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We study the spatial structure of four valence neutrons in the ground state of ®He and '8C nuclei using
a core+4n model. For this purpose, we employ a density-dependent contact interaction among the valence
neutrons, and solve the five-body Hamiltonian in the Hartree-Fock-Bogoliubov (HFB) approximation. We show
that two neutrons with the coupled spin of § = 0 exhibit a strong dineutron correlation around the surface of these
nuclei, whereas the correlation between the two dineutrons is much weaker. Our calculation indicates that the
probability of the (1p; /2)4 and [(1p3 /2)2( D1 /2)2] configurations in the ground state wave function of *He nucleus
is 34.9% and 23.7%, respectively. This is consistent with the recent experimental finding with the 8He(p, t)°He
reaction, that is, the ground state wave function of 8He deviates significantly from the pure (1 p3 /2)4 structure.
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I. INTRODUCTION

It has been well recognized that the pairing correlation and
couplings to the continuum spectra play an essential role in
weakly bound nuclei [1,2]. Although the dineutron structure
as a consequence of the pairing correlation has been suggested
for some time in ''Li and ®He nuclei [1,3], it was only
recently that a strong indication of its existence was obtained
experimentally in the Coulomb dissociation of ''Li [4]. The
new measurement has stimulated lots of theoretical discussions
on the dineutron correlation, not only in the 2xn halo nuclei,
"Li and ®He [5-8], but also in medium-heavy neutron-rich
nuclei [9,10] as well as in infinite neutron matter [11,12].

InRef. [7], we have studied the behavior of valence neutrons
in ''Li at various positions from the center to the surface of the
nucleus. We have found that (i) the two-neutron wave function
oscillates near the center whereas it becomes similar to that
for a bound state around the nuclear surface, and (ii) the local
pair coherence length has a well pronounced minimum around
the nuclear surface. This result clearly indicates that a strong
dineutron correlation between the valence neutrons is present
on the surface of the nucleus.

An important next question is how the spatial structure of
valence neutrons evolves from that in the 2n-halo nucleus,
HLi, when there are more numbers of neutrons. Although
Refs. [9,10] have partially addressed this question by studying
a two-particle density for medium-heavy neutron-rich nuclei,
one would also need to explore a four-particle density, or many-
particle density in general, in order to shed light on the ground
state properties of neutron-skin nuclei.

For this purpose, *He makes the most suitable nucleus to
study. 8He is expected to have the « + 4n structure [13-20],
and thus provides a bridge between the 2n-halo nuclei and
heavier skin nuclei. We mention that the spatial structure
of the four valence neutrons in He has been discussed in
Ref. [16], where the authors constructed the ground state
wave function by assuming that the four neutrons occupy
the 1p3/, state in a harmonic oscillator potential. However,
this model is too simplistic, since it completely neglects the
pairing correlation and the continuum couplings. Notice that
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the mixing of many partial wave components, especially those
with different parities, is essential in order to have a spatially
compact dineutron structure [9,10,21]. In fact, we do not see
any indication of dineutron correlation in the result of Ref. [16]
(see Fig. 2 of Ref. [16]), despite that the dineutron structure is
expected to be enhanced in many neutron-rich nuclei [7,9,10].

The purpose of this paper is to reinvestigate the spatial
structure of the four valence neutrons in ®He by taking into
account consistently the pairing and the continuum effects.
To this end, we use the core+4n model, and diagonalize
the five-body Hamiltonian in the Hartree-Fock-Bogoliubov
(HFB) approximation. We also study the '8C nucleus as
another nucleus which is expected to have the core+4n
structure [22-25]. We will demonstrate below that the pairing
correlation leads to the strong dineutron structure in 8He and
18C in contrast to the result of Ref. [16].

The paper is organized as follows. In Sec. II, we detail
the HFB method based on the core+4n model. In Sec. III,
we apply the method to ®He, where the result of the exact
diagonalization of the three-body (« + n + n) Hamiltonian
has been obtained [6,26]. We compare the HFB result with the
exact result, and discuss the applicability of the HFB method
for the study of the spatial structure of valence neutrons. In
Sec. IV, we present the results for the 8He and '8C nuclei.
We discuss the two- and four-particle densities, as well as the
probability of the single-particle components in the ground
state wave function. We then summarize the paper in Sec. V.

