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π B8 B8 and σ B8 B8 couplings from a chiral quark potential model
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From an SU(2) ⊗ SU(2) chiral quark potential model incorporating spontaneous chiral symmetry breaking
the asymptotic π and σ exchange pieces of the NN potential are generated. From them the πNN and σNN

coupling constants can be extracted. The generalization to SU(3) ⊗ SU(3) allows for a determination of πB8B8

and σB8B8 coupling constants according to exact SU(3) hadron symmetry. The implementation of the values of
the couplings at Q2 = 0 provided by QCD sum rules and/or phenomenology makes also feasible the extraction
of the meson-baryon-baryon form factors. In this manner a quite complete knowledge of the couplings may be
attained.
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I. INTRODUCTION

The meson-baryon-baryon (mBB ′) couplings play a central
role in hadron physics concerning the baryon-baryon (BB ′)
interactions as well as the formation and decay of baryon reso-
nances. To study these couplings effective hadron Lagrangians
involving the mesons and baryons under consideration are
postulated. All the complexity of the mBB ′ vertices is assumed
to be taken into account through running couplings depending
on Q2, the transfer momentum in the vertex. This dependency
is usually parametrized in terms of a form factor and a coupling
constant defined as the value of the running coupling at a
particular Q2, usually on-shell Q2 = M2

m. Therefore, one can
calculate physical processes and compare to data to extract
these values. Thus the πNN coupling constant is obtained
from πN and/or NN -scattering data [1]. For couplings
involving baryons and/or mesons for which scattering or decay
data are not so complete or unavailable one can also rely on
symmetry to derive predictions, see for instance Ref. [2].

From a more fundamental point of view hadrons are
made up of quarks. Hence hadron structures and decays as
well as hadron-hadron interactions should come out from
quark dynamics as dictated by quantum chromodynamics
(QCD). Due to the technical difficulty to achieve this objective
at present quark models of hadrons incorporating QCD-
motivated symmetries and dynamics have been successfully
applied to generate the baryon-baryon interactions, and con-
sistently the baryon spectrum, in the light (u, d) [3] as
well as in the light+strange (u, d, s) quark sectors [4–6].
These models, sometimes less precise than effective hadronic
treatments, offer the advantage of providing a consistent
unified description of all baryon-baryon processes from the
same Hamiltonian at the quark level. This confers them in
principle a great predictive power once the model parameters
are tightly constrained from some selected set of existing data.

We shall make use of this power to predict, within a
nonrelativistic chiral quark model framework, mB8B8 (B8:
baryon of the flavor octet) coupling constants in terms of
meson-quark-quark (mqq) couplings. More precisely we shall

generate, from a mqq Lagrangian incorporating the effect of
spontaneous chiral symmetry breaking (SCSB), the quark-
quark meson exchange potentials and from them, through
a Born-Oppenheimer (BO) approximation, the asymptotic
baryon-baryon-meson exchange interactions. The use of jus-
tified harmonic oscillator baryon wave functions (in terms
of quarks) will allow us to perform analytic calculations. By
comparing the resulting interactions to the ones postulated
at the effective hadronic level we shall identify the meson-
baryon-baryon coupling constants. This procedure has been
applied in the literature to πNN coupling [7]. Here we shall
be more precise in the extraction of coupling constants and
form factors and we extend its application to the σ meson and
the other B8 baryons, making feasible the comparison of our
results to the ones obtained with alternative methods based on
quark or hadron degrees of freedom.

The contents are organized as follows. In Sec. II we shall
center on the light quark sector where spontaneously broken
chiral SU(2)⊗SU(2) symmetry serves as an underlying general
guide to generate the quark-quark meson-exchange potentials.
We shall revisit the calculation of the πNN coupling in terms
of the πqq one and apply the same procedure to the σNN

case. We shall also comment on the possibility of applying
our method to � and nucleon resonances. Then in Sec. III we
consider the extension, via chiral SU(3)⊗SU(3), to the SU(3)
octet of baryons. Finally in Sec. IV we summarize our main
results and conclusions.

