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Quark mean field approach with derivative coupling for nuclear matter
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We propose the quark mean field model including derivative coupling between quarks and scalar mesons in
nuclear matter. This model concisely interprets an increasing size of the nucleon as well as a modification of
coupling constant in the nuclear environment.
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I. INTRODUCTION

It is interesting to find a certain relation between quark-
gluon degrees of freedom and relativistic meson-nucleon
models for nuclear many-body systems. Many studies have
been done from this point of view, since Guichon [1] pro-
posed the quark-meson coupling (QMC) model. This model
describes nuclear matter as nonoverlapping MIT bags and
the quarks inside them couple to scalar σ and vector ω

mesons. The QMC model has been extended with reasonable
success to various problems of nuclear matter and finite
nuclei [2–6]. On the other hand, the quark mean field
(QMF) model [7,8] takes the constituent quark model for
the nucleon and includes nonlinear self-energy terms in the
meson Lagrangian. This model has been applied to study
the properties of finite nuclei with success. In particular Tan
et al. [9] introduced density dependent couplings for the σ

and ω mesons with quarks, modeled as functions of the σ

mean field for the QMF model, and parametrized the couplings
to reproduce the relativistic Brueckner-Hartree-Fock (RBHF)
results [10] of nuclear matter. Though this model gave also
successful descriptions of finite nuclei, it has many adjustable
parameters.

In the present investigation, we introduce a derivative
scalar coupling between constituent quarks and scalar mesons
for nuclear matter. This idea is essentially an application
to quark-meson system of Zimanyi and Moszkouski (ZM)
model [11] based on hadronic degrees of freedom. The ZM
model differs from the Walecka model [12] only in the form
of the coupling of the nucleon to the scalar meson, and can be
understood as a model which introduces a effective σ -nucleon
coupling constant as a function of the σ meson field, without
increasing the number of free parameters. Our model sub-
stitutes constituent quarks for nucleons. Therefore, the quark
coupling with the σ meson has the σ dependence. Furthermore,
the confinement potential has also the σ dependence and is
modified in the nuclear medium. We report on several findings
resulting from the point of view of the derivative coupling for
the QMF models.

In the next section we introduce a quark version of the
derivative scalar coupling model for the symmetric nuclear
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matter and give the necessary detail to understand the origin
of the results we obtain. In Sec. III the results are discussed
comparing with the QMF models and the ZM model.

II. QUARK-MESON DERIVATIVE COUPLING MODEL
FOR NUCLEAR MATTER

As the first step, we consider a quark version of the
derivative coupling model (ZM model) for nuclear matter. In
our case, the dynamical degrees of freedom are quark fields (q)
with the constituent quark mass mq , scalar meson fields (σ ),
and vector meson fields (ω). On the analogy of Ref. [11],
we assume the following effective Lagrangian density for
quark-meson many body systems:

�q = q̄
[
m̃−1iγ µ∂µ − mq − χc − m̃−1gq

ωγ µωµ

]
q − 1

4FµνF
µν

+ 1
2m2

ωωµωµ + 1
2

(
∂µσ∂µσ − m2

σ σ 2
)
, (1)

where

m̃−1 = 1 + gq
σ σ/mq, (2)

g
q
σ and g

q
ω denote the quark-meson couplings, Fµν = ∂µων −

∂νωµ, and χc expresses the confinement potential given by
the gluon dynamics. We take into account the confinement
in terms of the harmonic oscillator potential χc = kr2/2 with
k = 1000 MeV/fm2 [8].

This model Lagrangian includes a derivative coupling
between quarks and scalar mesons. We proceed to rescale
the field q as follows: q → m̃1/2q. Considering that m̃ does
not depend on space-time coordinates, the rescaled Lagrangian
density is expressed by

�
q

R = q̄
[
iγ µ∂µ − (

mq − g∗q
σ (σ )σ

) − χ∗
c (σ ) − gq

ωγ µωµ

]
q

− 1
4FµνF

µν + 1
2m2

ωωµωµ + 1
2

(
∂µσ∂µσ − m2

σ σ 2
)
, (3)

where g
q
σ

∗
(σ ) = m̃g

q
σ and χ∗

c (σ ) = m̃χc. Then, the quark field
q(t, r) in a nucleon satisfies the equation of motion[

iγ µ∂µ − (
mq − g∗q

σ (σ )σ
) − χ∗

c (σ ) − gq
ωγ 0ω0

]
q = 0. (4)

This model introduces the σ dependent scalar coupling g
q
σ

∗
(σ )

and confinement potential χ∗
c (σ ) in nuclear medium, however,

g
q
ω is not modified. When the meson fields are replaced by the

constant classical fields, we can rewrite the Dirac equation as

[−iα∇ + β(mq − δmq) + βχ∗
c (σ )]q(r) = ε∗q(r). (5)
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The quark mass correction δmq and energy ε∗ are defined as

