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Classes of β-γ mixing and E0 transitions in deformed nuclei
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We investigate the effects of β-γ mixing using branching ratios between the 2+
γ level and the ground state

band in well-deformed nuclei. We find that the deviations from the well-known Alaga rules vary as a function of
the energy separation between the 2+

γ and 2+
β levels. For nuclei where these two intrinsic excitations are nearly

degenerate, we find two classes of behavior. For one of those, the systematics can be reproduced in a simple
bandmixing formalism but only with an anomalously strong interaction strength between the 2+

γ and 2+
β levels,

on the order of tens of keV. This result is supported by X(E0/E2; 2+
γ → 2+

1 ) values that are large for these nuclei
(where measured), indicating significant K = 0 components in the 2+

γ levels. In the other class, there is virtually
no mixing. These nuclei have previously been associated with near-SU(3) structure.

DOI: 10.1103/PhysRevC.77.054320 PACS number(s): 21.10.Re, 21.60.Ev, 27.70.+q

The deformed axially symmetric rotor [1] has been a
benchmark for describing structure for over 50 years. To first
order, it provides a starting point for describing and under-
standing energies and electromagnetic transition strengths.
E2 transition strengths, in particular, can provide sensitive and
important information on collective structural effects. In the
case of a deformed axially symmetric rotor, the rotational and
intrinsic excitations can be decoupled, at least at low spin. This
allows the E2 transition matrix element between members
of two collective bands to be expressed as a product of a
Clebsch-Gordon coefficient and a reduced matrix element, the
latter being independent of the spins of the levels involved. A
ratio of reduced E2 transition probabilities between members
of such bands is then just a ratio of the squares of the
appropriate Clebsch-Gordan coefficients, as given by the
well-known Alaga rules [2].

It is a well-studied phenomenon that, especially for the
γ band, the simple predictions given by the Alaga rules
are not completely fulfilled due to the small breakdown of
the adiabatic assumption. Nonadiabatic coupling is usually
described through bandmixing between the ground band and
γ and β bands. We note that, within this article, we use
the term “β” band simply as a label for the first excited
K = 0+ band, because microscopically, such excitations are
forbidden within a major shell [1]. The formalism for bandmix-
ing was discussed by Lipas [3], followed by its application to
a number of well-deformed nuclei [4–6]. Usually, bandmixing
is constrained to an analysis in terms of �K = 2 mixing
between the γ band and ground band. Including higher order
mixing with the β band has been attempted, but is usually less
successful.

It is the purpose of the present article to investigate
deviations from the Alaga rules systematically for a wide
range of nuclei in the well-deformed rare-earth region.
We analyze deviations in branching ratios in terms of a simple
bandmixing formalism incorporating mixing between the γ, β,
and ground bands. Contrary to previous studies, we find that
for a significant number of nuclei, where the energies of the 2+

γ

and 2+
β levels are close, a quite large mixing matrix element

between β and γ is required to reproduce the systematics.

In a second class of nuclei where these energies are also
nearly degenerate, there is little or no mixing. These results
are further supported by an analysis of X(E0/E2; 2+

γ → 2+
1 )

values in these nuclei. The key to this analysis will be to view
the mixing as a function of the energy difference between the
β and γ bands.

In Fig. 1(a), the branching ratio, B(E2; 2+
γ → 0+

1 )/
B(E2; 2+

γ → 4+
1 ) is plotted as a function of mass number,

A. In the Alaga limit, this ratio takes on a value of 14.3.
We constrain the data in Fig. 1 to the rare-earth region with
60 � Z � 76 and R4/2 ≡ E(4+

1 )/E(2+
1 ) > 2.90 to consider

only those nuclei close to deformed or well-deformed. This
branching ratio was chosen as a starting point, because the
transitions can be taken as pure E2 and therefore knowledge
of an E2/M1 mixing ratio is not required. The data points
show complete scatter with no obvious correlation.

In Fig. 1(b), the same branching ratio is plotted now as a
function of the energy difference between the 2+

γ and 2+
β levels.