II. LIGHT QUARK SECTOR: SU(2) ⊗ SU(2).

Our starting point is the chiral Lagrangian

Lch = −gch q̄ [11SU(2)σ + i γ5 �τ �π ]q, (1)

where q has components u and d and gch is the chiral
mqq coupling constant (m : π, σ ). The spontaneous chiral
symmetry breaking gives rise to a vertex form factor F (Q2) [8].
From the parametrization given in Refs. [9,10] we propose
the Lorentz invariant form (note that for the purpose of the
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derivation of static potentials Q2 = − �Q2),

F (Q2) =
(

�2

�2 − Q2

)1/2

, (2)

where � is an effective cutoff parameter fitted from data. We
should keep in mind that this parametrization of F (Q2) makes
only sense for Q2 < �2.

From the form proposed [F (Q2 = 0) = 1] it is clear that gch

represents the value of the mqq coupling, gchF (Q2), at Q2 =
M2

m in the limit M2
m = 0. To deal with coupling constants

defined on the physical meson masses (M2
π �= 0 �= M2

σ ) we
identify (it is implicitly assumed that M2

π ,M2
σ < �2)

gπqq ≡ gch

(
�2

�2 − M2
π

)1/2

(3)

gσqq ≡ gch

(
�2

�2 − M2
σ

)1/2

, (4)

as the values of the coupling gchF (Q2) at Q2 = M2
π and Q2 =

M2
σ , respectively.
Let us point out that the use of the experimental pion mass

may have required the introduction of an explicit symmetry
breaking term proportional to σ in the Lagrangian but this term
has no further effect in the analysis we perform. Regarding the
σ mass it will be taken as a parameter to be fitted from data
around the value provided by the SCSB relation [11],

M2
σ − M2

π = 4M2
q , (5)

where Mq denotes the constituent quark mass at Q2 = 0.

In terms of gπqq we write the pion Lagrangian as

Lπqq = −gπqq q̄ iγ5 �τ �π q (6)

with a vertex form factor Fπqq(Q2) given by

Fπqq(Q2) ≡
(

�2 − M2
π

�2 − Q2

)1/2

. (7)

Analogously, the σ Lagrangian reads

Lσqq = −gσqq q̄ 11SU(2)σ q (8)

with a vertex form factor Fσqq(Q2) given by

Fσqq(Q2) ≡
(

�2 − M2
σ

�2 − Q2

)1/2

. (9)

Note that both form factors are of the same type Fmqq(Q2) ≡
(�2 − M2

m/�2 − Q2)1/2 so that Fmqq(Q2 = M2
m) = 1.

A. mqq and induced mB B potentials

From Lmqq and the form factors the static OPE and OSE
central potentials (to the respective lowest order in Q2)
can be obtained through a nonrelativistic reduction of the

corresponding Feynman diagram amplitudes. They are

V
ij

OPE(�rij ) = 1

3

g2
πqq

4π

M2
π

4MiMj

Mπ

×
[

Y (Mπ rij ) − �3

M3
π

Y (�rij )

]
(�σi · �σj )(�τi · �τj ),

(10)

V
ij

OSE(�rij ) = −g2
σqq

4π
Mσ

[
Y (Mσ rij ) − �

Mσ

Y (�rij )

]
. (11)

Here i and j are numbers denoting quarks, Mi,j =
Mq, �σi,j (�τi,j ) are the spin (isospin) Pauli operators, rij is the
interquark distance and the function Y is defined as,

Y (x) = e−x

x
. (12)

Once the potentials at the quark level have been derived we use
them to obtain the baryon-baryon potentials. From V

ij

OmE the
asymptotic baryon-baryon meson exchange static potential is
defined as

(Vq)BaBb→BcBd

OmE (R → ∞)

≡ lim
R→∞

〈�BcBd
|

∑
i∈Ba ,Bc
j∈Bb,Bd

V
ij

OmE

∣∣�BaBb

〉
, (13)

where �BiBj
stands for the two-baryon wave function and R

for the interbaryon distance and the integration is over the
quark coordinates.

