PHYSICAL REVIEW C 77, 054321 (2008)

Determination of nuclear symmetry energy in the Cornwall-Jackiw-Tomboulis approach
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Within the Cornwall-Jackiw-Tomboulis (CJT) approach a general formalism is established for the study
of asymmetric nuclear matter (ANM) described by the four-nucleon interactions. Restricting ourselves to the
double-bubble approximation (DBA), we determine the bulk properties of ANM, in particular, the density
dependence of the nuclear symmetry energy, which is in good agreement with data of recent analyses.
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I. INTRODUCTION

Inrecent years heavy-ion collisions and, especially, nuclear
reactions induced by radioactive beams have offered a new op-
portunity to consider the isospin degree of freedom in nuclear
physics, namely, to extract from experimental measurements
useful information on isospin-dependent issues of asymmetric
nuclear matter (ANM) such as the equation of state (EOS),
in-medium nucleon-nucleon potentials, etc. It is known that
the binding energy per nucleon of ANM in the parabolic
approximation can be written as

(1.1)

where pp is the baryon density, pp = p, + pp, and @ = (p, —
0p)/(Pn + pp) is the isospin asymmetry with p,, and p, being
proton and neutron densities, respectively. In Eq. (1.1) the
so-called nuclear symmetry energy (NSE)
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and its related quantities play a very important role in under-
standing a lot of interesting astrophysical problems [1-3], dy-
namics of heavy-ion reactions at intermediate energies [4-7],
the structure of neutron-rich nuclei, and the nuclei close to
the drip-line [8—13]. Unfortunately, the density dependencies
of NSE predicted by various models [14] are quite different
from each other at both low and high densities, although
nowadays there has been significant progress, both theoretical
and experimental, in determining NSE at subnormal densities
[15-17]. In addition, it is interesting to mention that the
liquid-gas phase transitions [18] were predicted for nuclear
matter produced in heavy-ion collisions. In the present work
we study the EOS of ANM starting from the Cornwall-Jackiw-
Tomboulis (CJT) effective action method [19,20] and the
four-nucleon model given by the Lagrangian density:
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Here ¥ (x) is the nucleon field, M is the nucleon mass,

T denotes the isospin matrices, and G, , are coupling
constants.
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The article is organized as follows. In Sec. II we derive the
CIJT effective potential corresponding to Eq. (1.3) and then
establish the expression for binding energy per nucleon. The
numerical computation is performed in Sec. III. After we fix
the model parameters, we determine the density dependence
of NSE. Section IV is devoted to the conclusions and outlook.

II. CJT EFFECTIVE POTENTIAL

By bosonization
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Eq. (1.3) takes the form
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It is worth mentioning that the preceding bosonization
established the nucleon-antinucleon bound states that have
the quantum numbers (spin, isospin, and charges) of the o, w,
and p mesons. At the energies of interest in this work, the
only relevant degrees of freedom are hadrons. In this respect,
it is reasonable to identify these bound states to corresponding
mesons, the quark content of which had to be taken into
account when they were created in high-energy N'N collision.

According to Refs. [19] and [20], we obtain the expression
for the CJT effective action
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where ", T#, and I'** are the effective vertices taking into
account all higher loop contributions;
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S, C, D,,, and R33,, are the propagators of nucleon, o, w,
and p mesons, respectively; o, ,and p are expectation values
of the o, w, and p fields in the ground state of ANM,

o = (5) =const., (W)= CL)(S()M, (p) = p83a80u~
The ground state corresponds to the solution of
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Eqg. (2.2) is the gap equation and Eq. (2.3) is the Schwinger-
Dyson (SD) equation for propagators G.

Substituting Eq. (2.1) into Eq. (2.2) we get the gap equations
for o, w, and p, and the SD equation for S, C, D,,, and
R33,,, accordingly,
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X, M,, My 0, and I, ,,, are self-energies of nucleon, o, w,
and p mesons, respectively.