Plotted in this way, several distinct patterns now emerge from
the data. First, there is a group of nuclei where the energies
of the 2+

γ and 2+
β levels are nearly equal and the branching

ratio is close to the Alaga predictions. These two features are
precisely those of the SU(3) limit of the Interacting Boson
Approximation (IBA) model [8]. The nuclei in this group
include 156,158Gd, 170,176Yb, and 176,178,180Hf. These nuclei are
indicated by the open circles in Fig. 1(b). The Gd nuclei were
one of the first proposed [9] examples of SU(3) behavior and
the heavy Yb and Hf nuclei near N = 104 have also been
discussed [10] in terms of SU(3) characteristics. The focus of
the present discussion will be on a second pattern observed
in Fig. 1(b). There is another group of nuclei that also have
nearly equal 2+

γ and 2+
β energies, but the branching ratios have

very small values, ∼0. Third, in nuclei where the 2+
γ and 2+

β

levels become further apart in energy, there is a systematic
trend that, with increasing energy separation between 2+

γ and
2+

β , the branching ratio increases toward the Alaga ratio.
In Fig. 2, the branching ratio B(E2; 2+

γ → 2+
1 )/B(E2;

2+
γ → 0+

1 ) is plotted, again as a function of the energy
separation between the 2+

γ and 2+
β levels. In the Alaga limit,
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FIG. 1. Branching ratio, B(E2; 2+
γ → 0+

1 )/B(E2; 2+
γ → 4+

1 ),
plotted as (a) a function of mass number, A, and (b) a function of the
energy difference between the 2+

γ and 2+
β levels. Nuclei included in

the figure are the Nd-Os isotopes that have R4/2 > 2.90. Data are from
Ref. [7]. The dashed line indicates the value obtained in the Alaga
limit. In the case of panel (b), open symbols denote the SU(3)-like
nuclei described in the text.

this ratio takes on a value of 1.43. For this branching ratio,
the E2/M1 mixing ratio for the 2+

γ → 2+
1 transition has not

been measured for some of the nuclei. The corresponding
branching ratios are included in Fig. 2 (denoted by triangles
with downward arrows) assuming pure E2 character for the
transitions and can be taken as upper limits. The SU(3)-like
nuclei described above are again denoted by open circles.

The SU(3)-like nuclei mentioned above all have values of
B(E2; 2+

γ → 2+
1 )/B(E2; 2+

γ → 0+
1 ) close to the Alaga limits.

For most nuclei, this branching ratio lies above the Alaga
predictions, with the exception of a few nuclei, again with the
2+

β and 2+
γ levels close in energy, which have ratios below the

Alaga limits.
We now attempt to describe the overall features of Figs. 1

and 2 using simple mixing of the γ, β, and ground state bands.
Since this approach has been well described in previous work
[3], we omit a detailed description of the formalism. We follow
the convention given in Ref. [3] and for convenience present
the final results for the first- and second-order effects of mixing
of the γ band into the ground band and the mixing between the
γ band and β band, respectively, in Table I. The parameters

TABLE I. Correction factors for the reduced E2 transition
strengths between states of the γ band and the ground band. Adopted
from Ref. [3].

Ii If
B(E2;Ii→If )
Bo(E2;Ii→If )

I − 2 I [1 + (2I + 1)Zγ + I (I − 1)Zβγ ]2

I − 1 I [1 + (I + 2)Zγ ]2

I I [1 + 2Zγ − 1
3 I (I + 1)Zβγ ]2

I + 1 I [1 − (I − 2)Zγ ]2

I + 2 I [1 − (2I + 1)Zγ + (I + 1)(I + 2)Zβγ ]2

Zγ and Zβγ are measures of the mixing amplitude between
the γ and ground band and the γ and β bands, respectively.

