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Pickup coupling effects in deuteron scattering: The case of d + 40Ca
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The dynamic polarization potential (DPP) contribution to the effective deuteron-nucleus interaction is evaluated
by means of coupled reaction channel (CRC) calculations followed by S-matrix-to-potential inversion. The full
coupled channel S matrix SJ

l′ l is inverted using the iterative-perturbative algorithm to yield a potential that includes
a complex TR tensor term as well as central and spin-orbit components. The differences between the various
components of the inverted potential and the corresponding terms in the bare potential of the CRC calculation
constitute a local equivalent representation of the complete DPP that is generated by the reaction channel coupling.
The magnitude of the DPP, the real part in particular, is much less than that found in earlier calculations in
which the nonorthogonality terms were omitted. The characteristic features of the tensor part of the DPP were
traced to breakup and reorientation processes in the entrance deuteron channel that had been included with the
pickup. The contribution of stripping to the deuteron-nucleus interaction is also discussed.
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I. INTRODUCTION

It is now known that the coupling of pickup channels makes
a substantial contribution to the nucleon-nucleus interaction
(see, e.g., Ref. [1]). Reference [1] cites a sequence of
papers covering nearly 35 years in which improvements in
computing facilities and programming sophistication have
successively allowed the inclusion of finite-range stripping
interactions, as well as nonorthogonality and remnant terms
in coupled reaction channel (CRC) calculations. Although
these successive improvements have indeed led to a substantial
reduction in the calculated effect of pickup (deuteron) channels
on nucleon scattering, substantial modifications of both the
real and imaginary components remain. That part of the
nucleon-nucleus interaction that is due to pickup channel
coupling has been determined by Slj → V (r) inversion of
the diagonal S matrix from the CRC calculation; it cannot
be represented as a renormalization of the folding model
potential.

It is natural to apply the same procedure to deuteron
scattering and to ask what contribution to the deuteron optical
potential is induced by the coupling of mass-3 channels. Earlier
work [2] found surprisingly large contributions to the real
and imaginary central components of the deuteron optical
potential. However, that work was based on zero-range CRC
calculations that omitted nonorthogonality contributions. The
first major purpose of this work is to exploit the refinements
that have now become possible in CRC calculations, with
the advent of sophisticated codes such as FRESCO [3], to
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re-evaluate the contribution of pickup to the real and imag-
inary central components of the deuteron optical potential.
In addition, it has now become possible [4] to invert the
coupled channel S matrix for spin-1 projectiles to yield a
potential that includes a tensor component; in this way one
can explicitly determine the tensor as well as spin-orbit
interactions that are generated by such reaction channel
couplings. This is the second major purpose of the work
described here: to explore the contribution of the coupling of
mass-3 channels to the spin-dependent parts of the deuteron-
nucleus interaction and the tensor interaction in particular.
The investigations lead to a number of interesting general fea-
tures concerning the complex and spin-dependent dynamical
polarization potential (DPP) that are due to coupled reaction
channels.

The present calculations are restricted to a single case, that
of 52-MeV deuterons scattering from 40Ca, for which both
elastic scattering data and pickup reaction data exist, allowing
the calculations presented here to be reasonably realistic.
The experience we have gained in the present work should
make it possible for a subsequent survey of energy and mass
dependence trends to be carried out.

In this paper we also explore the use of a “J -weighted
S matrix” to encapsulate the spin-independent aspects of the
channel coupling effects in a simple diagonal S matrix Sl

that depends only upon the orbital angular momentum l. One
reason for doing this is that S → V inversion is still unachieved
for projectiles with spin greater than 1, and yet there are many
projectiles, such as 7Li, for which it would be interesting to
derive at least the central parts of the DPP from realistic CRC
calculations. The extent to which these can be derived from
a “J -weighted S matrix” for spin-1 projectiles will provide
an indication of whether this should also be possible for
projectiles with greater spin; it also makes it possible to analyze
the effects of channel coupling, in a simple way, by using
near-far analysis.
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The plan of this paper is as follows: In Sec. II we
present an outline of relevant features of deuteron scattering;
Sec. III briefly reviews terminology associated with IP inver-
sion; Sec. IV specifies the particular CRC calculation; Sec. V
describes the weighted-spin calculations; Sec. VI presents the
full calculations containing a representation of spin and leading
to the generation of tensor interactions; Sec. VII presents an
analysis of specific contributions to the DPP; and Sec. VIII
presents our general conclusions.

II. BRIEF REVIEW OF DEUTERON SCATTERING

To establish the notation, we briefly review the scattering
of a spin-1 projectile from a spin-0 target. This is significantly
more complex than that of a spin- 1

2 particle since there are five
independent observables that depend on the scattering angle
instead of two and there are five possible kinds of interaction
potential: three kinds of tensor interaction as well as the central
and spin-orbit interactions. Moreover, even elastic scattering
requires, in general, a coupled channel calculation. A general
account of the scattering of spin-1 projectiles can be found,
for example, in Satchler’s book [5], but we set down a few
relevant points to establish our notation.

For spin-1 particles scattering from a spin-0 nucleus,
Satchler [6] showed on the basis of symmetry considerations
that there are three possible types of tensor interaction. Of
these, only that designated TR will be considered here, and it
is the only one for which inversion is currently possible. (The
TL interaction is thought to be small, and the TP interaction is
hard to handle and in any case its effect is difficult to distinguish
from that of TR; see also Ref. [4].) The TR interaction has the
form

TRVR(r) ≡ [(s · r̂)2 − 2/3)]VR(r), (1)

where s is the spin operator for the projectile. As a result, the
complete potential that we seek is of the form

Vcen(r) + iWcen(r) + Vcoul(r) + 2l · s(Vso + iWso)

+ (VR + iWR)TR, (2)

where Vcoul(r) is the usual spherical, uniform-charge Coulomb
potential. The spin-orbit potentials Vso and Wso presented
throughout this paper are defined in such a way that they will
be half the magnitude of those defined according to the usual
convention [5] for spin-1 projectiles.

For particular values of the conserved quantities J and π ,
respectively the total angular momentum and the parity, two
values of orbital angular momentum, l = J − 1 and J + 1, are
coupled by a tensor interaction TR , whenever π = (−1)J+1.
The S matrix SJ

l′l = SJ
ll′ is defined by the asymptotic form

corresponding to total angular momentum J and incident
orbital angular momentum l:

ψJ
l′l(k, r) → δl′lIl′ (kr) − SJ

l′lOl′(kr). (3)

Here, Il(r) and Ol(r) are the incoming and outgoing asymp-
totic Coulomb radial wave functions, often written Hl(r)∗ and
Hl(r) as in Satchler [5], namely,

Il(kr) = Gl(kr) − iFl(kr), Ol(kr) = Gl(kr) + iFl(kr),

TABLE I. The diagonal matrix elements of the tensor operator TR .

l = J − 1 l = J l = J + 1

〈J l|TR|J l〉 − 1
3

J−1
2J+1

1
3 − 1

3
J+2
2J+1

where Fl and Gl are regular and irregular Coulomb wave
functions, respectively.