Next let us truncate Eq. (2.1) in the two-loop approximation,
in which case I'y = g5, T'oypp = 8oVu, and T'y, = g,¥,73/2
(see Fig. 1). At first we expand X%(k), a = {p, n}, in terms of
its Dirac components

2Uk) = pZgk) — PRS(k) — T4 (k),
which together with Egs. (2.5) and (2.6) lead to

Sk) = (k* + M) G, (2.72)
G = =28k — M* )y, (2.7b)
kit = ko — B (k), (2.7¢)
ke = k[1 - =9k)], (2.7d)

M} = M + $4(k), (2.7¢)
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FIG. 1. The two-loop graphs that give contribution to the effective potential.

with n;“ being the Fermi distribution function,

na*i _ 1
ko T eEFEu/T 4 q°

E;:ll — /k*2 +Ma*2'

In Eq. (2.7a) we retain only the density dependent
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of nucleon propagators, which is dominant at relatively

low density [21-24]. Inserting respectively Eq. (2.7)
Egs. (2.4), (2.5), and (2.6) we arrive at
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here

MZ* = m? + T, (k), MP* =m? + I,(k),
M = m? + T,(k),
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Finally, after some algebra we get the truncated expression

for V,

mE o, omg m% ) / d*q
2 2 2 2] anp

x (InMZ2 +In M + In M2 + [Mg] >+ [M2]
- 1 [
R o [ dalT )
0

1 [o.¢]
—Tln (n27n2+)] + ;/o qqu[T ln(n(’;*fn(';”)
d’q d*k
Qryt ) @m)t
N (e
x X Mz72
—1 g—k

| q

o2
Mq_k

Bq [ &Pk
2 2/ /
T | Gay | @y

1 Mn*Mn*_ n*kn*X
X/ dX|: q k q

—Tln(n)"nb")] +27°g,

+

nx pn¥ pg02
| EMEP M2,

MP*MP*_ P* [ P*
% (n”*‘+n;*+)(n2**+nz**)+ q My q X

q P* P*pag02
EVE["M3%,

x (ng*f + nqu)(n,f** + nf*+):|

d’q Ak
8 | Gy ] G
1 nn*— _ nn*+ nn*— _ nn*+
[ o[l
_ gk
(ng"™ —ng™") (" — ni”"*)}

w2
quk

+

Bq [ &Pk [
a2 [ 4 / y
T8 | @ | Gar )L

2Mn*Mn* + qn*kn*x

q k — —

|: Enx E* pfe? (”Z* + nZ*+) (nz* + nZ*Jr)
q “k q—k

DMP MY K e e
E[’*E[’*MwZ (nll;* +n¢]p* )(nk +nk )
q k q—k

—7T2g2/ d’q / d’k
r)oeot) @)t

o [

2
1 My,
A [ )}
2
M)~
a? d’k
+7T2g/2> ;qzt 4
2m) 2m)
1 P* g P* * I, Pk
DMPMP* 4 gPkPry
X/ dx[ . p*k px p2 (nl[;* +n5*+)
. EEP*M?,
_ 2Ml’l*Mn* + n*kﬂ*x
x (ng* +n,':*+)— 9k q2
EMEMM]”,
X (n;*f + nZ**)(nZ*_ + ”Z*+):| . (2.10)

Starting from Eq. (2.10) we establish successively the
expressions for the thermodynamical potential €2, the energy
density €, and the binding energy per nucleon €ping:

a/Q=V = Vi, (2.11)
with Vige = V(M, p =0, T = 0).

bje = Q+ pppp + Unpn, (2.12)

c/€vinda = —M +€/pp. (2.13)

It is obvious that all necessary information on dynamics
of our system is provided by Egs. (2.10)—(2.13). However, in
this article, let us restrict ourselves to make use of the double-
bubble approximation (DBA), in which 1, = I1,, =I1, =0,
orequivalently M, = m,, M, =m,, M, = m, (see Fig.2).
Then the expressions in Eq. (2.9) turn out to be very simple
and based on them we define
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+

FIG. 2. The double-bubble graphs that give contribution to the effective potential. V, ~ g2/m?, V,, ~ g2 /m?, V, ~ g /m?.
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III. NUMERICAL COMPUTATIONS
At T = 0 Egs. (2.14)—(2.18) are respectively reduced to

pr =

n*

MP* =

M™ =

V(M*, p,0) =
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1
P = F(k%’ + k;ﬂ),
1
p3 = IOP — Pp = W(k%—p —_ k:;;”). (3-6)

The masses of nucleon and mesons are chosen to be
M =939 MeV, m, = 550 MeV, m,, =783 MeV, and m, =
770 MeV.

The numerical calculation therefore is ready to be carried
out step by step as follows. We first fix the coupling
constants G, and G,. To this end, Eq. (3.3) or Eq. (3.4) is
solved numerically for symmetric nuclear matter (G, = 0).
Its solution is then substituted into the nuclear binding energy
€vind In Eq. (2.13) with V givenin Eq. (3.5) and pp and p3 given
in Eq. (3.6). Two parameters, g, and g,,, are adjusted to yield
the the binding energy Eping = —15.8 MeV at normal density
o8 = po = 0.16 fm™ as is shown in Fig. 3. The corresponding
values for G, and G, are G, = 195.6/M2 and G, = 1.21G,.