We concentrate on BaBb → BcBd interactions involving
baryons with the same mass. Then the asymptotic two-
baryon wave function will be expressed in the center-of-mass
system as

�BaBb
= �Ba

(1, 2, 3; + �R/2) �Bb
(4, 5, 6; − �R/2), (14)

where (1, 2, 3) and (4, 5, 6) denote the quarks forming the
baryons and ± �R/2 the baryons position and

�Bi
= (�Bi

)spatial(�Bi
)spin-flavor(�Bi

)color (15)

is the one-baryon wave function expressed as the direct product
of its spatial, spin-flavor and color parts. For the sake of
simplicity the baryon spatial wave function will be chosen
of harmonic oscillator type

(�B)spatial(1, 2, 3; + �R/2)

=
3∏

i=1

(
1

πb2

) 3
4

exp[−(�ri − �R/2)2/2b2] (16)

with an harmonic oscillator parameter, b, related to the size of
the baryon.

B. Parameters

To fix the parameters at the quark level: Mq , Mπ , Mσ ,
gch, �, and b, we rely on the efficient description of NN

data provided by the chiral quark cluster model (CQCM) [3].
Such a model contains, apart from OPE and OSE potentials
derived from Lmqq , a confinement plus a residual one-gluon
exchange (OGE) interactions. We should realize, though, that
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TABLE I. Quark model parameters [3].

Mq (MeV) b (fm) Mσ (fm−1) Mπ (fm−1) � (fm−1)

313 0.518 3.42 0.7 4.2

the precise fitting of the parameters in the CQCM relies on
a RGM calculation so the two-baryon wave function as well
as the baryon-baryon potentials are different from the ones
obtained via the Born-Oppenheimer (BO) approach we follow,
Eq. (13). We take this into account in an effective manner
by keeping the same values for Mq,Mπ,Mσ ,�, and b, and
fitting a new value for gch to reproduce, with our BO approach,
the experimental value of the pion-nucleon-nucleon coupling
constant (see next section). The values of the parameters used
henceforth are listed in Table I.

C. π N N

From Eqs. (10), (13), and (16) the asymptotic OPE central
potential for NN → NN , corresponding to the diagram of
Fig. 1 (there are nine equivalent ones), can be obtained. It
reads (the calculation has been explicitly done in Ref. [7])

(Vq)NN→NN
OPE (R → ∞)

= g2
πqq

4π

[
9〈(�σ3 · �σ6)NN.(�τ3 · �τ6)NN 〉e M2

π b2

2

]
M2

π

4M2
q

1

3

e−Mπ R

R
.

(17)

To extract the πNN coupling we have to compare this
potential with the one derived from a postulated hadronic
Lagrangian. Assuming, for instance, a pseudoscalar coupling
we can write a Lagrangian

LπNN = −(gπNN )Q2=M2
π
N̄ i γ5 �τ �π N, (18)

with a vertex form factor GπNN (Q2) so that GπNN (Q2 =
M2

π ) = 1. Note that we have indicated explicitly the on-shell
character of the coupling gπNN through the subindex. To derive
from this Lagrangian a Yukawa-like pion exchange potential,
monopole- or dipole-type form factors are usually assumed.
Concerning the asymptotic potential both give the same result.
We shall use in parallel with the form factor at the quark level

σ, π

N N

N N

FIG. 1. Asymptotic NN OPE or OSE interactions at quark level.

N

σ, π

N

N N

FIG. 2. Asymptotic NN OPE or OSE interactions at baryon level.

a form

GπNN (Q2) ≡
(

�2
πNN − M2

π

�2
πNN − Q2

) 1
2

, (19)

valid for Q2 < �2
πNN and M2

π < �2
πNN (�πNN is a cutoff

parameter to be fitted).
Note that if we had preferred to refer the Lagrangian to the

value of the coupling at Q2 = 0, i.e., to (gπNN )Q2=0 , then we
would have a different form factor such that

(gπNN )Q2=M2
π

GπNN (Q2) = (gπNN )Q2=0

(
�2

πNN

�2
πNN − Q2

) 1
2

,

(20)

where the second term on the right-hand side represents the
form factor normalized at Q2 = 0.

From LπNN and GπNN (Q2) the nonrelativistic reduction of
the one-pion exchange diagram, Fig. 2, to the lowest order in
Q2, provides us with the pion exchange static potential at the
baryonic level. The asymptotic behavior of its central part is
given by

(VB)NN→NN
OPE (R → ∞)

=
(
g2

πNN

)
Q2=M2

π

4π
[〈(�σN · �σN )(�τN · �τN )〉] M2

π

4M2
N

1

3

e−Mπ R

R
.