II. HFB METHOD FOR A CORE+4rMODEL
A. HFB equations

In order to study the structure of the 3He and '8C nuclei,
we employ the core+4n model, and consider the following
Hamiltonian:

2
H = Z |:25Z—ZN + VnC(ri)] + Z Vnn(ri — 1) —

i=1 i<j
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Here, my is the nucleon mass, A is the mass number of the
nucleus, V,¢ is a potential between a valence neutron and
the core nucleus, and v,, is the pairing interaction among
the valence neutrons. T, is the kinetic energy for the center
of mass motion of the whole nucleus. In Refs. [6,26], the
center of mass motion is treated exactly by introducing the
recoil kinetic energy of the core nucleus (see Ref. [14] for the
derivation of the recoil term). In this paper, we approximate
the treatment by taking only the diagonal components in T, ,
as is often done in mean-field calculations [27] (notice that the
off-diagonal components contribute only to the exchange part
of the mean-field potential). This leads to the renormalization
of the nucleon mass, m = A/(A — 1) - my.

Although the five-body Hamiltonian (3) could be diagonal-
ized exactly, e.g., with the stochastic variational method [15],
we seek an approximate solution using the HFB method
[2,28-30]. The ground state wave function in the HFB method
is given by [28]

+ Z Unn(ri — 1),

i<j
@)

+ Vnc(r»} + ) Vunlri — 1)), 3)

i<j

IHFB) = [ [ Al0). )
k

where the quasiparticle operator f; is given by

B = / dry (Ur.o)ae + Vi(r.o)al,). (5

In this equation, o = £1/2 is the spin coordinate, aia is the
creation operator of nucleons at the position » and o, and
Uy and Vj, are the HFB quasi-particle wave functions. In this
paper, we employ a density-dependent pairing interaction [1]
for v, given by

Van(r, F) = Vo (1 - Mﬂ) s(r—r), (6)
o

where 7 = (r + r)/2 and p,;(r) = pc(r) + p,(r) is the total
density, pc and p, being the density of the core nucleus and
the valence neutrons, respectively. For this interaction, the
expectation value of the Hamiltonian (3) with the HFB state
(4) reads [2]

= (HFB|H |HFB), @)
2
= /dr (h—t(r)-l- Vnc(")Pu(")>
2m
Vi i
+ [ dr (1 & (0)><pu<r>2+pv(r>2> ®)

where the kinetic energy density t(r), the particle density
py(r), and the pairing density g,(r) are given by

() =Y Y IVVi(r, o)f, ©)
k o
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respectively. In deriving Eq. (8), we have used the properties
of time-reversal symmetry [2].

The equations for the HFB wave functions V; and Uy are
obtained by taking the variation of the energy expectation
value (8) with respect to the particle and the pairing densities.
This leads to the HFB equations in the coordinate space
representation [2,29,30],

h—a A(r) Ui(r, o) _ Up(r, o)
< A(r) —h +k> (Vk(r, O’)) = Ei (Vk(r, a)) , (12)

where A is the Fermi energy. The mean-field Hamiltonian / is
given by

~ OF
h=—, 13)
3py
n? Vi r
— v+ 2 (122 o
2m 2 00
1 v 2 ~l) 2
Ly, 20"+ Aoy (14)
4 £o
while the pairing potential A(r) is given by
SE
A(r) = —. 15)
Ly
Vi
- 70 (1 _ p’(r)) B,(F). (16)
o

We solve the HFB equations (12) self-consistently by
expanding the HFB wave functions on the eigenfunctions of
the mean-field Hamiltonian 4 [31]. In doing so, we respect
the Pauli principle and explicitly exclude those states which
are occupied by the neutrons in the core nucleus. Notice that
the HFB method could be applied to light neutron-rich nuclei
without introducing the core nucleus [32,33]. We nevertheless
treat only the valence neutrons explicitly, since it is not
straightforward to separate between the core and the valence
parts from the HFB ground state wave function (4).