There are five angular dependent observables for spin-1
projectiles: the differential cross section, the vector analyz-
ing power i〈T11〉, and the three tensor analyzing powers
〈T20〉, 〈T21〉, and 〈T22〉, which are defined in Ref. [5]. We shall
also refer to the diagonal matrix elements of the tensor operator
TR as shown in Table I.

III. ITERATIVE-PERTURBATIVE INVERSION
TERMINOLOGY

The iterative-perturbative (IP) inversion technique for
deriving a potential from an S matrix (or from phase shifts)
is fully described in Ref. [7] and its specific implementation
for spin-1 projectiles in Ref. [4]. We here briefly mention
items of IP terminology that will be employed later. The IP
method begins the iterative procedure from a starting reference
potential, SRP, and expands the potential in terms of an
inversion basis. The difference between the original S matrix to
be inverted and the actual S matrix calculated from the derived
potential is expressed in terms of a phase shift distance denoted
σ , defined by

σ 2 =
∑

k

∣∣St
k − Sc

k

∣∣2
, (4)

where the superscripts “t” and “c” on the S matrix indicate the
target (the S matrix to be inverted) and the S matrix calculated
from the potential at the current state of the iterative procedure.
The sum is over all SJ

ll′ , with index k labeling each combination
of J, l, and l′. It is standard procedure, when one applies IP
inversion, to compare potentials found with different choices of
the SRP and inversion basis, noting how the potential depends
(or not) upon the choice of these; this is an important means
of monitoring the uniqueness of the derived potentials.

IV. CRC CALCULATIONS FOR d + 40Ca

In this section we present CRC calculations for the d + 40Ca
system at an incident deuteron energy of 52 MeV. In these
calculations, the incoming deuteron is coupled to mass-3
channels as specified in the following. The elastic scattering
data were taken from Ermer et al. [8] and the (d, t) data
from Doll et al. [9]. Data for the 40Ca(d, 3He)39K reaction
were also obtained by Doll et al. and although they give
spectroscopic factors obtained from a DWBA analysis of these
data no angular distributions are presented. Obtaining the best
possible description of these data helps to ensure that the
calculations are realistic. All calculations were performed with
the code FRESCO [3] and included the complex remnant term
and nonorthogonality correction.
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Together with the (d, t) and (d, 3He) transfers modeled
by using standard CRC with nonorthogonality corrections
and remnant terms, coupling to deuteron breakup in the
entrance partition was included by using the continuum dis-
cretized coupled channels (CDCC) formalism, as described in
Ref. [10]. Following Ref. [10], we included both the S and
D components of the deuteron ground state. Quadrupole cou-
pling between these components, equivalent to ground-state
reorientation, was included in all the calculations presented
here unless explicitly stated otherwise. The neutron and proton
plus 40Ca optical potentials required as input to the Watanabe-
type folding potentials employed in the CDCC calculation
were taken from the global parametrization of Koning and
Delaroche [11]. The real and imaginary depths were adjusted
to obtain the best description of the elastic scattering data by
the full CDCC + CRC calculation including the (d, t) and
(d, 3He) transfer couplings, renormalization of the real and
imaginary well depths by factors of 1.0 and 0.7, respectively,
giving optimum agreement.

The d + n and d + p form factors for the (d, t) and
(d, 3He) transfers were taken from Eiró and Thompson [12].
The spectroscopic amplitudes for the dominant � = 0 terms
of both form factors were set to

√
2, following Eiró and

Thompson. The spectroscopic amplitudes for the small � = 2
components were adjusted to give the same D0 values as Eiró
and Thompson, where D0 is defined as

D0 =
√

4π

∫
(V ψ)0(r)r2dr (5)

and (V ψ)0(r) refers to the sum of the contributions from the
S and D waves:

(V ψ)0(r) = V00(r)ψ0(r) + V02(r)ψ2(r). (6)

This procedure yields the spectroscopic amplitudes for S and
D components of the (d, t) and (d, 3He) overlaps given in
Table II.

TABLE II. Spectroscopic amplitudes for the S and
D components of the (d, t) and (d, 3He) overlaps.
The corresponding binding potential wells were of
Woods-Saxon form with parameters taken from Eiró
and Thompson [12].

Overlap S component D component

(d, t) 1.4142 −0.1762
(d, 3He) 1.4142 −0.1480

We followed Doll et al. [9] in using the same optical
model potential for both the (d, t) and (d, 3He) channels, the
parameters being taken from Ref. [13], again following Doll
et al. [9]. The p + 39K and n + 39Ca binding potential wells
were of Woods-Saxon form with parameters again taken from
Doll et al. [9]. As we are interested here in the coupling effect of
the (d, t) and (d, 3He) pickup channels on the elastic scattering
rather than spectroscopy, we somewhat arbitrarily omitted all
states in 39Ca and 39K having spectroscopic factors less than
0.20 in the work of Doll et al. [9] to keep the calculation
within tractable limits while retaining the bulk of the transfer
strength. We found that to describe the 40Ca(d, t) data of Doll
et al. [9] we had to reduce the spectroscopic factors obtained
from their DWBA analysis by a factor of 1.8. As no data for the
(d, 3He) pickup are presented in Ref. [9] we also reduced the
spectroscopic factors for transfers to states in 39K given therein
by the same factor. This discrepancy in spectroscopic factors
is probably linked to the choice of normalization used in the
zero-range DWBA calculations of Ref. [9] and our choice of
(d, t) and (d, 3He) overlap form factors. It is impossible to
say which is more realistic without an extensive analysis of
a large number of data sets, but in the context of this work it
is sufficient that we reproduce the magnitude of the transfer
cross sections.