δmq = gq
σ

∗(σ )σ, (6)

ε∗ = ε − gq
ωω0, (7)

where ε is the energy of the quark under the influence of
meson mean fields. The time component ω0 of the vector field
introduces a shift in the energy. We take the constituent quark
mass to be one third of the nucleon mass: mq = MN/3 =
313 MeV. The quark mass correction δmq is related to the
effective nucleon mass M∗

N (σ ). The M∗
N (σ ) is expressed as

M∗
N (σ ) =

√
(3ε∗(σ ) + Espin)2 − 〈

p2
c.m.

〉
N
. (8)

Here we follow Ref. [7] to take into account the spin
correlations Espin for M∗

N (σ ) and remove the spurious center
of mass motion 〈 p2

c.m.〉N . Since the three constituent quarks
are independent, we have

〈
p2

c.m.

〉
N

=
3∑

i=1

〈 p2
i 〉N, (9)

where 〈 p2
i 〉N is the expectation value of the momentum squared

of the ith quark in a nucleon.
We now move to the second step, in which the change of

the properties of the nuclear many-body system will be solved
using the change of the nucleon properties obtained in the
first step. To perform the nuclear matter calculation, we use
the relativistic mean field (RMF) approximation containing
nucleon (ψ), neutral scalar (σ ), and vector (ω) mesons. As we
treat the symmetric nuclear matter, the Lagrangian density is

�N = ψ̄[iγ µ∂µ − M∗
N (σ ) − gωγ µωµ]ψ − 1

4FµνF
µν

+ 1
2m2

ωωµωµ + 1
2

(
∂µσ∂µσ − m2

σ σ 2
)
, (10)

where gω is the ω-nucleon coupling constant. For uniform
nuclear matter in the mean-field approximation, meson fields
are just constants. The Euler-Lagrange equations for the fields
ψ, σ , and ω lead to the following equations of motion:

[iγ µ∂µ − M∗
N (σ ) − gωω0γ

0]ψ = 0, (11)

m2
σ σ = −∂M∗

N

∂σ
ρs, (12)

m2
ωω0 = gωρB. (13)

Here the scalar density ρs = 〈ψ̄ψ〉 and the baryon density
ρB = 〈ψ†ψ〉. The bracket 〈 〉 means the expectation value of
the operator for the nuclear ground state. The results in the
first step are put into M∗

N . Equation (11) describes the motion
of a nucleon with the mass M∗

N (σ ) instead of the bare mass
MN .

The total energy density of nuclear matter can be obtained
by filling all nucleons up to the Fermi level kF :

E = 4

(2π )3

∫ kF

d3k

√
k2 + M∗

N (σ )2 + 1

2
m2

σ σ 2 + 1

2
m2

ωω2
0.

(14)
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FIG. 1. The binding energy per nucleon Ebind as a function of the
baryon density. The results in the present model are shown by the
solid line, while those in the QMF model [9] are shown by the dashed
line, for comparison.

The binding energy per nucleon in nuclear matter is then given
by

Ebind = E

ρB

− MN. (15)

III. RESULTS AND DISCUSSIONS

First of all, we take the meson masses as mσ = 550 MeV,
and mω = 783 MeV. Then there are two parameters (gq

σ , g
q
ω)

which need to be determined. These values can be chosen
to fit the nuclear binding energy Ebind = −15.5 MeV at the
saturation density ρB0 = 0.16 fm−3. This gives the values
g

q
σ = 2.01 and g

q
ω = 2.64.

Figure 1 presents how the binding energy per nucleon varies
with the baryon density ρB in the models. The present model
gives a slightly stiff equation of state compared to that of the
QMF model [9].

We show in Fig. 2 the density dependence of the effective
nucleon mass (8). The present value of the effective mass at ρB0

is M∗
N = 754 MeV (= 0.8 MN ), which is somewhat smaller

than that in the ZM model [11], but significantly larger than
that in the QMF model [8].

Since the relation between the effective nucleon mass and
the quark mass correction δmq has been studied in Refs. [6,7],
we also examine it in the present model.
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FIG. 2. Nucleon effective mass in nuclear matter as a function of
baryon density for the models. The results from the present model
are shown by the solid line. The dashed line corresponds to the ZM
model.
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FIG. 3. The quark mass correction δmq as a function of baryon
density.

We have plotted the density dependence of δmq in Fig. 3.
The value of δmq is suppressed below 70 MeV for ρB <∼ 2ρB0

and is 45 MeV at ρB0.
In Fig. 4 the effective nucleon mass M∗

N is plotted as a
function of δmq . There is a linear relation approximately in
the region δmq <∼ 70 MeV.

