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Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear
moment of inertia have been established by means of a discrete projection method. They generalize that of
the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations
have been numerically studied for some even-even actinide nuclei by using the single-particle energies and
eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is
practically not modified by the use of the projection method. In contrast, the discrepancy between the projected
and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation
effects vary not only as a function of the temperature but also as a function of the deformation for a given
temperature. This is not the case for the system energy.
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I. INTRODUCTION

The pairing correlations at finite temperature have been
the subject of peculiar interest since the early 1960s. The first
studies have been performed within the framework of the finite
temperature BCS (FTBCS) theory (cf., e.g., Refs. [1–7]). This
method has been improved by means of the renormalized RPA
at finite temperature [8], the self-consistent thermal RPA [9],
and the finite temperature Hartree-Fock-Bogoliubov theory
(FTHFB) (cf. Ref. [10] and references therein and Ref. [11]).
Another approach uses the path integral formalism [12–22],
which allows one to take into account the quantum fluctuations.
More recently, the neutron-proton pairing has also been treated
at finite temperature [23–27].

However, it is well known that the BCS wave function
breaks the particle-number symmetry. This symmetry may be
restored at finite temperature by using various methods, such
as, for example, a generalization of the Lipkin-Nogami method
[28]. Other methods used to eliminate the particle-number
fluctuations include particle number projected statistics [29–
32] or a combination of the static path approximation (SPA)
with either a particle number projection [33] or a parity number
projection [34,35].

Moreover, it is well known that the moment of inertia is
very sensitive to the pairing correlations and that the BCS
approximation is not sufficient for a correct description of
this quantity [36,37]. Indeed, the discrepancy between the
BCS and experimental values is of the order of 10%–40%.
This discrepancy has been significantly reduced, at zero
temperature, by performing either a particle-number projection
[38–40] or an exact calculation of the moment of inertia [41].
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It is worth noticing that the particle-number projection also
allows one to correctly describe the back-bending phenomenon
[42]. Another approach consists in the inclusion of the neutron-
proton pairing effects [43], particularly in nuclei such as
N � Z [44–46].

The moment of inertia has also been evaluated at finite
temperature within the FTBCS [4,5] and FTHFB [10] methods.
However, to our knowledge, the particle-number fluctuations
have been eliminated in an approximate way, by either using
a combination of the SPA and the RPA [47,48] or by means of
a parity-number projection [34].

The purpose of the present work is to explicitly establish
an expression for the moment of inertia, at finite temperature,
that strictly conserves the number of particles. To this aim, we
will generalize the expression established at zero temperature
in a previous work [38]. The latter is based on a discrete
particle-number projection method.

The paper is organized as follows: The particle-number
projection method is recalled in Sec. II. Expressions of
the parallel and perpendicular moments of inertia at finite
temperature are established in Sec. III. The numerical results
dealing with several even-even actinide nuclei, based on the
energies and eigenstates of a deformed Woods-Saxon mean
field, are presented and discussed in Sec. IV. The main
conclusions are summarized in Sec. V.

II. PARTICLE-NUMBER PROJECTION

A. Projected states

In the second quantization formalism, the intrinsic motion
of 2P paired particles (neutrons or protons) is described by
the Hamiltonian

H0 =
∑
ν>0

εν (a+
ν aν + a+

ν̃ aν̃) − G
∑
νµ>0

a+
ν a+

ν̃ aµ̃aµ, (1)
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where the pairing strength G is assumed to be constant and
the state |̃ν〉 = a+

ν̃ |0〉 is the time reverse of the state |ν〉 =
a+

ν |0〉, of energy εν. In Eq. (1), the time-reversal invariance
of H0 has been taken into account, which implies εν = ε̃ν .
The ground state is then described by the BCS wave function
given by

|ψ〉 =
∏
ν>0

(uν + vνa
+
ν a+

ν̃ )|0〉, (2)

where the parameters uν and vν represent the occupation and
inoccupation amplitudes of the state |ν〉. In the quasiparti-
cle representation, defined by using the Bogoliubov-Valatin
transformation, the state (2) represents the quasiparticle
vacuum whose creation and annihilation operators α+

ν and
αν are such that αν |ψ〉 = 0, for any ν. However, these BCS
wave functions are not eigenstates of the particle-number
operator

N =
∑
ν>0

(a+
ν aν + a+

ν̃ aν̃) (3)

since only the expectation value of this operator is supposed
to be constant and equal to the actual particle number. The
quasiparticle states rather describe a superposition of states of
nuclei of neighboring masses. They differ by an even number
of nucleons and correspond to the same value of the chemical
potential λ as well as the gap parameter �.