B. Two- and four-particle densities

In order to discuss the spatial structure of the valence
neutrons, we compute the two- and four-particle densities
using the solution of the HFB equations. Using Wick’s
theorem, the two-particle density can be expressed as [9]

pa(ro, r'a’) = (HFB|al a ,a,a,/(,/am|HFB), a7

= |pu(ro, r'é")* — |py(ro, r'o)*

+ pu(ro)py(r'c”), (18)
where 6 = —o, and the off-diagonal components of the
densities are given as [see Eqs. (10) and (11)],

po(ro, r'a’y =Y Vi(r, o)V (', o), (19)
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po(ro. o’y = =Y Vi(r.o)Ui(r'. o). (20)
k

In order to evaluate the four-particle density,

pa(x1, X2, X3, x4)
= (HFBla! a! a! al a, a,,a,,a, [HFB), (21)

X1 xz X3 X4

where x = (r, o), we find it useful to express the HFB ground
state wave function, Eq. (4), using the canonical basis. The
canonical basis function v is the eigenfunction of the density
matrix (19) and satisfies [2,28]

Z / dr'py(ro, r'e)y,(r', o) = vlz, Yp(r,o). (22)

In this paper, we construct the canonical basis by expanding
¥, on the HF basis, as is done for the HFB wave functions (see
the previous subsection). Using the canonical basis, the HFB
ground state wave function is given in the BCS form as [2,28]

IHFB) = [ ] (u, + vpalab)10). (23)
p>0
ocexp| Y -* % aial | 10 (24)
p>0 Up

where u, = /1 — vlz, and p is the time-reversed state of p.

Since the creation operator for the canonical basis, a;, is
related to the creation operator in the coordinate space, aig, as

al, = /drz Y, (r, o)al,, (25)

Eq. (24) is transformed to [2]

1
|HFB) o exp <_§ / drdr’ Z Z(ro, r'a’) aigai,(,) |0},

(26)
with
Z(ro,r'o’) = —22 Yo(r, o)Ws(r', o). 27
p>0 Up

To evaluate the four-particle density, Eq. (21), we first perform
the particle number projection onto the HFB state,

2
. 1
Py|HFB) (—E/drdr’§2(ra, r'o )amam> |0).

(28)
The four-particle density is then obtained as
pa(X1, X, X3, X4) o | f(x1, X2, X3, X4) [, (29)
with
fx1, x2, X3, x4)
= (Z(x1, x2) — Z(x2, X))Z(x3, X4) — Z(x4, X3))
+ (Z(x1, x3) — Z(x3, X)) Z (X4, X2) — Z(X2, X4))
+ (Z(x1, x4) — Z(x4, X)) Z(x2, X3) — Z(X3, X2)). (30
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C. Probability for shell model configurations

Using the canonical basis representation of the HFB state,
Eq. (23), one can also calculate the probability for a shell
model configuration, [(kk)(k'k")], for the four-particle systems
when k and k' represent the canonical basis states. It is given
by

_ 1 7 17 2 1 2.2
Poye = /T/|((kk)(k K')[HFB)|* = —viv},

N

2
[T

Pk (>0)
(3D
where the normalization factor A reads

N = (HFB|Py_4|HFB)
L —4i 2, 2 2
e T +e). (32
p>0
Here, we have used the explicit form of the number projection
operator [28],

1 2

Py=—

o dpedV-N). (33)

If the angular momentum components are explicitly ex-
pressed, the probability (31) reads

1 Q- o ,
Pur = () 6™ TT 62, 69

Uj#lj
for the (/j)* configuration, while

1 Q-1 Q-1
_ 2 2 2 2 /
Pujpwjy = a Qv (ug) ™ vy (up )™

< 1 @)™, (35)

11,1

for the (Ij)>(Ij')*> configuration with [j # [’j’. In these
equations, 2; = (2j +1)/2 is the pair degeneracy for the
angular momentum j state.