To investigate the situation in more detail we expand M∗
N

about the point δmq = 0 according to

M∗
N = MN + ∂M∗

N

∂(δmq)

∣∣∣∣
δmq=0

δmq + · · · . (16)

For δmq � MN we can neglect the remaining terms in the
expansion of Eq. (16). From Figs. 3 and 4, δmq � MN is
satisfied for ρB � 2ρB0, and ∂M∗

N/∂(δmq) is approximately
constant. Therefore, M∗

N can be written as

M∗
N = MN − 4.2δmq = MN − 1.4 × 3δmq. (17)

The effective nucleon mass M∗
N may be also written by the

following equation:

M∗
N = MN − g∗

σ (σ )σ, (18)

with a σ -nucleon coupling g∗
σ (σ ) which depends explicitly

on the σ -field. Comparing Eq. (17) with Eq. (18) and using
Eq. (6), a modification of the σ -nucleon coupling in the nuclear
environment is analytically expressed by the effective σ -quark
coupling g

q∗
σ (σ ):

g∗
σ (σ ) � − ∂M∗

N

∂(δmq)

∣∣∣∣
δmq=0

gq
σ

∗(σ )

= 1.4 × 3gq
σ

∗(σ ). (19)
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FIG. 4. The effective nucleon mass M∗
N as a function of the quark

mass correction δmq .

TABLE I. The results for Us, Uv, Uv − Us and K at the saturation
density ρB0.

Model Us (MeV) Uv (MeV) Uv − Us (MeV) K (MeV)

This work −186 126 311 245
QMF [9] −350 270 620 159
ZM [11,14] −141 83 223 225

Here g
q∗
σ (σ ) is monotone decreasing function like that of

Ref. [9], but the form of the function is different in both models.
The second term in the right-hand side of Eq. (17) is defined

as the scalar potential (Us), which shifts the nucleon mass from
MN to M∗

N . For comparing with the ZM model [11,14] we
rewrite Us as follows:

Us = −1.4 × m̃gσσ, (20)

where gσ = 3g
q
σ . If in Eq. (2), we replace mq and g

q
σ as MN =

3mq and gσ = 3g
q
σ respectively, we see that m̃ is identical

with the corresponding quantity of the original ZM model.
Equation (20) is, however, different from the scalar potential
of ZM model by factor 1.4. The difference comes from the
quark structure of the nucleons in nuclear medium.

The vector potential (Uv) is given by Uv = gωω0. In regard
to gω, we take gω = 3g

q
ω [13], where gω has no σ dependence

differing from Ref. [9].
Figure 5 illustrates Us and Uv as functions of ρB . Table I

shows the results of the models for Us,Uv, Uv − Us and
incompressibility K at the saturation density of the nuclear
matter. For finite nuclei, Uv − Us roughly gives us the strength
of the spin-orbit splitting. There exist appreciable differences
between the QMF results [9] and those in the present model.
In Refs. [8,9], Us and Uv are parametrized to reproduce RBHF
results. If one accepts the value of the RBHF as reasonable,
Uv − Us of the present model is too small: it is almost half of
the QMF model [9], but is larger than that found in the original
ZM model. On the other hand, a value of K is consistent
with the accepted empirical value (210 ± 30 MeV). It had
been considered a defect of the original ZM model that the
spin-orbit interaction was too small to explain the observed
spin-orbit splitting for finite nuclei. In order to remove this
defect, Biro and Zimanyi [15] introduced an additional tensor
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FIG. 5. The scalar and vector potentials of nuclear matter, Us and
Uv , as functions of the baryon density ρB . The lines are labeled as in
Fig. 1.
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FIG. 6. The density dependence of the nucleon radius, in units of
the free nucleon radius R0 = 0.6 fm.

coupling term in the ZM Lagrangian. The similar idea might
be applied to the present model.

We also plot the ratio of the nucleon rms radius in nuclear
matter to that in free space as a function of density in Fig. 6. The
6 ∼ 7% increase in the nucleon size at ρB0 is comparable to

those suggested in Refs. [7,8]. This is due to the change of the
position probability density of quarks in nuclear medium. The
change comes from the modification of k (kr2/2 → (m̃k)r2/2)
in Eq. (3).

In summary, we have investigated the QMF model with
the derivative scalar coupling of σ -quark meson. As a result,
a σ dependent coupling constant g

q
σ

∗
(σ ) is introduced and

the confinement potential is modified in the nuclear medium.
The ω-quark coupling constant does not have a σ dependence.
This matter is one of the present pending question. Regardless
of only two free parameters, the present model gives several
important findings related to the quark-meson coupling in
nuclear matter.
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