It clearly appears from Eq. (2) that the quasiparticle
states describe a superposition of states with 0, 2, 4, . . . , 2�

particles, with � being the total degeneracy of pairs of the
system. It has been shown that the sequence of states that
correspond to 2P paired particles [49–54],

|ψn〉 = Cn


n+1∑
k=0

ξkz
−P
k

∏
j>0

(uj + zkvja
+
j a+

j̃
)|0〉 + cc

 ,

(4)

where Cn is a normalization factor and

ξk =
{ 1

2 if k = 0 or k = n + 1,

1 if 1 � k � n,
zk = exp

(
i

kπ

n + 1

)
,

with n being a nonzero integer and cc the complex conjugate
with respect to zk, converges toward the projected state.

As has been shown in Refs. [49–51], as soon as the relation
2(n + 1) > max(P,� − P ) is satisfied, the projected state
defined by Eq. (4) coincides with the P pairs component.
In practice, the convergence is reached when n � 3 or 4.

The particle-number fluctuations may also be easily elimi-
nated in the states that correspond to any quasiparticle number.
In particular, the projected one- and two-quasiparticle states
read

|(ν)n〉 = Cν
n


n+1∑
k=0

ξkz
−P
k a+

ν

∏
j>0
j �=ν

(uj + zkvja
+
j a+

j̃
) |0〉 + cc

 ,

(5)

|(νµ)n〉 = Cνµ
n

{
n+1∑
k=0

ξkz
−(P−1)
k a+

ν a+
µ̃

×
∏
j>0

j �=(νµ)

(uj + zkvja
+
j a+

j̃
) |0〉 + cc

 , (6)

where Cν
n and C

νµ
n are normalization factors.

B. Projected state energies

The normalization factors and energies of the states (4) to
(6) may be easily evaluated using the properties [50]

〈ψn|O |ψn〉 = 2 (n + 1) Cn 〈ψn|O |ψ〉 (7)

and

〈(ν1 · · · νl)n|O|(ν1 · · · νl)n〉
= 2(n + 1)Cν1···νl

n 〈(ν1 · · · νl)n|Oα+
ν1

· · · α+
νl
|ψ〉,

l = 1, 2, . . . , (8)

which are valid for any operator O that conserves the particle
number. One then has

2(n + 1)C2
n

×


n+1∑
k=0

ξkz
−P
k

∏
j>0

(
u2

j + zkv
2
j

) + cc

 = 1,

2(n + 1)
(
Cν

n

)2

×


n+1∑
k=0

ξkz
−P
k

∏
j �=ν

(
u2

j + zkv
2
j

) + cc

 = 1,

2(n + 1)
(
Cνµ

n

)2

×
{

n+1∑
k=0

ξkz
−(P−1)
k

∏
j �=

(
ν,µ

) (
u2

j + zkv
2
j

) + cc

 = 1.

Extracting the real part gives

4(n + 1)C2
n

n+1∑
k=0

ξkRk cos ψk = 1, (9)

4(n + 1)
(
Cν

n

)2
n+1∑
k=0

ξkR
ν
k cos

(
ψν

k

) = 1, (10)

4(n + 1)
(
Cνµ

n

)2
n+1∑
k=0

ξkR
νµ

k cos
(
ψ

νµ

k

) = 1, (11)

with the notation

xk = kπ

2(n + 1)
tan ϕνk = (

v2
ν − u2

ν

)
tan xk,

|ϕνk| �
π

2
, ρνk =

√
1 − 4u2

νv
2
ν sin2 xk,

Rk =
∏
j

ρjk, R
ν1,...,νl

k =
∏

j �=ν1,...,νl

ρjk,
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ψk =
∑

j

ϕjk + (� − 2P ) xk,

ψ
ν1,...,νl

k =
∑

j �=ν1,...,νl

ϕjk + (� − 2P ) xk.