(21)

Note that (VB)NN→NN
OPE (R → ∞) depends only on the

coupling constant and not on the form factor. Then no
information on the form factors at the baryon level can
be extracted from it. Regarding the coupling constant we
can make use of the relation (25/9)〈(�σN · �σN )(�τN · �τN )〉 =
9〈(�σ3 · �σ6)NN .(�τ3 · �τ6)NN 〉 [7] to compare Eqs. (17) and (21).
From this comparison we extract

(
g2

πNN

)
Q2=M2

π

= g2
πqq

M2
N

M2
q

25

9
e

M2
π b2

2 . (22)

Having chosen Mq = 313 MeV so that MN = 3Mq we can
re-express

(
g2

πNN

)
Q2=M2

π

= 25 g2
πqq e

M2
π b2

2 . (23)
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1. Pseudovector couplings

Alternatively to gπqq and gπNN we could have used
pseudovector couplings fπqq and fπNN so that

LPV
πqq = −fπqq

Mπ

q̄ iγ5γµ�τ∂µ �π q (24)

with the vertex form factor Fπqq(Q2) and

LPV
πNN = − (fπNN )Q2=M2

π

Mπ

N̄ i γ5γµ�τ∂µ �π N. (25)

with the vertex form factor GπNN (Q2).
It turns out that LPV give rise to exactly the same potentials

as L , to the lowest Q2 order, under the identifications

f 2
πqq

M2
π

= g2
πqq

4M2
q

(26)

(
f 2

πNN

)
Q2=M2

π

M2
π

=
(
g2

πNN

)
Q2=M2

π

4M2
N

. (27)

If we now substitute these relations in Eq. (22) we get

(
f 2

πNN

)
Q2=M2

π

= f 2
πqq

25

9
e

M2
π b2

2 . (28)

The corresponding constant fch is consistently defined as

fch =
(

�2 − M2
π

�2

)1/2

fπqq = lim
Mπ →0

fπqq . (29)

2. Coupling constants and form factor values

From a standard experimental value (f 2
πNN )Q2=M2

π
/4π �

0.079 (see Ref. [1] and references therein) or
(g2

πNN )Q2=M2
π
/4π � 14.6 we fit the pion-quark-quark

coupling constant

f 2
πqq

/
4π = 0.027 (30)

or

g2
πqq

/
4π = 0.55 (31)

and

|gch| ≡ |fch| 2 Mq

Mπ

= 2.6. (32)

Let us emphasize that this value for gch differs less than a
10% from the one obtained via QCD sum rules (QCDSR)
(gch)QCDSR � 2.83 [12].

Regarding �πNN , the cutoff parameter, its range of values
can be estimated. In Ref. [13] a fit to data was attained from
a Gaussian form factor eQ2/�2

HM with �HM varying from 2.6
to 4.2 fm−1. This form factor is normalized at Q2 = 0. By
requiring its low Q2 behavior (1 + Q2/�2

HM) to be the same
than that of our form factor normalized at Q2 = 0 in Eq. (20),
(1 + Q2/2�2

πNN ), we get �2
HM = 2�2

πNN . Hence the resulting
range for �πNN is

�πNN = 1.84–2.97 fm−1. (33)

From Eqs. (19) and (20) this range can be translated in an
interval of values for the coupling at Q2 = 0:(

f 2
πNN

)
Q2=0

4π
= 0.068–0.075,

(34)(
g2

πNN

)
Q2=0

4π
= 12.5–13.8.

These values are in perfect agreement with the phenomeno-
logical analysis done in Ref. [14] (let us comment that for the
form factor used in this reference the range of values for the
cutoff parameter is the same as for �HM). The preferred value
in Ref. [14] is (f 2

πNN )Q2=0/4π � 0.073, which corresponds to
(g2

πNN )Q2=0/4π � 13.5. It is worthwhile to point out that this
corresponds quite approximately to the Mπ → 0 limit of our

expression (f 2
πNN )Q2=M2

π
= f 2

πqq (25/9) e
M2

π b2

2 , i.e.,(
f 2

πNN

)
Q2=M2

π →0

4π
= f 2

ch

4π

25

9
= 0.072, (35)

indicating the quite approximate Goldstone boson character of
the pion.