The full calculation is compared to the data in Figs. 1
and 2. We also give the results of the no-coupling calculation
and a calculation including only the deuteron breakup for the
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FIG. 1. Data for the 40Ca(d, d) elastic
scattering [8] compared with calculations in-
cluding no coupling (dashed curve), deuteron
breakup only (dotted curve), and deuteron
breakup plus (d, t) and (d, 3He) pickup (solid
curve). The dot-dashed curve gives the result
for the J -weighted S matrix from the full
CRC calculation (see Sec. V).
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FIG. 2. Data for the 40Ca(d, t)39Ca neutron pickup reaction to
the (a) 0.0-MeV 3/2+, (b) 2.47-MeV 1/2+, (c) 2.79-MeV 7/2−, (d)
5.13-MeV 5/2+, (e) 5.49-MeV 5/2+, and (f) 6.16-MeV 5/2+ states
of 39Ca compared to the full CDCC + CRC calculation.

elastic scattering in Fig. 1. The description of the available
data is excellent. We note that there is negligible effect on
the elastic scattering for angles θc.m. < 35◦ resulting from
either deuteron breakup or single nucleon pickup. Single
nucleon pickup coupling becomes significant for angles

greater than about 50◦ and is the dominant coupling effect
for angles greater than about 70◦.

We also carried out a calculation in which five stripping
channels were included together with the pickup. The channels
included were for stripping to those states in 41Ca for which
spectroscopic factors of 0.20 or greater were obtained in the
40Ca(d, p)41Ca study of Uozumi et al. [14]. Spectroscopic
factors for the 40Ca:41Ca overlaps, n + 40Ca binding potentials
and p + 41Ca optical potentials were all taken from Ref. [14].
Considerations of computing time made it impossible to
refit parameters with these channels included. To facilitate
a discussion of these and calculations with various other
channels excluded, Fig. 3 represents all the various couplings
considered in this paper. Notice that there is coupling between
the breakup channels and the stripping channels, but not
between the breakup and pickup channels, a fact that will
turn out to be significant.

V. AVERAGING OVER TOTAL ANGULAR MOMENTA

We now define a “J -weighted” S matrix and then explain
how we apply it. For the case of deuterons scattering from a
spin-0 target, we have seen that the S matrix can be written
as SJ

ll′ , where J is the total conserved angular momentum
quantum number. We define, for this case,

S̄l =
∑

J (2J + 1)SJ
ll∑

J (2J + 1)
, (7)

where the sums are over all values of J that link to l, either
l ± 1 or just l according to the parity. In this definition, the off-
diagonal terms SJ

ll′ for l 	= l′ are ignored. For spin- 3
2 projectiles

such as 7Li, where off-diagonal terms for each J exist for
both parities, the same definition could be applied with the
sum being over J − 3

2 and J + 1
2 or over J − 1

2 and J + 3
2

according to the parity.
We shall apply the quantity S̄l in two ways: (i) in a

near-far analysis [15] with the particular aim of deriving some
indication of the effects of channel coupling and (ii) to apply
S̄l → V (r) inversion to establish the effect of channel coupling
on the central potential. The need for this latter might be
questioned in view of the fact that for spin-1 we can in fact
invert SJ

ll′ , which leads to a potential that contains spin-orbit
and tensor interactions. However, inversion for projectiles

Ca40d  +  

Ca41p  + 

Ca39t  +  

He +  3 K39

FIG. 3. The full coupling scheme of the CRC calculations; note that for clarity a single channel only is represented in each transfer partition.
The box containing the crossed double-headed arrows represents the n-p continuum of the deuteron and couplings to and between the various
continuum bins. The coupling loop on the d + 40Ca entrance channel represents the deuteron ground state reorientation coupling.
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such as 7Li with spin > 1 is not yet possible, and it is of
interest to extract at least the central potential DPP from CRC
calculations in which a full representation of the projectile spin
is included. Comparison of the results of S̄l → V (r) inversion
and the inversion of the full SJ

ll′ should provide some measure
of the general validity of the inversion of the J -weighted
S matrix as a means of establishing the central components
of the potential for cases where coupled channel inversion is
not practicable. Even for the case of spin-1 projectiles, where
the inversion is limited to the determination of TR , the potential
found by inverting S̄l would be a useful comparison.

In Fig. 1, the barely discernible dot-dashed curve presents
the elastic scattering differential cross section evaluated by
using the J -weighted S matrix. In the present case, where
there is no spin-dependent interaction, the J -weighted bare
differential cross section must be identical to that shown in the
dashed line.

A. Near-far decomposition for elastic scattering with
channel coupling

The near-far decomposition of the angular distribution as
originally introduced by Fuller [15] provides an immediate
measure of the impact of the coupled reaction channels upon
the elastic scattering. In Fig. 4 the angular distributions are
presented in conventional rather than logarithmic form for
easier comparison with the other figures in this paper, at the
cost of certain insights as shown by Fuller. It can be seen that
the near-side component is actually increased in magnitude by
channel coupling for angles less than about 80◦. However, the
far-side component exceeds the near-side term beyond about
15◦ and, beyond the Fraunhofer region (i.e., beyond about
35◦–40◦), the far-side term is completely dominant. It is clear
from Fig. 4 that the effect of the coupled reaction channels is
a reduction in the far-side component by almost an order of
magnitude between 40◦ and 169◦, a very substantial effect.

B. Calculation of the DPP

We apply Sl → V (r) inversion [7] to the J -weighted
S matrix as just defined. Figure 5 compares the bare potential
and two inverted potentials, Pot1 and Pot2. These differ in
that, for Pot2, the iterative inversion produced σ values that
were one-tenth those of Pot1 (see Sec. III), resulting in small
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near bare
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FIG. 4. Near and far differential cross sections calculated for the
CRC and bare J -weighted S matrices. The solid line is for CRC-near;
the dashes for bare-near; the dots for CRC-far; and the dot-dashes for
bare-far. The experimental data are included, and the total J -weighted
CRC differential cross section is close to these, as can be seen from
the dot-dashed curve in Fig. 1, omitted here for clarity.

superimposed oscillations visible especially on the smaller
magnitude imaginary term. Judging the significance of these
small-amplitude and short-wavelength wiggles is a subtle and
not wholly resolved problem to which we shall return when
we discuss the inversion of SJ

ll′ .
The real potential is somewhat changed in shape and,

comparing lines 1 and 2 in Table III, we find that it has a
very slightly reduced volume integral JR and rms radius Rrms

R .
Table III also quantifies the very conspicuous increase in
magnitude of the imaginary potential, which now takes a
distinctive wavy shape. This waviness is certainly not an
artifact of the inversion in the way that the small wiggles seen
in Pot2 might be. In this connection, comparing the properties
of Pot1 and Pot2 in Table III, we see that the wiggles on Pot2
scarcely affect JR,Rrms

R , JI , or Rrms
I and we conclude that these

four characteristics are very well determined by the inversion.