III. APPLICABILITY OF HFB METHOD: TEST ON ®He
NUCLEUS

Let us now numerically solve the HFB equations and
discuss the spatial structure of neutron-rich nuclei. Before
we do this, however, we first examine the applicability of
the HFB method by applying it to the three-body model of
%He nucleus [6,26]. This model has been solved exactly by
diagonalizing the Hamiltonian matrix. A comparison of the
HFB solution with the exact result for this model will provide
an idea on whether the HFB method is good enough to discuss
the dineutron correlation in neutron-rich nuclei.

To this end, we use the same neutron-core potential, V¢,
and the same pairing interaction v,, as in Refs. [6,26].
The neutron-core potential is taken as a Woods-Saxon form,
together with a spin-orbit interaction. Since we use the
renormalized mass m [see Eq. (3)] instead of the reduced mass,
we multiply the factor (A — 1)/A - A¢/(Ac + 1), where Ac is
the mass number of the core nucleus, following the prescription
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FIG. 1. (Color online) The S = 0 component of the two-particle
density for ®He as a function of r; = r, = r and the angle between
the valence neutrons, 6. The top panel shows the exact solution of the
three-body model, while the middle panel is obtained with the HFB
method. The bottom panel shows the result of the HFB4-particle
number projection.

given in Ref. [26]. The pairing interaction is given as

/ / Vp

Uan(F, 1) =8(r — 1) (vo + % expl(r — Rp)/ap]> . (36)
We multiply an overall scaling factor to this interaction so
that the two-neutron separation energy of °He is reproduced
with the HFB method. We use the same value for all the other
parameters as in Ref. [6]. Note that the last term in Eq. (14)
disappears for the pairing interaction given by Eq. (36), since
the interaction does not depend explicitly on the density, but
the density dependence is parametrized by the Fermi function.
Figure 1 shows the two-particle density for °He inthe S = 0
channel, that is, py(r; 1, r2 |). As we have done in Ref. [6],
we set r; = r, = r and plot the density as a function of r and
the relative angle between the spin up and down neutrons, 6.
Figure 2 shows the same two-particle density, but we multiply
the factor 8772r* sin @ [6]. The top panels in these figures show
the exact solution of the three-body Hamiltonian [6], while the
middle panels are for the HFB results. One can clearly see that
the localization of the two-particle density around 6 ~ 0 in
the three-body model is well reproduced by the HFB method,
although the HFB density has a somewhat longer tail and the
density around 6 ~ 7 is largely suppressed. The localization
of the two-particle density is nothing but the manifestation of
the strong dineutron correlation in a halo nucleus ®He. The
longer tail of the HFB density may be due to the asymptotic
behavior of the pair density g,(r; 1, r» ) in Eq. (18), which
is different from that of the normal density p,(r; 1, r2 1) [2].

PHYSICAL REVIEW C 77, 054317 (2008)

0.06
0.05
003
S .
@ 0.02
ke 0.01
@ 0
0.08
0.06
'§ 0.04
= 0.02
@ 0
0.3
5 0.2
S 0.1
@ 0

12 3 456 7 8 9 10
r (fm)

FIG. 2. (Color online) Same as Fig. 1, but with a multiplicative
factor of 8772 sin 6.

The similarity between the exact and the HFB results for the
two-particle density is rather striking, and it is clear that the
HFB method can be utilized to discuss, at least qualitatively,
the strong dineutron correlation in neutron-rich nuclei.

We also study the effect of particle number projection on
the two-particle density. The bottom panels in Figs. 1 and 2 are
obtained by taking the number projection onto the HFB ground
state (with the variation before projection (VBP) scheme [34])
in a similar way as in Eq. (28). The two-particle density thus
obtained is not normalized and the scale is different between
the middle and the bottom panels. However, we can see that the
dependence of the two-particle density on » and 6 is almost
the same between the two panels. Therefore, we conclude
that the effect of number projection is rather small as far as
the two-particle density is concerned, although the projection
might still affect the density if the variation after projection
(VAP) scheme is employed.

