider their values at the strong absorption radius Rsa. At
a distance around Rsa, different potentials with comparable
good fits take approximately the same value. Hence, this
value is usually called the sensitivity radius and it is usual
procedure to calculate the values of the real and imaginary
parts of the optical potential at this distance. Nevertheless, Rsa

is slightly energy dependent and fluctuates around an average
value. For our nuclear system and within the energy range
studied, Rsa takes values from 11.70 to 11.98 fm, with an
average value of Rsa = 11.86 fm. It is interesting to notice
that this value is larger than the radius of the Coulomb barrier,
RB , found to be 10.2 fm. In Figs. 5(a) and 5(b), we present
the values of VF , VDR,WF , and WDR as functions of the
energy at the average strong absorption radius. It can be
observed from Fig. 5(b) that in the whole range of energy
investigated, |WDR(Rsa, E)| is larger than |WF (Rsa, E)|, which
means that flux absorption is dominated by direct reactions at
this distance. Owing to the predominance of WDR(Rsa, E) in
the total potential W (Rsa, E) = WF (Rsa, E) + WDR(Rsa, E),
one can conclude that the total imaginary potential does not
show a sharp decrease as the energy is lowered toward the
barrier VB = 31.05 MeV. One can also observe from Fig. 5(a)
that the surface real potential VDR(Rsa, E), being repulsive,
dominates over the fusion counterpart VF (Rsa, E), and the
total potential V (Rsa, E) = VF (Rsa, E) + VDR(Rsa, E) seems
to have a very different energy variation from the usual bell
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FIG. 5. Real (a) and imaginary (b) fusion and direct reaction
polarization potentials at the strong absorption radius Rsa. The linear
segments are drawn to guide the eye.

shape around the barrier, which is a characteristic of the
threshold anomaly. From these results, one can conclude that
the threshold anomaly is not present for the 9Be + 144Sm
system. This finding is in agreement with other previously
reported works for different nuclear systems involving weakly
bound projectiles and different target masses such as 6Li +
208Pb [6,68], 9Be + 64Zn [17,20], and 9Be + 209Bi [10,68]. We
believe that from the present work using two components of
the imaginary parts of the optical potential, one can understand
more clearly the behavior of the elastic scattering of this
weakly bound system.

C. The effect of breakup reactions on fusion

We propose that the effect of breakup reactions on the
fusion cross section of weakly bound systems can be studied
by “turning on” and “off” the part of the potential that is
responsible for direct reactions, that is, VDR and WDR. This
can be assumed since, for such systems, breakup is by far
the most important contribution to the direct reaction cross
section. From Fig. 5 one can conclude that there are two main
effects by which VDR and WDR may affect fusion reactions.
(i) A repulsive VDR tends to raise the Coulomb barrier and
therefore to suppress fusion. (ii) The loss of incident flux into
direct reactions, represented by WDR, suppresses fusion. So,
one can isolate the separate effect of breakup on fusion from
VDR and/or WDR by analyzing the energy dependence of the
quantities Ri given by

Ri = σF (i)/σF (VDR = WDR = 0);
(13)

i = VDR,WDR, VDRWDR.

In Eq. (13), σF (i) means fusion cross section when the potential
i is considered. The situation when both VDRWDR are used,
that is,σF (VDRWDR), corresponds to our final calculation for

FIG. 6. Ratios Ri of the calculated complete fusion cross sections
for the cases i = VDR, WDR, and VDRWDR to the the case when VDR =
0, WDR = 0. The linear segments are drawn to guide the eye.

the CF cross sections. Figure 6 shows the results for Ri for the
energy range studied. As expected, a repulsive real potential
VDR suppresses fusion, so that RVDR < 1. Also, WDR, which is
connected to the loss of flux mainly into the breakup channel,
also suppresses fusion. When both potentials VDR and WDR are
simultaneously applied, we obtain a net fusion suppression.
This result is in agreement with some other works where
experimental complete fusion cross sections are compared
with coupled channel calculations that use potentials deduced
from experimental barrier distributions [71,72,74] or reliable
double-folding potentials [18,42,75–78] that do not take into
account the breakup channel.

IV. SUMMARY AND CONCLUSIONS

In summary, we have carried out a simultaneous χ2 analysis
of elastic scattering and complete fusion cross sections for
the system 9Be + 144Sm at near-fusion-barrier energies. In
the model, the optical polarization potential has been split
into fusion and direct reaction parts. The results of the χ2

fitting show that the extracted potentials satisfy the dispersion
relation. It has been shown that the fusion potential WF (E)
exhibits the threshold anomaly as it usually occurs in reactions
with tightly bound projectiles. However, this is not the case
for the surface potential WDR(E), which becomes a smooth
function of E. Energy-dependent forms for VF , VDR,WF , and
WDR at the strong absorption radius show that the direct
reaction potentials are much more important than the fusion
potential. The total imaginary potential W (Rsa, E), being the
sum of the fusion WF and direct reaction WDR potentials, is a
smooth function of E. However, the real potential VDR(Rsa, E)
is repulsive around the barrier. All of these facts indicate that
the threshold anomaly does not show up from the present
analysis. This finding has been found in other calculations
that involve the projectile 9Be. However, we believe that the
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method used in this work is more illustrative for this kind of
analysis than the ones that do not split the imaginary potential.
The effect of breakup reactions on fusion cross sections has
also been studied by considering the effect on fusion from
the potentials responsible for direct reactions (i.e., VDR and
WDR). By separately considering these potentials, regions of
fusion enhancement or suppression could, in principle, be
distinguished. However, it has been determined that there is a

net effect of suppression of complete fusion cross sections for
energies above the Coulomb barrier energy.
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[63] A. Gómez Camacho, E. M Quiroz, and T. Udagawa, Nucl. Phys.

A635, 346 (1998).
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