TABLE III. Characteristics of the potentials found by inverting the J -weighted S matrix. “Bare”
indicates the bare potential of the CRC calculations; “Pot1” and “Pot2” represent alternative inverted
potentials for the CRC S matrix found by using “Bare” as the SRP; “Daehnick” represents a potential
whose real part is the global deuteron potential of Daehnick et al. [16] and “Potd” represents the
inverted potential for the CRC S matrix found by using “Daehnick” as the SRP.

Description JR (MeV fm3) Rrms
R (fm) JI (MeV fm3) Rrms

I (fm)

1 Bare 402.77 4.464 79.83 5.150
2 Pot1 (Bare SRP) 391.77 4.379 120.55 5.278
3 Pot2 (Bare SRP) 391.83 4.379 120.53 5.277
4 “Daehnick” (see text) 373.16 4.279 116.19 5.250
5 Potd (“Daehnick” SRP) 391.78 4.379 120.55 5.277

054603-5



N. KEELEY AND R. S. MACKINTOSH PHYSICAL REVIEW C 77, 054603 (2008)

-90

-60

-30

0

V
 (

M
eV

)

Bare
CRC-1
CRC-2

0 2 4 6 8 10
r (fm)

-10

-5

0

W
 (

M
eV

)

FIG. 5. Comparing the bare potential (solid line) and the two
inverted potentials Pot1 (dashes) and Pot2 (dots), with the real part
in the upper panel and the imaginary part below.

The imaginary potential is increased in magnitude by the
channel coupling at every radial point. This might be expected,
but it cannot be taken for granted and neither is the fact (not
illustrated) that |Sl| is reduced by the channel coupling for each
l. In many other cases of channel coupling (for one example
see Ref. [1]), there are radial ranges over which the magnitude
of the imaginary potential is reduced, as well as ranges of l

over which |Sl| increases, both of these features being contrary
to what might be expected. In such a case, the DPP (but
not always the potential itself) becomes emissive over certain
radial regions, although the unitarity limit, |Sl| � 1, is never
broken. These effects can be associated with the nonlocality of
the underlying DPP, for which we have here determined a local
representation by inversion. The l dependence and nonlocality
of the underlying DPP are presumably related to the waviness
of the imaginary local potential in Fig. 5. The emissive (and
near-emissive found here) regions in local optical potentials
were discussed in Ref. [17].

The DPP can be made explicit by subtracting the bare
potential from the CRC potential shown in Fig. 5, and this
is shown in Fig. 6. The imaginary part just misses becoming
locally emissive at a point near 3.9 fm, and its form reinforces
our belief that it is wrong to represent a DPP by multiplying a
folding model potential by a normalization factor. The dotted
line in Fig. 6, barely discernible from the solid line, represents
the DPP derived from an independent inversion of the CRC
S matrix starting from a different SRP that we refer to as the
“Daehnick” potential. The real part of this SRP was the central
part of the global deuteron potential of Daehnick et al. [16] but
the imaginary part was not that of the Daehnick potential since
the parameters were erroneously entered. The characteristics
of this SRP are given in line 4 of Table III, and line 5
characterizes the corresponding potential inverted from the
CRC S matrix. A comparison of lines 2 and 5 shows that the
inverted potential is indeed independent of the SRP and that
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FIG. 6. The DPPs corresponding to the two inverted potentials
shown in Fig. 5 (solid and dashed lines) together with the DPP
determined by an independent inversion (dotted line) for which the
“Daehnick” potential was the SRP. The solid and dotted lines are
scarcely distinguishable.

the inversion procedure has led to the unique DPP generated
by the coupling to the channels specified previously.

Concerning the unusual form of the imaginary potential,
we note that the model-independent phenomenology of Ermer
et al. [8] also led to a surprising radial form, though not in
agreement with the specific form found here. Their empirical
imaginary central potential did have an actual emissive region,
which can now be seen as plausible. Although we agree with
the finding of Ermer et al. that the imaginary potential has a
generally wavy shape, the actual “waves” are different. The
origin of the disagreement is unclear, but it motivates the
computationally difficult extension of these calculations to
include stripping as well as pickup channels. Figures 5 and
6 illustrate a common feature of inverted potentials: There
are clear oscillatory features of relatively long wavelength
that may be well determined and are of dynamical origin,
although a simple explanation of the particular form may not
be available. There are also shorter wavelength oscillations,
clearly evident in the dashed curve in Fig. 6, that appear
when the iterative inversion is pushed to very low values of σ

[Eq. (4)]. Although these short wavelength wiggles may
well have some origin in the reaction dynamics, the results
presented in this paper will generally not correspond to the
lowest possible values of σ .

We conclude that, according to this J -weighted treatment,
the very strong effect on the real potential of the coupling of
mass-3 channels, which was found [2] with the zero-range
approximation and prior to the inclusion of nonorthogonality
terms, has largely disappeared, leaving an oscillatory DPP
with an overall repulsive sign and having a volume integral
of magnitude ∼11 MeV fm3 per projectile nucleon. Channel
coupling reduces the rms radius of the real part by almost
0.1 fm. The effect on the imaginary term remains substantial.
We note, however, that breakup channels have also been
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included, and in the discussions of the inversions involving
spin that follow, we shall consider their specific contribution.

VI. FULL SPIN TREATMENT: EXTRACTION OF TENSOR
INTERACTION

The full nondiagonal S matrix SJ
ll′ , calculated as described

in Sec. IV, was subjected to iterative-perturbative inversion
leading to a potential of the form given in Eq. (2). The inversion
procedure described in Ref. [4] is such that all tensor effects are
represented by a TR interaction, with possible consequences
mentioned in the following.

A. Inversion of the S matrix SJ
ll ′ for d + 40Ca

In what follows, we invert the SJ
ll′ generated with the cou-

pling to pickup channels as well as breakup and reorientation
of the deuteron (i.e., all processes except the stripping on the
right-hand side of Fig. 3). The good fit in Fig. 1 corresponds
to these calculations.

It is far from obvious that the full nondiagonal S matrix
SJ

ll′ , which arises when channel coupling is included, can be
reproduced by a local, l-independent potential, including a
(local, l-independent) TR tensor term, in which the various
components have a smooth radial form. In particular, we know
that the inversion of an S matrix generated by an l-dependent
local potential yields, in general, a potential with oscillatory
features [18,19]. Hence, wavy potentials, as found for the
J -weighted case, may reflect genuine dynamics corresponding
to an underlying l-dependent DPP. However, the tendency for
the inversion process itself to lead to potentials with spurious
wiggles becomes greater when there are more components
(tensor and spin-orbit) in the potential. Moreover, we cannot
exclude the possibility that channel coupling might give rise to
effects most naturally represented by TP and TL interactions.
For these reasons, special care must be taken in the present
case to establish what features of the potential can be extracted
with assurance. This amounts to appraising the extent to which
oscillatory features that might arise reflect a genuine property
of the local potential that represents the effects of channel
coupling rather than artifacts of the inversion procedure. To this
end, various independent inversions of SJ

ll′ were undertaken
by using different SRPs and inversion bases. The three SRPs
used were the bare potential, the “Daehnick” potential, and
the potential derived by inversion for the J -weighted case.
The bare potential was itself determined by inversion of the
S matrix from the uncoupled calculation.