In the same way, the energies may be written

E0
n = 〈ψn|H0|ψn〉

= E0 + 2(n + 1)C2
nG

∑
γ,η

u3
γ uηv

3
ηvγ

×


n+1∑
k=0

ξkz
−P
k (zk − 1)2

∏
j �=(γ,η)

(
u2

j + zkv
2
j

) + cc

 ,

(12)

Eν
n = 〈(ν)n| H0 |(ν)n〉

= E0 + Eν + 2 (n + 1)
(
Cν

n

)2
G

∑
γ,η �=(ν)

u3
γ uηv

3
ηvγ

×


n+1∑
k=0

ξkz
−P
k (zk − 1)2

∏
j �=(ν,γ,η)

(
u2

j + zkv
2
j

) + cc

 ,

(13)

Eνµ
n = 〈(νµ)n|H0|(νµ)n〉

= E0 + Eν + Eµ + 2(n + 1)
(
Cνµ

n

)2
G

×
∑

γ,η �=(ν,µ)

u3
γ uηv

3
ηvγ

{
n+1∑
k=0

ξkz
−(P−1)
k (zk − 1)2

×
∏

j �=(ν,µ,γ,η)

(
u2

j + zkv
2
j

) + cc

 , (14)

where E0 and Eν , respectively, represent the BCS and
quasiparticle energies given by

E0 = 2
∑
ν>0

(
εν − λ − G

2
v2

ν

)
v2

ν − �2

G
,

Eν =
√(

εν − λ − Gv2
ν

)2 + �2,

with

� = G
∑
ν>0

uνvν.

After extraction of the real part, the energies (12) to (14)
become

E0
n = E0 − 16(n + 1)C2

nG
∑
γ,η

u3
γ uηv

3
ηvγ

×
n+1∑
k=0

ξkR
γη

k sin2 xk cos ψ
γη

k , (15)

Eν
n = E0 + Eν − 16(n + 1)

(
Cν

n

)2
G

∑
γ,η �=(ν)

u3
γ uηv

3
ηvγ

×
{

n+1∑
k=0

ξkR
νγη

k sin2 xk cos ψ
νγη

k

}
, (16)

Eνµ
n = E0 + Eν + Eµ

− 16(n + 1)
(
Cνµ

n

)2
G

∑
γ,η �=(ν,µ)

u3
γ uηv

3
ηvγ

×
{

n+1∑
k=0

ξkR
νµγη

k sin2 xk cos
(
ψ

νµγη

k + 2xk

)}
. (17)

III. MOMENT OF INERTIA

Let us start with the grand-partition function

Z = Tr e−βH , (18)

where β is the inverse of the temperature T and H is the
Hamiltonian of the system. When the latter is cranked around
the Oi (i = x, z) axis (with Oz being the symmetry axis) of a
rotating frame, H is given by

H = H0 − λN − h̄ωJi, (19)

where ω is the rotation frequency and Ji is the i projection
of the angular momentum. The usual Inglis expression [55]
of the energy may be easily generalized to include the
temperature effects as well as the pairing correlations by
using the previously defined projected wave functions. This
energy expanded to the second order in ω by means of the
thermodynamical perturbation theory is given by

E = −∂LnZ

∂β
� E0 − h̄2ω2

∫ β

0
〈Ji (β) Ji (γ )〉 dγ, (20)

where

Ji (α) = eα(H0−λN)Jie
−α(H0−λN), α = β, γ. (21)

This expression allows one to derive a good approximation of
the moment of inertia of the system, which is then defined by

�i = 2h̄2
∫ β

0
〈Ji(β)Ji(γ )〉dγ. (22)

The thermal average in Eq. (22) must be evaluated by using
the grand-canonical ensemble associated to the Hamiltonian
H0 − λN , that is,

〈Ji (β) Ji (γ )〉 = Tr Ji (β) Ji (γ ) e−β(H0−λN)

Tr e−β(H0−λN)
. (23)