As to fixing G, let us employ the expansion of NSE around

00,
L (pp— K — 0\’
Esym=a4+_(03 Po)+ 1S§m <,OBp Po) foen
0

3 £0

with a4 being the bulk symmetry parameter of the Weiszaecker
mass formula. Experimentally we know a4 = 30—35 MeV.
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20;
15}

10t

w

Epin (MeV)

e
Pr/ Po

FIG. 3. The pg dependence of €y;,g in symmetric nuclear matter.

L and Ky, are related, respectively, to slope and curvature of

NSE at pg
oE
L =3pg ( Sym) ,
dpp PB=P0

9?E,
Kom =9 (52)
pB PB=L0

Then G, is fitted to give ay =32 MeV; its value is
G, =0.972G,. Thus, all of the model parameters are known.
Let us now determine the density dependence of NSE. Taking
into account Egs. (1.2), (2.13), (3.5), and (3.6) altogether
and then carrying out the numerical computation with the
aid of The Mathematica Book [25], we obtain Fig. 4; here,

100} P

Eqym (MeV)

[I) 0.5 1 1:5 2 2:5 3
PB/ Po

FIG. 4. The pp/po dependence of Egyy, (solid line), E; (dotted
line) and E, (dashed line).
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for comparison, we also depict the graphs of the functions
Ei = 32(pgp/po)*” and E> = 32(pp/po)'"'.

It is easily verified that Eyy,(pp) with the graph given in
Fig. 4 can be approximated by the function

Esym ~ 32(pp/po)".

The preceding expression for NSE is clearly in agreement with
the analysis of Refs. [14,15,26], in which the experimental
data [27] were processed within the isospin- and momentum-
dependent IBUUO4 transport model [28]

32(pp/p0)"" < Esym(pp) < 32(pp/po)"".

To proceed further let us go to the isobaric incompressibility
of ANM, which at saturation density can be expanded around
o = 0 to second order in « as [17,29]

K(a) ~ Ko+ Kqsyo?.
with K,y being the isospin-dependent part [30]
Kasy & Kgym — 6L.

K.y can be extracted from experimental measurements of
giant monopole resonances in neutron-rich nuclei. Ky is the
incompressibility of symmetric nuclear matter at py.

In the following are given, respectively, the computed
values of parameters directly connected with NSE:

(i) The slop parameter L = 105.997 MeV, which is con-
sistent with the result of Refs. [15] and [26].

(i) The symmetry pressure Poym = poL/3 =
434 107 MeV* =0.0286 fm~“, which is very
useful for structure studies of nuclei.

(iii) Kasy = —549.79 MeV. This value is in good agreement
with the one determined from the use of in-medium NN
cross section in the IBUUO4 model, K5, = —500 &
50 MeV [13-15,26,31].

(iv) Ko = 547.56 MeV.
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Finally the shift of the nuclear saturation density with
asymmetry at lowest order in « reads
3poL _

Apy = — = —713661 MeV? = —0.093 fm—>.
0

IV. CONCLUSION AND OUTLOOK

Developing the previous work [19] we have carried out in
this article a more realistic study concerning isospin degree of
freedom of ANM. The EOS of ANM given in Eq. (1.1) and
Eq. (2.13) is our principal result. The DBA was used to
compute numerically the density dependence of NSE and
other physical quantities of ANM. The obtained results are
quite consistent with recent works, except for Ky, which is
too large. This is the shortcoming of the present model. It is
proved [32,33] that within the mean-field approximation the
nonlinear point-coupling model yielded softer incompressibil-
ity of symmetric nuclear matter when higher-order interactions
of nucleons were taken into consideration. In this respect,
studying this model beyond the mean-field theory [34] is
probably a very important problem for understanding many
important nuclear properties. It is evident that EOS of ANM is
a fundamental issue for both nuclear physics and astrophysics.
It governs phase transitions in ANM. However, we should
bear in mind the fact that phase transitions are basically
nonperturbative phenomena. Therefore, in this research do-
main we really need a nonperturbative approach. It is our
EOS that was obtained by means of the CJT effective action
formalism, a famous nonperturbative method of quantum field
theory, and, as a consequence, it could be most suitable for the
study of phase transitions and other nuclear properties beyond
mean-field approximation [35].
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