The FRESCO [3] coupled channel calculations involve an
iterative algorithm. Since numerical “noise” in the S matrix can
lead to oscillations in the inverted potentials, we verified that
the inverted potentials were unchanged when a more stringent
convergence criterion was applied to the CRC calculations.
We also verified that the final results were not undermined by
a small degree of asymmetry in the CRC S matrix (i.e., SJ

ll′ is
not precisely equal to SJ

l′l for l 	= l′), an artifact of the CRC
code FRESCO in the present application.

When we applied iterative inversion, we found that, in all
cases (with different SRPs, etc.), the first few iterations yielded
a good fit to all parts of the S matrix except the off-diagonal

terms. At the same time, the observables were also fitted
reasonably well except for T21. This is consistent with the
conclusion of Ref. [20] that the TR interaction is predominantly
responsible for T21. At this stage of the inversion, the volume
integral of the real central term is close to that found by
inversion of the J -weighted S matrix.

After further iterations leading to much lower σ 2, three
things happen together: (i) a substantial TR interaction appears,
(ii) T21 is fitted, and (iii) there is a small positive jump
in the magnitude of the volume integral of the real central
component. As a result of this third effect, the net effect of the
channel coupling now appears, in terms of the volume integral
of the real central term, to be attractive, as will be clear from
the DPPs presented in the following.

Table IV encapsulates the characteristics of various poten-
tials in terms of volume integrals as conventionally defined [5].
For comparison, line 1 contains the bare potential. Line 2
represents the J -weighted inverted potential with line 3
containing the differences between values in line 2 and line 1,
characterizing the DPP calculated from the J -weighted S

matrix. A quantitative representation of the final effect of
channel coupling as determined by the full (SJ

ll′ ) inversion
can be found in a comparison of lines 1 and 4 of Table IV. The
difference between the J -weighted and full inversions can be
seen by comparing values in lines 3 and 5. Further lines of this
table are discussed later.

All components of the potential corresponding to line 4
(labeled PU; corresponding to the solid line in Fig. 1) of
Table IV are given by solid lines in Fig. 7. The spin-orbit
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FIG. 7. The solid line represents the components of the “no-spin-
orbit” potential (line 4 of Table IV) and the dashed line the “spin-orbit”
potential (line 7 of Table IV). The components are, in order from
the top, real central, imaginary central, real spin-orbit, imaginary
spin-orbit, real tensor, and imaginary tensor.
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TABLE IV. Volume integrals of potentials as specified in the text. In lines with � in the “Case” column,
the numbers are for the DPPs found by subtracting from the line above the values in line 1; in lines with �̄,
the values in line 6 have been subtracted. All quantities are in units of MeV fm3. The columns headed CR
and CI refer to the real central and imaginary central potentials, respectively. The dashes in the SOR and
SOI columns (real and imaginary spin-orbit) are quantities that are very small in magnitude. The columns
labeled TRR and TRI are for the real and imaginary TR components. The line numbers in the first column are
referred to in the text. In the “Case” column, PU indicates CRC including pickup, STR indicates stripping,
and SO-1 and SO-2 are separate inversions of those CRC calculations in which a spin-orbit interaction was
included in the bare potential.

Case CR CI SOR SOI TRR TRI

1 Bare 402.77 79.83 0 0 0 0
2 J -weighted 391.77 120.55 0 0 0 0
3 � −11.0 40.72 0 0 0 0
4 PU 406.38 124.01 – – −20.26 −4.98
5 � 3.61 44.18 – – −20.26 −4.98
6 Bare-SO 402.76 78.82 3.33 – 0 0
7 SO-1 409.74 123.10 3.10 – −19.80 −3.26
8 �̄ 6.97 43.27 0.23 – −19.80 −3.26
9 SO-2 409.98 123.50 3.12 – −19.99 −3.22

10 �̄ 7.21 43.76 0.21 – −19.99 −3.22
11 PU + STR 405.71 131.25 – – −18.70 −5.64
12 � 2.94 51.42 – – −18.70 −5.64
13 STR 414.90 112.90 – – −13.91 −7.72
14 � 12.13 33.07 – – −13.91 −7.72

terms, shown in the third and fourth panels of this figure, are
highly oscillatory although small in magnitude and average
to zero, having very small volume integrals (c.f. Sec. VI B;
recall that the bare spin-orbit potential was zero in this case).
The general form of the real TR tensor potential, shown in a
typical inversion as a solid line in the fifth panel in Fig. 7, is
attractive for r less than about 4 fm and repulsive for r greater
than about 4 fm. This general feature is well established on the
basis of many inversions with different inversion bases, SRPs,
etc. The fact that the repulsive region is beyond 4 fm explains
why the net effect in terms of volume integral is negative, as
expressed by the values in the TRR column of Table IV. The
imaginary tensor term, being smaller in magnitude, is more
obscured by superimposed oscillations, but there is also a clear
tendency, reflected in the volume integral and rms radius, for
it to be negative for r less than about 5 fm and positive further
out.

The fact that JR for the real central potential is systemat-
ically slightly greater for the full coupled channel inversions
than it is for the J -weighted inversion (and � for JR , line 5, for
the real DPP is slightly positive rather than negative as it is in
line 3) appears to be linked to the properties of the TR

interaction. From the expressions at the end of Sec. II it
can be seen that we can define an l-weighted tensor force
factor ∑

l

(2l + 1)〈J l|TR|J l〉 = − 2

2J + 1
. (8)

Thus, a negative tensor interaction also contributes an effect
equivalent to a positive central interaction. It is for this reason
that the volume integral of the real central potential increases

somewhat at that stage in the iterative inversion process when
the substantial TR interaction appears. At the same stage
in the iterative process, the rms radius of the real central
potential jumps from ∼4.38 to ∼4.48 fm, as expected from
the fact that the tensor interaction changes sign at ∼4 fm to
become repulsive at larger radii. Similar effects, although less
marked, occur with the imaginary term, too. This interplay
between the central and tensor interactions implies, through
the J -dependence in Eq. (8), some degree of waviness in
the l-independent central potential, and probably the tensor
interaction, that we extract. The oscillatory features that are
evident on the small components of the potential can be
understood in terms of the previously mentioned fact that
strongly l-dependent potentials, whether parity dependent or
having other forms of l dependence, can be represented by
l-independent potentials having oscillatory or other nonregular
shapes [18,19].