If one neglects the interaction between the quasiparticles,
this thermal average can easily be made explicit using the
representation basis defined in Sec. II. Indeed, in the latter, H0

may be written in the diagonal form

H0 = E0
n +

∑
ν>0

Eν
n

(
P ν

n + P ν̃
n

)
, (24)

where P ν
n (respectively P ν̃

n ) is the projector on the state
|(ν)n〉 (respectively |(̃ν)n〉) given by Eq. (5) and of which the
occupation number is given by

f ν
n = 〈

P ν
n

〉 = 〈
P ν̃

n

〉 = 1

1 + eβEν
n

. (25)
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FIG. 1. Variation of the parallel [(a) and (b)]
and perpendicular [(c) and (d)] moments of
inertia, evaluated by using the FTBCS (dashed
lines) and projection (solid lines) methods, for
the ground state of the nuclei 240Pu and 246Cm as
a function of the temperature.

This occupation number is analogous to that of the quasipar-
ticles but the energies Eν are replaced by the corresponding
projected ones, Eν

n .
Taking into account the fact that the projected states

|ψn〉, |(ν)n, and |(νµ)n〉 are orthononormalized and hence that
the corresponding projectors Pn, P

ν
n , and P

νµ
n are orthogonal,

one may write

Ji(α) =
∑
νµ

{
1

2

[
e−α(Eν

n+E
µ
n )PnJiP

νµ
n + eα(Eν

n+E
µ
n )P νµ

n JiPn

]
+ eα(Eν

n−E
µ
n )P ν

n JiP
µ
n

}
. (26)

The thermal average in Eq. (22) becomes

〈Ji(β)Ji(γ )〉

=
∑
νµ

{
1

2

[
e(γ−β)(Eν

n+E
µ
n ) + e(β−γ )(Eν

n+E
µ
n )

]
× (

1 − f ν
n

)(
1 − f µ

n

)|〈ψn|Ji |(νµ)n〉|2

+ e(β−γ )(Eν
n−E

µ
n )f ν

n

(
1 − f µ

n

)|〈(ν)n|Ji |(µ)n〉|2
}

. (27)

FIG. 2. Same as Fig. 1 for the isomeric state.

054310-4



TEMPERATURE-DEPENDENT PARTICLE-NUMBER . . . PHYSICAL REVIEW C 77, 054310 (2008)

FIG. 3. Variation of the perpendicular mo-
ment of inertia [(a)–(c)] and total system energy
[(d)–(f)] of the nucleus 226Ra, evaluated by using
the FTBCS (dashed lines) and projection (solid
lines) methods as a function of the elongation
parameter c, for a fixed value of the neck
parameter h (h = 0), for various values of the
temperature.

After integration relative to γ , one obtains, for the moment of
inertia,

�i
n

= 1

2
h̄2

∑
νµ

|〈ψn|Ji |(νµ)n〉|2
Eν

n + E
µ
n

(
tanh

1

2
βEν

n + tanh
1

2
βEµ

n

)

+ 1

2
h̄2

∑
νµ

|〈(ν)n|Ji |(µ)n〉|2
Eν

n − E
µ
n

(
tanh

1

2
βEν

n − tanh
1

2
βEµ

n

)
.

(28)

This expression is similar to that obtained by using the FTBCS
method. By replacing the matrix elements of Ji(i = x, z) using
their expectation values over the projected states in Eq. (28),
one obtains the perpendicular and parallel moments of inertia
relative to the Ox and Oz axes, respectively:

�⊥
n = 1

2
h̄2

∑
νµ

|〈ν|Jx |µ〉|2
{(

Cn

C
νµ
n

)2 (uνvµ − uµvν)2

Eν
n + E

µ
n

×
(

tanh
1

2
βEν

n + tanh
1

2
βEµ

n

)

+
(

Cν
n

C
µ
n

)2 (uνuµ + vνvµ)2

Eν
n − E

µ
n

×
(

tanh
1

2
βEν

n − tanh
1

2
βEµ

n

) }
(29)

and

�‖
n = 1

2
h̄2β

∑
ν

|〈ν| Jz |ν〉|2
cosh2 1

2βEν
n

, (30)

where 〈ν|Ji |µ〉 means the matrix element of Ji using the
single-particle basis.