We first consider if the deviations from the Alaga rules
shown in Figs. 1 and 2 can be explained by simple �K = 2
mixing between the γ band and ground band, effectively set-
ting Zβγ = 0, using the corrections given in Table I. Figure 3(a)
gives the branching ratios from the γ band to the ground state
band, B(E2; 2+

γ → 0+
1 )/B(E2; 2+

γ → 4+
1 ) and B(E2; 2+

γ →
2+

1 )/B(E2; 2+
γ → 0+

1 ), as a function of only the γ -ground
mixing term, Zγ . We consider here only positive values of
Zγ , consistent with previous determinations. To obtain small
values of the branching ratio B(E2; 2+

γ → 0+
1 )/B(E2; 2+

γ →
4+

1 ), significantly large values of Zγ (>0.1) are required. For the
ratio B(E2; 2+

γ → 2+
1 )/B(E2; 2+

γ → 0+
1 ), all values are 1.43

or greater if just the Zγ term is used to describe the mixing.
By comparing the γ to ground mixing calculations in

Fig. 3(a) with the data in Figs. 1(b) and 2, it becomes evident
that for over half of the nuclei in Fig. 1, the deviations from
the Alaga rules cannot be explained through simple mixing of
the γ band with the ground band. In particular, those nuclei
in Fig. 1(b) in which the branching ratio is less than 3 would
require very large values of Zγ .
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FIG. 2. Branching ratio, B(E2; 2+
γ → 2+

1 )/B(E2; 2+
γ → 0+

1 ),
plotted as a function of the energy difference between the 2+

γ and 2+
β

levels. Nuclei included in the figure are the Nd-Os isotopes that have
R4/2 > 2.90. Data are from Ref. [7]. The dashed line indicates the
value obtained in the Alaga limit. Open symbols denote the SU(3)-like
nuclei described in the text. Open triangles with downward arrows
represent upper limits for those nuclei where the E2/M1 mixing ratio
has not been measured.
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FIG. 3. (a) Branching ratios from the γ band to the ground state
band as a function of Zγ calculated using simple �K = 2 bandmixing
between the γ band and ground band. (b) Experimental Zγ values
extracted using the branching ratio from the 3+

γ level, B(E2; 3+
γ →

2+
1 )/B(E2; 3+

γ → 4+
1 ) plotted as a function of the energy difference

between the 2+
γ and 2+

β levels. Open symbols denote the group of
SU(3)-like nuclei described in the text.

To proceed, we first extract values of the Zγ parameter that
are independent of mixing with the β band. That is, we deter-
mine the mixing parameter Zγ from experimental data using
the ratio B(E2; 3+

γ → 2+
1 )/B(E2; 3+

γ → 4+
1 ). Using the decay

of the odd-spin member of the γ band allows for isolation of
the just the Zγ term, as given in Table I. Considering only those
nuclei where the E2/M1 mixing ratio is known for the above
transitions, the calculated Zγ values are given in Fig. 3(b),
plotted as a function of the energy difference between the 2+

γ

and 2+
β levels. The extracted Zγ values range from 0.02 to 0.10,

in agreement with previous systematic studies [11]. Although
some scatter is present, there is an overall systematic behavior
that is observed. On average, nuclei with |E(2+

γ )-E(2+
β )| <

300 keV have Zγ values ∼0.08–0.10, whereas for nuclei
with |E(2+

γ ) − E(2+
β )| > 300 keV, the Zγ values are mostly

between 0.03 and 0.04.
We now determine if including mixing between the γ

and β bands can account for the behavior in Figs. 1(b) and
2 and extract the necessary strength required. To do this,
we effectively work “backward,” assuming different matrix
elements between the γ and β bands and calculate the
corresponding effect on the branching ratios. In the limit of
small mixing, the mixing amplitude (amplitude of unperturbed

β state in γ state) can be written as

ε′
βγ (J ) ∼ 〈φβ(J )|V�K=2|φγ (J )〉

[Eγ (J ) − Eβ(J )]unp
≡ Vβγ

�Eγβ

, (1)

where, for the sake of simplicity, we have neglected the
difference between perturbed and unperturbed spacings. The
spin independent part of the mixing amplitude, εβγ , is related
to ε′

βγ (J ) by

ε′
βγ (J ) = εβγ

√
(J − 1)J (J + 1)(J + 2), (2)

which reduces to ε′
βγ = √

24εβγ for J = 2. The band mixing
parameter Zβγ is given by

Zβγ =
√

6
Qβ

Qγ

εβγ , (3)

with Qβ =
√

B(E2; 2+
β → 0+

1 ) and, similarly, Qγ =√
B(E2; 2+

γ → 0+
1 ). There are several well-deformed nuclei

where the above absolute transition strengths have been
measured. For example, the ratio of B(E2; 2+