Table I summarizes the occupation probabilities for the °He
nucleus. Although the absolute value is somewhat smaller,

TABLE I. Comparison of the exact and the HFB results for the
occupation probabilities in the ground state of *He.

Configuration Exact [6] HFB
(s12)? 3.04% 7.25%
(p12)? 4.85% 9.21%
(p3p)? 83.0% 57.4%
(d3p)? 1.47% 3.86%
(ds)2)? 6.11% 6.85%
(fs2)? 0.035% 2.30%
(fr)? 0.075% 3.33%

054317-4



STRONG DINEUTRON CORRELATION IN #He AND '8C

TABLE II. The results of the HFB calculation for the Fermi
energy A and the root-mean-square (rms) radius, 7y, for the $He
and '8C nuclei.

(exp

Nucleus E,, (MeV) A (MeV)  ryp, (fm) &P (fm)
$He —3.112  —0.0715 323 2.49+0.04[13]
18C —10.514  —2.522 292 2.90+0.19[38]

the HFB well reproduces the dominance of the (173/2)2
configuration in the ground state wave function. Again, the
HFB method provides a good estimate of the ground state
properties of neutron-rich nuclei even when the number of
particle is as small as two.

IV. DINEUTRON CORRELATION IN 8He AND !8C

We now solve the HFB equations for the 8He and '*C nuclei.
We use the same neutron-core potential, V¢, for $He as in
Refs. [6,26], while we use set D in Refs. [24,25] for the '8C
nucleus. As in the previous section, these potentials are scaled
by a factor of (A — 1)/A - Ac/(Ac + 1). For the core density,
pc, we use those in Refs. [16,35]. We determine the strength
of the pairing interaction so that the experimental ground state
energy relative to the core+4n threshold, £ = —3.112 MeV
for 8He and —10.385 MeV for '8C, is reproduced with py =
0.32 fm~ (i.e., the mixed pairing interaction [36,37]). With
the cut-off energy of €., + A = 40 MeV in the single-particle
space, this leads to Vp = —502 MeV fm> for 8He and V, =
—538 MeV fm? for '3C.

The results of the HFB calculation are summarized in
Table II. Although our purpose in this paper is not to reproduce

Potential (MeV)

r (fm)

FIG. 3. The mean-field potential for *He (the upper panel) and
for '8C (the lower panel). The dashed line shows the neutron-core
potential, V, ¢, while the solid line is for the total mean-field potential
in the solution of the HFB equations.
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TABLEIII. Probability of a few shell model configurations
in the HFB ground state wave function for *He and '*C.

Nucleus Configuration Probability
(%)
“He [(1p3/2)*] 34.9
[(1p32)*(p1,2)*] 23.7
[(p32)*(ds2)*] 10.7
[(51/2)2(173/2)2] 7.8
e [(1ds52)"] 322
[(1ds2)*(2s512)*] 26.2
[(1ds2)*(d3)2)*] 11.8
[(ds/2)*(f72)"] 7.17

the experimental data, but to discuss qualitatively the dineutron
correlation in ®He and '8C, we notice that the root-mean-
square radius for the '8C nucleus is well reproduced with
the present calculation. The mean-field potential in Eq. (14)
is shown in Fig. 3, in which the dashed and the solid lines
correspond to the neutron-core potential, V,¢, and the total
mean-field potential, respectively. The difference between the
two potentials originates from the effect of pairing correlations
among the valence particles on the mean field potential. As
a consequence, the mean-field potential for 8He posses one
bound single-particle state while the neutron-*He potential V,,¢
alone does not hold any bound single-particle state, reflecting
the Borromean nature of the °He nucleus [6,26]. For the #C
nucleus, the same effect shifts the single-particle energy from
—1.072 to —1.768 MeV for the 25y, state and from —0.414
to —1.664 MeV for 1ds5.