In Fig. 8, we compare the central components of the
DPPs found in Sec. V B for the J -weighted inversion and
for inversion of SJ

l′l . The real parts differ from each other in a
manner that is exactly consistent with our discussion centering
around Eq. (8). For example, they are very close at around
4 fm, the radius where the real tensor interaction switches from
attraction to repulsion; at this radius the difference between the
two curves changes sign. The increase in rms radius that was
found for the J -weighted S matrix becomes in the full case a
very small decrease (less than 0.01 fm). This change between
J -weighted and full inversions appears to be consistent with
the upper panel of Fig. 8. The imaginary parts of the DPPs are
very close, but that derived from SJ

l′l becomes slightly emissive
at a point near 4 fm.
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FIG. 8. Comparing the central DPPs for the J -weighted inversion
(solid line) and the full inversion (dashed line); the real part is above
and the imaginary part is below.

In summary, the present calculations reveal the following
general properties of the l-independent, local DPP (see also
line 5 of Table IV):

(i) Although the real central component of the DPP has a
small volume integral, indicating marginally increased
overall attraction, this term is not negligible point by
point.

(ii) The imaginary central part of the DPP is substantial and
generally absorptive, although the strong oscillatory
character includes a small excursion into emissivity.

(iii) The real and imaginary spin-orbit components are
oscillatory, but both have virtually zero volume in-
tegrals. The amplitude of the oscillations is small
compared to the magnitude of the central terms.

(iv) A consistent pattern emerges for the tensor force: At
the nuclear center there is attraction and absorption;
at the nuclear surface there is repulsion and emission.
The oscillations on the imaginary part, but not the real
part, are not very small compared to their magnitude;
however, the volume integrals of both parts appear to
be well determined.

B. Inclusion of spin-orbit interaction in the deuteron potential

In the calculations described thus far, a spin-orbit inter-
action was omitted from the bare deuteron potential. The
general importance of this interaction in deuteron scattering
was explored in Ref. [21]. It was not computationally feasible
to refit the elastic scattering data with a search over all
the parameters, including those for the spin-orbit term, in
a full CRC calculation that included all the pickup and
other channels. However, we can exploit the approximate
linearity of the nuclear scattering system (the basis of the IP
inversion algorithm [7]) to verify that our general conclusions
concerning the DPP are not affected by this omission. To

do this, we simply added the spin-orbit interaction from
the Daehnick global potential to the bare potential and did
a single CRC calculation that included all the pickup and
breakup channels, without refitting parameters. The resulting
S-matrix elements SJ

ll′ were then inverted so that the DPPs
could be compared with those found previously. The resulting
potentials are presented as the dashed lines in Fig. 7. Line 6
of Table IV gives the characteristics of the bare potential,
determined by inversion of SJ

ll′ for an uncoupled calculation
with the spin-orbit term included. Lines 7 and 9 give the
volume integrals for two inversions, with quite different SRPs,
of the CRC SJ

ll′ and lines 8 and 10 give the corresponding
increments. It can be seen that the volume integrals of the DPPs
are well determined and quite similar to the values calculated
with no spin-orbit interaction in the deuteron potential, the
difference, ∼3.5 MeV fm3, being greatest for the real central
component.

We conclude that, in terms of volume integrals, the absence
of the spin-orbit interaction in most of the calculations has not
substantially undermined the results. However, in spite of the
almost identical volume integral, the shape of the imaginary
central potential did change, as seen in the dashed line in the
second panel of Fig. 7. The real spin-orbit term in the third
panel of this figure oscillates about the smooth shape of the
spin-orbit term in the bare potential. A comparison of the
entries in column SOR of lines 6, 7, and 9 of Table IV shows
that the volume integral is close to that of the bare potential.
It follows, therefore, that in this case the channel coupling
has had essentially zero net effect on the spin-orbit potential
apart from the superimposed oscillations. These oscillations
resisted all efforts to eliminate them, and they may be an
l-independent representation of a weak l-dependent spin-orbit
DPP. We conclude that, to facilitate a comparison with the
calculations described in Sec. VI A, it is reasonable to omit
a spin-orbit potential from the deuteron channel potential for
the purposes of the investigations to be described in the next
section.

VII. UNDERSTANDING THE DPP

Two questions naturally arise: First, because the DPP
presented here has contributions from deuteron breakup and
reorientation as well as pickup, what are the individual con-
tributions of these processes to the central and tensor terms?
Second, what contributions would be made by processes that
have been omitted, in particular, stripping? We now describe
a series of calculations in which particular reaction channels
were added or removed to answer such questions. In every
case the parameters of the bare potential were fixed at those
employed in the previous (no-spin-orbit) calculations, with no
effort being made to refit differential cross section data.

A. The contribution of the stripping channels

Historically, the effect of stripping on elastic scattering
was considered before the effect of pickup (see Refs. [22]
and [23]). This may have been inspired by the large stripping
cross section originally attributed to the weak binding of the
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deuteron. However, the pickup vertex is actually stronger than
the stripping vertex although the pickup cross sections are
often reduced by the absorption of the outgoing particle, a
consequence of momentum matching. It is now understood
that the effect of a reaction channel on elastic scattering is
not necessarily larger for reactions with larger cross sections,
but the effects of stripping certainly deserve study. The
complexity of a CRC calculation that includes both pickup
and stripping processes precludes the possibility of fitting the
elastic scattering with a search on the parameters for the bare
potential, as was done for the pickup case.

We added five stripping channels, as specified in Sec. IV,
to the deuteron pickup, breakup, and reorientation channels.
As can be seen from Fig. 3, in the case of stripping there
is coupling between the stripping and breakup channels, and
this will be relevant in what follows. The inverted potential
was characterized by the values given in lines 11 and 12 of
Table IV. The � in line 12, characterizing the DPP, again
refers to the subtraction of the bare potential values in line 1.
One feature is expected: There is an appreciable increase in the
central imaginary potential, � = 51.42 MeV fm3 as compared
with 44.18 MeV fm3 without the stripping (line 5). However,
comparing lines 5 and 12 we find that the magnitudes of some
of the other DPP components decrease. To get a handle on this,
we inverted the CRC SJ

ll′ calculated with stripping included,
but without the pickup coupling, with results shown in lines 13
and 14. These were initially very surprising. There is no direct
coupling between the pickup and stripping channels, and it is
well known that the DPPs arising from channels that are not
mutually coupled should add. This should certainly be true
of the underlying nonlocal and l-dependent DPPs, and it has
been shown to be explicitly true for local DPPs determined
by inversion (see, e.g., Ref. [24]). It is clear that the DPP
components for the case with pickup plus stripping (line 12) are
much smaller in magnitude than the sum of such components
for pickup (line 5) and stripping (line 14) separately. The
answer, of course, is that all of these calculations included
the processes in the central part of Fig. 3 and that there was
coupling between the stripping and breakup channels. This led
us to investigate the role of the deuteron breakup and deuteron
reorientation in the generation of the DPPs.