β → 0+
1 )/

B(E2; 2+
γ → 0+

1 ) in 156Gd [12], 160Dy [13], 172Yb [14],
and 176Hf [15] is measured as 0.14(1), 0.13(2), 0.18(2),
and 0.25(6), respectively. We use an average value of
B(E2; 2+

β → 0+
1 )/B(E2; 2+

γ → 0+
1 ) = 0.15, leading to

Zβγ ∼ 0.90εβγ .
Combining the above, Zβγ can be written as

Zβγ ∼ 0.2Vβγ

�Eγβ

, (4)

which involves the absolute β-γ mixing matrix element and
the spacing between the 2+

γ and 2+
β levels.

We take the form of Zβγ given in Eq. (4) for use in the
correction factors given in Table I. Values for the B(E2; 2+

γ →
0+

1 )/B(E2; 2+
γ → 4+

1 ) branching ratio, calculated for several
different values of the β-γ mixing matrix element are given in
Fig. 4. Figure 4 (top) uses a Zγ value of 0.035, Fig. 4 (middle)
uses a Zγ value of 0.08, and the bottom panel of Fig. 4 is
a combination of the Zγ values for different energy ranges:
Zγ = 0.035 in the range |�Eγβ | > 300 keV and Zγ = 0.08
in the range |�Eγβ | < 300 keV.

With a Zγ value of 0.035, the nuclei with a large energy
separation between the 2+

β and 2+
γ levels are well described by

a small βγ mixing matrix element. For the region of the small
�Eγβ , however, the predicted branching ratio rises sharply and
significantly overpredicts the data. For small values of �Eγβ ,
the data can only be described by significantly larger values
of Vβγ . Increasing the value of Zγ to 0.08, as in the middle
panel of Fig. 4, results in an overall decrease in the value
of the branching ratio. This is clearly not applicable to those
nuclei with large values of �Eγβ , but does provide a better
description of the nuclei with small �Eγβ . A rather large βγ

matrix element is also required to reproduce the systematic
trend observed in the data. Considering both the systematics
observed in Zγ and the results obtained in the top and middle
panels of Fig. 4, we couple two sets of calculations using
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FIG. 4. (Color online) Branching ratio, B(E2; 2+
γ → 0+

1 )/
B(E2; 2+

γ → 4+
1 ), plotted as a function of the energy difference

between the 2+
γ and 2+

β levels. The data are the same as in Fig. 1.
The lines represent calculations using the correction factors given in
Table I for different strengths for the matrix element between the 2+

γ

and 2+
β levels. In the top (middle) panel a Zγ value of 0.035 (0.08)

is used in the calculation. The bottom panel is a combination of the
top and middle panels with Zγ = 0.035 used in the range |�Eγβ | >

300 keV and Zγ = 0.08 used in the range |�Eγβ | < 300 keV.

Zγ = 0.035 in the range |�Eγβ | > 300 keV and Zγ = 0.08
in the range |�Eγβ | < 300 keV, in the bottom panel of Fig. 4.

In Fig. 5, we apply the same analysis to the branching
ratio B(E2; 2+

γ → 2+
1 )/B(E2; 2+

γ → 0+
1 ), varying Zγ in the

energy ranges described above. The data for large �Eγβ are
again well described by Zγ = 0.035 and a small Vβγ term.
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FIG. 5. (Color online) Branching ratio, B(E2; 2+
γ →

2+
1 )/B(E2; 2+

γ → 0+
1 ), plotted as a function of the energy

difference between the 2+
γ and 2+

β levels. The data are the same as in
Fig. 2. The lines represent calculations using the correction factors
given in Table I and assuming different strengths for the matrix
element between the 2+

γ and 2+
β levels. The Zγ values used in the

calculations are Zγ = 0.035 in the range |�Eγβ | < 300 keV and
Zγ = 0.08 in the range |�Eγβ | < 300 keV.