D. σ N N

By proceeding in exactly the same way for the σ exchange
we obtain from Eqs. (11), (13), and (16) at the quark level

(Vq)NN→NN
OSE (R → ∞) = −g2

σqq

4π
9 e

M2
σ b2

2
e−Mσ R

R
. (36)

At the baryonic level from the Lagrangian

LσNN = −(gσNN )Q2=M2
σ
N̄ 11SU(2)σ N, (37)

with a vertex form factor

GσNN (Q2) =
(

�2
σNN − M2

σ

�2
σNN − Q2

) 1
2

, (38)

we get

(VB)NN→NN
OSE (R → ∞) = −

(
g2

σNN

)
Q2=M2

σ

4π

e−Mσ R

R
. (39)

From their comparison

(
g2

σNN

)
Q2=M2

σ

= 9 g2
σqq e

M2
σ b2

2 . (40)

Let us note that once the value of gπqq has been fitted our model
predicts, from Eqs. (3) and (4), the value of gσqq through

g2
σqq

g2
πqq

= �2 − M2
π

�2 − M2
σ

. (41)

Equivalently, from Eqs. (23) and (40)(
g2

σNN

)
Q2=M2

σ(
g2

πNN

)
Q2=M2

π

= 9

25

�2 − M2
π

�2 − M2
σ

e
(M2

σ −M2
π )b2

2 . (42)
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1. Coupling constant and form factor values

From Eq. (42) we predict(
g2

σNN

)
Q2=M2

σ

4π
= 68.2 (43)

and from Eq. (40)

g2
σqq

4π
= 1.59. (44)

As mentioned above our asymptotic comparison does not give
any information on the cutoff parameter �σNN . Nonetheless
we can combine our result for the coupling constant with the
value of the coupling at Q2 = 0 provided by QCDSR to get
an insight into it. From Ref. [15]

(gσNN )Q2=0

gσ
q

= 3.9 ± 1.0. (45)

If we tentatively identify gσ
q with our gσqq (= 4.47) we get(

g2
σNN

)
Q2=0

4π
= 17.4 ± 4.5, (46)

and using the relation (g2
σNN )Q2=0 = (g2

σNN )Q2=M2
σ
G2

σNN

(Q2 = 0) we extract

�σNN =


 M2

σ

1 − (g2
σNN )Q2=0

(g2
σNN )

Q2=M2
σ




1
2

= 3.97 ± 0.18 fm−1. (47)

It is again interesting to consider the limit Mσ → 0 of Eq. (40)(
g2

σNN

)
Q2=M2

σ →0

4π
= 9g2

ch

4π
= 4.8, (48)

or (
g2

σNN

)
Q2=M2

σ →0

g2
ch

= 9 (49)

and compare it to the interval of values of the coupling at
Q2 = 0 from Eq. (46). As can be seen the Mσ → 0 value
from Eq. (48) is out of this interval. This might be interpreted
as reflecting the non-Goldstone boson nature of the σ .

E. π N�

Strictly speaking our procedure to extract the couplings
makes sense only when the lowest-order expansion in Q2 we
follow is simultaneously valid at the baryonic level (EB �
MB) and at the quark level (Eq � Mq). We do not expect this
to be true for light-quark baryons in general because the quarks
can move relativistically inside them. However the structure of
the ground states, the N [and �,
, and � when considering
SU(3)], is well described by nonrelativistic constituent quark
models through the effective parameters in the quark-quark
potential. Then we expect our procedure to make sense for
them. Regarding other baryon states like � and N (1440) one
should be more cautious as we illustrate next.