It is worth noticing that Eqs. (29) and (30) of the
perpendicular and parallel moments of inertia differ from
their homologous counterparts obtained by using the FTBCS
formalism [5,7] only by the projected state energies and
the appearance of the multiplying factors (Cn/C

νµ
n )2 and

(Cν
n/C

µ
n )2 in �⊥

n .

However, in the previous expressions, the chemical λ and
the gap parameter �, as well as the uν and vν parameters,
which are temperature dependent, are obtained by solving the
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FIG. 4. Same as Fig. 3 for the nucleus 248Cf.

usual FTBCS gap equations, that is [2],

2

G
=

∑
ν>0

tanh 1
2βEν

Eν

,

N =
∑
ν>0

[
1 − εν − λ − Gv2

ν

Eν

tanh
1

2
βEν

]
.

It is worth noticing that the single-particle energies should be in
principle temperature dependent. However, as has been shown
in several numerical calculations, by using realistic potentials,
this dependence is small and the temperature effects on the
single-particle energies may be neglected [56].

IV. NUMERICAL RESULTS AND DISCUSSION

The previously described formalism has been applied
to some even-even actinide nuclei (i.e., 226Ra,230 Th,236 U,
240Pu,246Cm,248Cf,254Fm, and 256No). The single-particle
energies and states are those of a Woods-Saxon deformed mean
field with the parameters described in Ref. [57]. The nuclear
deformation is described by using the elongation parameter c

and the neck parameter h [4,58,59]. The pairing strengths are

given by

A.Gn = 19.2 − 7.4N−Z
A

,

A.Gp = 19.2 + 7.4N−Z
A

.

As a first step, we have studied the convergence of the projected
perpendicular moment of inertia as a function of the extraction
degree of the false components n. The values that correspond
to the ground and isomeric states of the nuclei 230Th and 248Cf,
chosen as an example, are given in Table I for several values
of the temperature. The usual FTBCS values are also given in
the same table. One then observes a rapid convergence for any
value of T . Indeed, the convergence is reached when n � 4 in
each case. This is because the false components in the BCS
wave functions mainly correspond to a pair of particle numbers
close to that of the studied nucleus [38]. In all that follows, we
will use the value n = 5.

We have then studied the variations of the perpendicular
and parallel moments of inertia evaluated using Eqs. (29)
and (30) as a function of the temperature (0 � T � 2 MeV).
These variation are given in Fig. 1 for the ground state and in
Fig. 2 for the isomeric state of the nuclei 240Pu and 246Cm

054310-6
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TABLE I. Variation of the FTBCS and projected perpendicular
moment of inertia [2�⊥(h̄2 MeV−1)] as a function of the extraction
degree of the false components n for the ground and isomeric states
of the 230Th and 248Cf nuclei.

230 Th
ground state

230Th
isomeric

state

248Cf
ground state

248Cf
isomeric

state

T = 0 MeV
FTBCS 98.742 163.262 136.115 223.078
n = 0 99.147 166.893 136.808 224.310
n = 1 101.536 168.918 141.721 227.445
n = 2 101.786 169.348 142.251 228.465
n = 3 101.789 169.356 142.260 228.509
n = 4 101.789 169.357 142.260 228.510
n = 5 101.789 169.357 142.260 228.510

T = 0.1 MeV
FTBCS 99.261 164.899 136.564 223.522
n = 0 99.668 168.802 137.258 224.809
n = 1 102.010 170.670 142.166 227.924
n = 2 102.257 171.098 142.694 228.943
n = 3 102.260 171.107 142.703 228.987
n = 4 102.260 171.107 142.703 228.987
n = 5 102.260 171.107 142.703 228.987

T = 0.2 MeV
FTBCS 109.931 176.441 146.830 231.007
n = 0 109.537 173.270 147.606 233.301
n = 1 111.051 175.625 152.299 235.904
n = 2 111.220 175.631 152.785 236.881
n = 3 111.221 175.631 152.794 236.921
n = 4 111.221 175.631 152.794 236.922
n = 5 111.221 175.631 152.794 236.922

chosen as an example. The values deduced from the usual
FTBCS method are also given in these figures.