Excluding the SU(3)-like nuclei, the data for nuclei with small
�Eγβ are also again well described by the larger Zγ term and
a large βγ mixing matrix element. It is clear, however, that the
data are lacking in the region for �Eγβ values between −300
and 0 keV, that would firmly distinguish which interaction
strength is most appropriate. In addition, this branching is not
very sensitive to the mixing matrix element. For example, for
�Eγβ = 200, Vβγ = 5 keV predicts a branching ratio of 2.2
whereas Vβγ = 20 keV predicts a branching ratio of 1.9. For
a number of points, these predictions lie within the range of
the experimental error. There are several data points, however,
that still support a strong interaction strength between the 2+

γ

and 2+
β levels.

In formulating the above analysis, we assumed that the
deviations observed in the branching ratios of the 2+

γ →
ground transitions stem entirely from mixing with the ground
band and the β band. While the correlation between the
variation in the Alaga ratios and the energy difference between
the 2+

γ and 2+
β levels suggests that the β band in fact is

responsible for the observed deviations, we cannot rule out
mixing from higher lying states using an analysis of only E2
ratios.

The amount of K = 0 mixing into the γ band can be further
investigated using the ratio of E0 and E2 reduced transition
probabilities in the 2+

γ → 2+
1 transition. The X(E0/E2) ratio

can be determined experimentally from

X(E0/E2; 2+
γ → 2+

1 )

= 2.54 × 109A4/3E5
γ q2(E0/E2; 2+

γ → 2+
1 )

αK (E2)

�K (Z, k)
,

(5)

where Eγ is in units of MeV and �K (Z, k) is an electronic
factor available from the tables given in Ref. [16]. The
E0/E2 mixing ratio is calculated from the experimental and
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FIG. 6. X(E0/E2; 2+
γ → 2+

1 ) ratio plotted as a function of the
energy difference between the 2+

γ and 2+
β levels. Data are from

Ref. [7], except for a select number of W and Os isotopes that are
taken from Refs. [17] and [18].

theoretical K conversion as

q2(E0/E2) ∼ α(exp)

α(E2)
− 1 (6)

in the simplest case where the M1 component of the transition
is negligible. Because E0 transitions follow the �K = 0
selection rule, X(E0/E2; 2+

γ → 2+
1 ) > 0 would indicate the

existence of a K = 0 component in the 2+
γ band level.

The experimental X(E0/E2; 2+
γ → 2+

1 ) values are given in
Fig. 6, plotted as a function of the energy separation between
the 2+

β and 2+
γ levels. The errors associated with the X(E0/E2)

values are often large, on the order of 50%. Nevertheless, there
is often more than an order of magnitude difference between
the experimental values when �Eγβ is large (small values of

X(E0/E2)) compared to when �Eγβ is small. Indeed, for
|�Eγβ | < 300 keV, there is a significant contribution of E0
strength in the X(E2/E0) ratio. This re-affirms the argument
from the E2 transitions that large β-γ matrix elements are
needed to reproduce the E2 branching ratios in these nuclei.
The only exception are (open symbols in Fig. 6) nuclei close in
structure to SU(3) where the mixing is minimal and X(E0/E2)
is small as well.

In conclusion, we applied a simple bandmixing formalism
incorporating mixing between the ground, β, and γ bands to
the E2 branching ratio from the 2+

γ state in well-deformed
rare-earth nuclei. It is found that in those nuclei where the
2+

γ and 2+
β levels are well separated in energy, γ -ground

mixing and a small mixing matrix element between the β

and γ bands reasonably reproduce the experimental branching
ratios. However, there seems to be two distinct classes of
deformed nuclei with nearly degenerate β and γ bands: those
near the SU(3) limit where these two intrinsic states belong
to the same representation and have virtually no mixing, and
a second class with nearly maximal mixing and anomalously
large mixing matrix elements. Evidence that this large mixing
matrix element indeed arises from mixing with the K = 0, β

excitation is supported by large X(E0/E2; 2+
γ → 2+

1 ) ratios in
nuclei where the energies of the 2+

γ and 2+
β levels are similar.

The X(E0/E2) values are a highly sensitive signature of such
mixing.
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