The probability for a few single-particle components in
the ground state wave function is listed in Table III. Notice
that these shell model configurations are those represented by
the canonical basis, which has a large spatial extension for a
weakly bound orbital. For the ®He nucleus, although the largest
probability is found in the [(1p3 /2)4] configuration, the other
components also have an appreciable probability. Therefore,
this nucleus largely deviates from the pure [(1 p3 /2)4] configu-
ration, in accordance with the recent experimental finding with
the 8He(p, t)%He reaction [39]. For the '8C nucleus, the ground
state wave function mainly consists of the [(1ds /2)4] and the
[(1d5/2)2(251/2)2] configurations, while the [(1d5/2)2(d3/2)2]
and the [(ds /2)2( f7/2)2] configurations are also appreciable in
Table II1.

The top panel in Figs. 4 and 5 shows the two-particle
density, po(r, 7 =0, t;r, 7, |), for 8He and '3C, respectively.
The middle panels in these figures show the same two-particle
density, but with the multiplicative factor of 8727 sin 6. For
both the 3He and '8C nuclei, one clearly finds a strong
concentration of two-particle density around # ~ 0 at around
the nuclear surface. This is similar to what has been found in the
Borromean nuclei, ' 'Li and ®He [6,26] (see also Figs. 1 and 2),
and indicates clearly the strong dineutron correlation [7,9,10]
in these nuclei.

Since the strong dineutron structure is apparent for spin-
up and spin-down neutrons in these nuclei, we next plot
the four-particle density for the two-dineutron configuration,
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FIG. 4. (Color online) The two-particle density, p,(r, 7 =0,
s, F, ), for the 8He nucleus as a function of r; = r, = r and the
relative angle 6 between a spin-up and a spin-down neutrons (the
top panel). The middle panel shows the same two-particle density
multiplied by a factor 877%r* sin @, while the bottom panel is for the
four-particle density for the dineutron-dineutron configuration.

that is, the four-particle density with x; = (r, # = 0, 1), x, =
r,7r=0,]),x3=(@,F,1), and x4 = (r, 7, |) in Eq. (21).
This is plotted in the bottom panels in Figs. 4 and 5 for *He
and '8C, respectively. For the ®He nucleus, the four-particle
density for the dineutron-dineutron configuration has a peak
around 6 ~ /2. A similar result has been obtained with
a three-body model calculation with the dineutron clusters,
that is, o 4+ n> + n? [17]. The peak around 6 ~ 7 /2 arises
from the main component of the wave function, that is, the
[(1ps3 /2)4] configuration, for which the four-particle density is
proportional to sin* 6 oc |Y;;|*. For the '8C nucleus, the four-
particle density has two peaks, one around 6 ~ 54° and the
other around 6 ~ 118°. This can again be understood in terms
of the [(1d5/2)4] configuration, for which the four-particle
density is proportional to (3|Ya|? + 2|Y;|%)%.

To demonstrate more clearly the similarity between the
four-particle density to that for the main components, the
bottom panels of Figs. 6 and 7 show the four-particle density
for the [(1p3 /2)4] and [(1d5 /2)4] configurations in the neutron-
core potential V¢, respectively. To this end, we adjust the
depth of the neutron-core potential so that the energy of the
1p3)2 and 1ds), states is a quarter the energy of *He and 'C,
respectively. The similarity between the four-particle density
for the correlated wave functions (Figs. 4 and 5) and that for
the uncorrelated wave functions (Figs. 6 and 7) is apparent.
This is a natural consequence of a short range nature of
nuclear interaction: the two neutrons with the same spin have
to be far apart in space due to the Pauli principle and thus
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FIG. 5. (Color online) Same as Fig. 4, but for '8C.

their distance is likely larger than the range of the nuclear
interaction. As a consequence, the interaction between the two
dineutrons becomes weak, despite that the two neutrons in the
same dineutron having different spins strongly interact with
each other. From this consideration, we conclude that the two
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FIG. 6. (Color online) Same as Fig.4, but for the uncorrelated
[(1p3/2)*] configuration for the *He nucleus.
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FIG. 7. (Color online) Same as Fig. 5, but for the uncorrelated

[(1ds,2)*] configuration for the '¥C nucleus.

dineutrons are moving rather freely in the core44n nuclei
respecting solely the Pauli principle.
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FIG. 8. (Color online) The four-particle density of He for the
dineutron-dineutron configuration when the first dineutron is on the
z-axis. The top, middle, and bottom panels correspond to the cases
where the first dineutron is at z = 1.5, 2.5, and 3.5 fm, respectively.
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FIG. 9. (Color online) Same as Fig. 8, but for '*C.