B. The roles of deuteron breakup and reorientation

To achieve some understanding of the various contributions
to the DPP, we inverted SJ

ll′ for a series of different cases:
(i) deuteron reorientation only, (ii) deuteron breakup plus
reorientation, (iii) stripping with breakup and reorientation,
(iv) pickup with no breakup or reorientation, (v) stripping with
no breakup or reorientation, (vi) stripping with no breakup but
with reorientation, and (vii) stripping to three lumped states
and no breakup, but with reorientation. The “three lumped
states” of case (vii) have the same overall pickup strength
as the larger number of weaker states included in all other
stripping calculations, so that the DPPs for cases (vi) and
(vii) should be very close to the same if the system is linear
and the inversion is reliable (a necessary though not sufficient
condition, unfortunately).

TABLE V. Volume integrals of DPPs calculated from inverted
potentials for various cases. The values were determined by inversion
except in those cases where they were obtained by addition or
subtraction, as in line 3 where the results were arrived at by
subtracting the values in line 1 from those in line 2. The convention
that volume integrals are positive for attractive potentials is used. In
this table, REOR indicates that reorientation is included, BU signifies
breakup, PU signifies pickup, and STR signifies stripping.

Case CR CI TRR TRI

1 REOR 12.32 1.58 −17.04 −2.29
2 REOR + BU 14.21 28.45 −15.45 −4.98
3 L2 − L1 (i.e., BU) 1.89 26.87 1.59 −2.69
4 PU+ REOR +BU 3.61 44.18 −20.26 −4.98
5 L4 − L2 (i.e., PU) −10.60 15.19 −4.81 −0.12
6 L4 − L3 (i.e., PU + REOR) 1.72 17.31 −21.85 −2.29
7 PU + REOR −0.32 16.92 −24.25 −1.7
8 STR (No BU; No REOR) −7.1 7.3 2.1 −2.6
9 L1 + L8 (STR + REOR) 5.22 8.9 −14.9 −4.89

10 STR + REOR 5.03 8.47 −14.19 −4.34
11 STR (3 states) + REOR 5.03 8.47 −14.18 −4.38
12 PU −13.13 16.66 −6.49 −0.62
13 L1 + L12 (i.e., PU + REOR) −0.81 18.24 −23.53 −2.91

Together, these calculations allow us to identify which
processes contribute to the DPP, and also to verify that the
DPPs originating in channels that are not coupled together
do indeed add linearly. The coupling between the stripping
and breakup channels means that the stripping and breakup
DPPs are not additive. We shall not present detailed results
of these calculations but collect in Table V volume integrals
of selected DPPs. In each case these were calculated from
the volume integrals calculated from the inverted potentials
by subtracting the values in line 1 of Table IV. This table
also includes values found by subtracting different DPPs: For
example, “L2 − L1” indicates that the values in line 3 are the
result of subtracting the values in line 1 from those in line 2.
The volume integrals of all spin-orbit terms are very small and
are not included.

From line 1, corresponding to DPPs for the case when
only the reorientation terms are included, we conclude that
the main source of the tensor interaction TR is the deuteron
reorientation process. There is also a real central DPP; this is
related to the effect noted in Sec. VI A that the TR interaction
does make a net contribution to the central potential. Line 2
of the table shows that the addition of coupling to breakup
channels markedly increases the absorptive DPP but has lesser
effects on the other terms.

Since reorientation and breakup are not mutually coupled,
the subtracted values in line 3 represent the effect of breakup
alone. This is predominantly absorptive at this energy with
a very small net attractive effect as measured by the volume
integral. However, breakup induces a significant change in
radial form: The rms radius of the real central potential for the
case of reorientation only was 4.525 fm, whereas that for the
case with both reorientation and breakup was only 4.424 fm.
Comparing these two potentials (not shown) reveals that
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coupling to breakup channels induces repulsion in the surface
and attraction in the nuclear interior. This radial form of the
breakup DPP is consistent with the effect found long ago [25].
In circumstances where the surface is dominant, the effect will
appear as repulsion in spite of the net attraction noted here.

The contribution of the coupling of pickup channels is
represented by line 5, in which the values in line 2 are
subtracted from those in line 4, (line 5 of Table IV) representing
the combined effect of pickup, breakup, and reorientation.
It can be seen that the pickup channels generate an overall
repulsive and absorptive component. Although the radial form
of the real part is significantly changed, the fractional change to
the volume integral is not large. There is, however, a significant
contribution to the absorption and an increase in the strength
of the tensor interaction.

It is interesting to see the additivity of the contributions
in action. By subtracting line 3 (breakup as calculated by
subtraction) from line 4, we should get the effect of pickup
coupling plus reorientation. Line 6 presents these subtracted
values and these agree qualitatively with the values in line
7 that were found by direct inversion of the S matrix for
a coupled channel calculation involving just pickup and
reorientation.

Another illustration of the additivity of DPPs arising
from reaction channels that are not mutually coupled comes
from lines 8, 9, and 10 of the table. Line 8 presents the
characteristics, found by inversion, of the DPP arising from
stripping alone; line 9 adds the values in line 1 to these and
line 10 give the values from direct inversion of the S matrix
from a calculation in which stripping and reorientation are
included. The agreement between the values in lines 9 and
10 is satisfying and indicates that the inversion procedure
is giving consistent values. Note that the somewhat worse
agreement between lines 6 and 7 may be related to the fact
that the subtracted values in line 6 are themselves obtained
by subtraction. We see from line 8 that, in terms of volume
integrals, the effect of stripping is remarkably small. Line 11
presents the stripping effect for the case with three lumped
channels replacing the five with the same overall strength. It is
almost identical to line 10; apart from showing, once more, that
channels that are not mutually coupled have an additive effect,
it is of practical interest in reducing the number of channels
required for the CRC calculation.