To extract the πN� coupling constant we consider the
NN → N� interaction. According to the harmonic oscillator

model we are using the spatial wave function of � has
exactly the same structure than the N one. However the real
� differs from the N. To implement the bigger size for �

predicted by nonrelativistic spectroscopic models we con-
sider the possibility of a slightly different value for the size
parameter. Thus the � spatial wave function we shall use is

(��)spatial(4, 5, 6; + �R/2)

=
6∏

i=4

(
1

πb2
�

) 3
4

exp
[−(�ri − �R/2)2/2b2

�

]
(50)

with a baryon size parameter, b�. One should also keep in mind
that the mass of the � is a 30% bigger than the mass of the
N . In our harmonic oscillator quark model this means that the
quarks in the � have more potential and kinetic energy (virial
theorem) than the quarks in the N . According to our comments
above this could give rise to corrections in the expression of the
static potential at the quark level. Moreover, due to the � − N

mass difference the positions of the baryons in the initial and
final states should not be the same. Therefore we should not
expect an accurate prediction for the coupling constant in this
case.

To derive such prediction we first calculate at the quark
level, from Eqs. (13), (16), and (50) (we use for easiness the
pseudovector form of the coupling), the asymptotic NN →
N� pion exchange static central potential (Fig. 3). It is

(Vq)NN→N�
OPE (R → ∞)

= f 2
πqq

4π


 160

9
√

2
2
√

2
b6

µb3
+b3

e(
b15b9

�

) 1
2

e
M2

π b2
e

2


 1

3

e−Mπ R

R
, (51)

where the factor 160/9
√

2 corresponds to 〈N�|(�σ3 · �σ6)(�τ3 ·
�τ6)|NN〉 for total spin and isospin equal to 1, multiplied by
9, the number of equivalent diagrams, and bµ, b+ and be are
defined as

1

b2
µ

= 1

2b2
+ 1

2b2
�

1

b2±
= ± 1

b2
+ 1

b2
µ

(52)

1

b2
e

= 1

2b2+
− b2

+
2b4−

.

π

N N

N ∆

FIG. 3. Asymptotic NN → N� OPE interaction at quark level.
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Note that when b� = b we also have be = bµ = √
2b+ = b,

hence reproducing, except for the spin-isospin factor, the NN

result.
At the baryonic level we have the Lagrangians LPV

πNN as
given by Eq. (25) and

LPV
πN� = − (fπN�)Q2=M2

π

Mπ

N̄ �T ∂ �π �, (53)

with a form factor GπN�(Q2) which we shall choose as,

GπN�(Q2) ≡
(

�2
πN� − M2

π

�2
πN� − Q2

) 1
2

, (54)

In Eq. (53) � corresponds to a Rarita-Schwinger 3/2 spinor
field and �T is the isospin nucleon-� transition operator. The
corresponding pion exchange static central potential behaves
asymptotically as

(VB)NN→N�
OPE (R → ∞) = (fπNN )Q2=M2

π
(fπN�)Q2=M2

π

4π

× [〈(�σN · �S)(�τN · �T )〉]1

3

e−Mπ R

R
,

(55)

where �S is the spin nucleon-� transition operator and 〈(�σN ·
�S)(�τN · �T )〉 = 8/3 for total spin and isospin equal to 1. Thus
we identify

(fπNN )Q2=M2
π
(fπN�)Q2=M2

π

4π

= f 2
πqq

4π


 20

3
√

2
2
√

2
b6

µb3
+b3

e(
b15b9

�

) 1
2

e
M2

π b2
e

2


 . (56)

By using Eq. (28) we get

(fπN�)Q2=M2
π

(fπNN )Q2=M2
π

=

6

√
2

5
2
√

2
b6

µb3
+b3

e(
b15b9

�

) 1
2

e
M2

π (b2
e −b2)
2


 (57)

so that for b� = b one obtains the usual spin-isospin relation
(fπN�)Q2=M2

π
/(fπNN )Q2=M2

π
= 6

√
2/5.

For b� in the interval [b, 1.2b] we predict
(f 2

πN�)Q2=M2
π
/4π = [0.23, 0.20] to be compared to

(f 2
πN�)Q2=M2

π
/4π � 0.37, estimated from the � decay to Nπ .

This discrepancy seems to confirm our initial expectations. If
instead fπqq we had written an effective (fπqq)N� as a manner
to take into account the � − N mass difference effect, then
the needed value to reproduce the experimental number would
have been (fπqq)N�/fπqq = [1.28, 1.37] for b� ∈ [b, 1.2b],
i.e., (fπqq)N� should be a 30% bigger than fπqq .