Note that the pairing interaction yet plays an essential role
in the two-particle density. Without the pairing correlation, the
two-particle density for the uncorrelated wave functions has
symmetric bumps both around 8 ~ Oand 6 ~ 1, as is shown in
the upper panel in Figs. 6 and 7 (see also the middle panels, that
show the two-particle density with the weight of 87727 sin 6).
The pairing correlation mixes several angular momentum
components in the ground state wave function, eliminating
essentially the bump around 6 ~ m. The configuration mixing
of different parity states seen in Table III is essential to have
the dineutron peak in the middle panel of Figs. 4 and 5.

Another way to investigate the four-particle density is to
plot the density distribution of the second dineutron when the
first dineutron is put on the z-axis [9], rather than assuming that
the distance from the core nucleus is the same between the two
dineutrons. The top, middle, and bottom panels of Fig. 8 show
the four-particle density of ®He for the dineutron-dineutron
configuration when the first dineutron is at z = 1.5, 2.5, and
3.5 fm, respectively. The pairing correlation is taken into
account in the plot. The same plot for the '8C nucleus is shown
in Fig. 9. These figures demonstrate that the distance of the
second dineutron from the core, r,, increases as the distance
of the first dineutron, r|, increases, tending to r; ~ r,. The
angular distribution of the second dineutron, on the other hand,
is almost independent of the position of the first dineutron. This
behavior is consistent with the four-particle density shown in
the bottom panels of Figs. 4 and 5.

V. SUMMARY

We have discussed the dineutron structure in the 2n halo
nucleus ®He as well as in the core+4n nuclei, *He and '8C.
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For this purpose, we employed the density-dependent contact
interaction among the valence neutrons, and diagonalized the
core+xn Hamiltonian (x = 2 for °He and x = 4 for He and
13C) with the Hartree-Fock-Bogoliubov (HFB) method. From
the comparison with the exact solution of the three-body
Hamiltonian for the °He nucleus, we found that the HFB
method is satisfactory enough to discuss the spatial structure
of the valence neutrons. For the ®He and !'3C nuclei, we
investigated both the two- and the four-particle densities. We
showed that the two-particle density takes the largest value
when the spin-up and the spin-down neutrons are at the same
position, that is nothing but the manifestation of the strong
dineutron correlation. With this result in mind, we particularly
discussed the four-particle density for the dineutron-dineutron
configuration. We found that two dineutrons weakly interact
with each other, simply respecting the Pauli principle. The
four-particle density of the HFB calculation in fact resembles
to that for the uncorrelated wave functions. This result is
entirely due to a short range nature of nuclear interaction.
Namely, the two neutrons with the same spin have to be far
apart in space due to the Pauli principle and thus their distance
is likely larger than the range of the nuclear interaction. As
a consequence, the interaction between the two dineutrons

PHYSICAL REVIEW C 77, 054317 (2008)

becomes weak, while the two neutrons in the same dineutron
strongly interact with each other.

We have also discussed the probability for the single-
particle configurations in the ground state wave function. Our
HFB calculations indicate that the 8He nucleus consists of the
[(1p3/2)*] configuration by 34.9% and of the [(1p3/2)*(p1/2)*]
configuration by 23.7%, while the '8C nucleus consists of
the [(1d5/2)4] and the [(1d5/2)2(2s1/2)2] configurations by
32.2% and 26.2%, respectively. The result for the ®He nucleus
is consistent with the recent experimental finding with the
two-neutron transfer reaction, 3He( D, )°He, that indicates
an appreciable mixture of the configurations other than
[(1p3/2)4], e.g., [(1p3/2)2(p1/2)2], in the ground state of 8He. It
would be interesting to analyze the experimental data for the
8He( p, 1)®He reaction with the wave function obtained in this
paper. This will be a topic for a future publication.
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