We conclude that the volume integrals derived by applying
inversion to coupled reaction channel and breakup calculations
reveal a consistent picture and that the general procedure
employed here for determining the local and l-independent
representation of the dynamic polarization potentials, DPPs,
that correspond to reaction channels, is robust. Further con-
firmation comes from the evaluation of the combined effect
of pickup and reorientation by a third route. Direct evaluation
by inversion of the pickup contribution with no breakup or
deuteron reorientation leads to the values in line 12, which
are qualitatively consistent with the values determined by
subtraction in line 5. Adding these to the values in line 1
gives the values in line 13, which can be compared with the
values in lines 6 and 7.

Altogether, we have achieved a consistent picture of the
contributions of particular reaction channels to the various
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FIG. 9. Dynamic polarization potentials generated by four sets of
reaction channels. From the top the DPP components are real central,
imaginary central, real TR , and imaginary TR . Dotted lines show
reorientation; dashed lines show breakup added; dot-dashed lines
show pickup further added; and solid lines show all (i.e., reorientation,
breakup, pickup, and stripping).

terms in the deuteron optical potential for 52-MeV deuterons
scattering from 40Ca, including, for the first time, the tensor
interaction TR .

Figure 8, referred to earlier, shows the real and imaginary
central DPPs for the case in which the reorientation, breakup,
and pickup channels were included but gives no sense of
how the different processes contribute to the radial forms.
In Fig. 9 we therefore present the buildup of the central and
tensor DPPs, starting with the deuteron reorientation process
and the successive addition of deuteron breakup, pickup, and
stripping. One can see, for example, that stripping, which was
not included in Fig. 8, makes a remarkably small change
to the real central term although it does contribute to the
absorption, consistent with lines 4 and 11 of Table IV. The
shape of the real TR that was discussed around Eq. (8) (i.e.,
attractive for r less than about 4 fm and repulsive for larger
r) is evident. The spin-orbit terms (not shown) are all small,
oscillating about zero, consistent with their very small volume
integrals.

VIII. CONCLUSIONS

The calculations we have described hardly begin to touch
the wealth of phenomena associated with the coupling between
deuteron channels and other channels that can be connected
by direct reactions. All effects arising from the identity of
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particles and exchange processes have been ignored. However,
we have shown that there is no limit to what could be
discovered concerning the local, l-independent representation
of nucleus-nucleus interactions by linking S matrix to potential
inversion to any future reaction calculations.

The present work constitutes an exacting test of the
IP inversion method. As explained in Ref. [7], the in-
stability problems that afflict formal inversion procedures
can be obviated by the use of alternative bases, the con-
trol of iteration limits, etc., as we have discussed in this
paper.

A. Understanding nucleus-nucleus interactions

Folding models derived from nuclear densities and based
on local density models necessarily miss a range of interesting
phenomena related to the specific nature of the interacting
nuclei. Such models cannot be expected to represent the
range of l-dependent and nonlocal effects suggested by the
Feshbach formalism [26]. We also know that l-dependent and
nonlocal potentials can be represented by S-matrix-equivalent
potentials exhibiting wavy features. Moreover, where precise,
wide angular range, elastic scattering data are fitted by supple-
menting folding models with additive components determined
by model-independent searches, the added components are
often found to have wavy features. Moreover, wavy features
have long been found on potentials derived from model-
independent fits to data, independent of folding models; one
of many examples is Ref. [8]. It is all too easy to dismiss
such fits (e.g., “how many parameters are needed to fit an
elephant?”) but there is surely an argument for taking the full
information content of nucleus-nucleus elastic scattering data
as seriously as has been done for many years with electron-
nucleus scattering data. It might now become possible to make
the connection between empirically derived wavy potentials
and the dynamics of nucleus-nucleus potentials. The work
presented here suggests, in principle at least, how this might be
done.

We would put as much emphasis on the general method
presented here, which demonstrably produces consistent po-
tentials corresponding to specific reaction processes, as on
the specific results of the reaction channels actually included.
The coupled reaction channel calculations employed in this
work were not, and could not be, comprehensive in the sense
of including all reaction channels in a rigorous way and
inevitably there are other possible choices of parameters.
Nevertheless, the general features of the DPPs generated
by a range of reaction channels have been found. The
inversion procedure is, we would say, ready and waiting to
be applied to S matrices produced by any future reaction
calculations. It has, for possibly the first time, found the
TR tensor force, for spin-1 particles, generated by reaction
processes.

A specific question addressed by this work is the following:
Where inversion leading to a tensor force is impossible, does a
J -weighted “spinless” inversion have any validity as a means
of determining the central potentials? For example, no one
to our knowledge has come close to achieving inversion

for spin- 3
2 particles, not least because of the forbidding

diversity of possible tensor interactions. Figure 8 suggests
that, indeed, the qualitative features of the central DPP can
be extracted by such means, but if there is a substantial real
tensor effect, it might be expected to modify the detailed
results.

The coupled channel plus inversion procedure has a
disadvantage compared to the direct Green function approach
of Coulter and Satchler [27], for example: It fails to make
explicit the nature of the l dependence and nonlocality of
the DPP. However, it does have two advantages: It directly
yields a local l-independent potential that can be compared
with phenomenological potentials and it is straightforward
within the coupled channel procedure to include all couplings
between excited channels, as well as monitor the reaction cross
sections.

B. Specific implications for deuteron-nucleus interactions

In Ref. [2] it was claimed that coupling to mass-3 channels
generated very large contributions to the deuteron optical
potential and the real part in particular. Here we have shown
that much of the effect goes away with the inclusion of finite-
range and nonorthogonality effects. Nevertheless, there is a
contribution to the real as well as imaginary central potential
although the real part of the DPP has a rather small volume in-
tegral, being positive and negative over different radial regions.
It may well become possible to make a connection between
specific features of the derived DPP and features found in
phenomenological potentials. Moreover, there does remain a
substantial imaginary DPP that can certainly be ascribed to
pickup; this is much larger in magnitude than the absorptive
DPP that is due to stripping. This imaginary part, too, exhibits
wavy features that are characteristic of local potentials that
represent intrinsically nonlocal and/or l-dependent Feshbach
[26] terms. Thus, the form of the DPP, especially the imaginary
part, appears to indicate that the pickup channels contribute in
a way that cannot be represented by means of any local density
model. We deduce, therefore, that such coupling cannot be left
out of a full account of deuteron scattering, although mass-3
and mass-1 reaction channels do not, alone, solve the problem
of understanding deuteron scattering. It is to be hoped that a
more rigorous reaction model, containing exchange processes,
for example, will become computationally feasible. If so, it
will be straightforward to deduce a corresponding potential
that might then be compared with potentials determined by
adding a model-independent phenomenological additive term
to folding model potentials.
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