It can be then seen that the parallel moment of inertia
is practically unmodified by the use of the particle-number
projection method whereas the perpendicular moment of
inertia is significantly modified (i.e., it is systematically
increased). The fact that the variations induced by the particle-
number fluctuations are more important in �⊥ than in �‖
was foreseeable. Indeed, in �‖ only the quasiparticle energies
are affected by the projection, whereas in �⊥ the projection
introduces multiplying factors besides the modifications in the
quasiparticle energies.

With regard to the perpendicular moment of inertia, one
notes that the effect of particle-number fluctuations is maximal
for T = 0 and then decreases until it vanishes above the
critical temperature. Indeed, in the latter region, the pairing
correlations vanish and the FTBCS and projected moments of
inertia join since we used a projection-after-variation method.
It is worth noticing that Alhassid et al. [34] obtained similar
curves for the iron isotopes using a parity-number projection
method.

The fact that the discrepancy between the FTBCS and
projected values of �⊥ is maximal at zero temperature is
also illustrated in Table II, where we report the average
relative discrepancies [i.e., (�⊥

n − �⊥
FTBCS)/�⊥

FTBCS] for the

TABLE II. Average relative discrepancies between the
FTBCS and projected perpendicular moments of inertia for
the ground state (second column) and the isomeric state (third
column) for various temperatures.

T (MeV) Ground state Isomeric state

0 4.74% 2.74%
0.1 4.72% 2.73%
0.2 4.15% 2.04%
0.3 1.77% 1.10%
0.4 1.49% 0.76%
0.5 0.38% 0.18%

ground and isomeric states of the considered nuclei. The
effects of the particle-number fluctuations vary not only as
a function of the temperature but also as a function of
the deformation. Indeed, at zero temperature, for example,
the average relative discrepancy is 4.74% for the ground state
and 2.74% for the isomeric one. We have then studied the
variations of �⊥

n and �⊥
FTBCS as a function of the deformation,

for various temperatures. These variations, as a function of
the elongation parameter c and for a given neck parameter h

(h = 0), are given in Figs. 3 and 4 for the 226Ra and 248Cf nuclei,
chosen as an example. It then clearly appears that the effect
of the particle-number projection on �⊥ is not constant with
respect to the deformation. This is particularly the case for the
248Cf nucleus, for which the relative discrepancies between
the projected and FTBCS values vary from less than 2% to
more than 5%. Therefore, the perpendicular moment of inertia
behavior differs from that of the energy. Indeed, it has been
already shown (cf. Refs. [53,60,61]) that, at zero temperature,
the discrepancy between the BCS and projected energies
is quasiconstant with regard to the deformation. This result
remains valid at finite temperature (the difference between the
FTBCS and projected values being of the order of 2 MeV) as
can be shown in Figs. 3 and 4, where we have also reported the
variations of the FTBCS and projected energies as a function
of the deformation.

V. CONCLUSION

We have studied the effect of the particle-number fluctu-
ations inherent to the BCS theory on the moment of inertia
of some even-even actinide nuclei at finite temperature.
We have established an explicit expression of the parallel
and perpendicular moments of inertia based on a discrete
particle-number projection method. The obtained expressions
are simple and generalize that of the FTBCS method. They are
well adapted to numerical computation.

A numerical study as a function of the temperature, for the
ground and isomeric states of the considered nuclei, based on
the energies and eigenstates of a Woods-Saxon mean field, has
shown that the parallel moment of inertia is practically unaf-
fected by the particle-number fluctuations. For the perpendicu-
lar moment of inertia, the projection effect, which corresponds
to a systematic increase (of the order of 5% on average for the
ground state and 3% for the isomeric one), is maximal at zero

054310-7



N. H. ALLAL, M. FELLAH, N. BENHAMOUDA, AND M. R. OUDIH PHYSICAL REVIEW C 77, 054310 (2008)

temperature and then decreases, until it vanishes above the
critical temperature since we used a projection-after-variation
method. It has also been shown that the effects of particle-

number fluctuations vary as a function of the deformation
for a given temperature. This is not the case for the system
energy.
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