For nucleon resonances in general and in particular for
N∗(1440) we expect the calculation of the coupling constants
to be much more uncertain. As a matter of fact the importance
of relativistic corrections in the description of the structure
and decay of N∗(1440) in terms of quarks have been long
emphasized in the literature (see for instance Ref. [16]).
Furthermore, the nature of the N∗(1440) may involve more
than a simple 3q structure and the coupling of qq pairs to the
meson structure can be relevant. Therefore the calculation of
πNN∗(1440) and σNN∗(1440) coupling constants carried out

in a preceding article within the same framework [17] should
be considered too simplistic. A less approximative calculation
for the pion case [involving also πN�,πN�(1600), and
πNN(1535)] has been carried out in Ref. [18] with Poincaré
covariant constituent quark models with instant, point, and
front forms of relativistic kinematics; from the persistent
deviation from data of the calculated results the authors suggest
the presence of sizable qqqqq components in the baryon wave
functions.

III. LIGHT AND STRANGE QUARK SECTOR: SU(3)⊗ SU(3)

The generalization of the chiral Lagrangian to
SU(3)⊗SU(3) is straightforward. It is expressed as

L̃ch = −g̃ch q̄

(
8∑

a=0

σaλa + i

8∑
a=0

γ5πaλa

)
q, (58)

where q has components u, d and s, σ0, and π0 stand for the
scalar and pseudoscalar meson singlets, and σi and πi(i =
1 · · · 8) are the scalar and pseudoscalar meson octets.

To derive a potential involving the exchange of σ , the SU(2)
singlet, we shall assume the ideal mixing

σ0 =
√

2/3 σ +
√

1/3 (ss)
(59)

σ8 =
√

1/3 σ −
√

2/3 (ss).

When substituting these expressions in Eq. (58) the piece
containing the σ and the �π read,

L̃ch(π,σ ) = −g̃ch q̄[σ (
√

2/3λ0 +
√

1/3λ8) + iγ5 �τ �π ]q, (60)

where λ0 ≡ √
2/3 11SU(3) and λ8 ≡ √

3 Y , being Y the hy-
percharge. It is then clear that for q = u, d(Yu = 1/3 = Yd)
one formally recovers the SU(2)⊗SU(2) Lagrangian: 11SU(2) ≡
2/3 11SU(3) + Y .

Again we take into account SCSB through a vertex form
factor F̃ (Q2)

F̃ (Q2) =
(

�̃2

�̃2 − Q2

)1/2

. (61)

Note also that the SCSB relation, M2
σ − M2

π = 4M2
q , is

preserved because it is derived for a nonstrange σ [11].

A. Parameters

One should realize that the values of the couplings
g̃ch F̃ (Q2) (or equivalently the on-shell couplings g̃πqq, g̃σqq

and the cutoff parameter �̃) and the size parameter b̃ in
SU(3)⊗SU(3) need not be the same as in SU(2)⊗SU(2). This
is easily understandable by thinking for instance of the extra
contribution to the NN interaction coming from η, η′, and a0

in SU(3)⊗SU(3). This contribution is taken into account in
an effective manner in SU(2)⊗SU(2), where no η, η′, and a0

are present, through the fitted values of gπqq, gσqq,�, and b.
Fortunately we can correlate the variations of b and � (or b̃
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and �̃) through the relation Eq. (42),(
g2

σNN

)
Q2=M2

σ(
g2

πNN

)
Q2=M2

π

= 9

25

�2 − M2
π

�2 − M2
σ

e
(M2

σ −M2
π )b2

2

= 9

25

�̃2 − M2
π

�̃2 − M2
σ

e
(M2

σ −M2
π )b̃2

2 . (62)

Then from the selected experimental value
(g2

πNN )Q2=M2
π
/4π � 14.6 and from our prediction

(g2
σNN )Q2=M2

σ
/4π = 68.2 we get, for a typical value of

�̃ � 5.2 fm−1 (� 1.0 GeV) (note that it has to be higher
than any mass of the scalar or pseudoscalar meson octets)
an harmonic oscillator parameter b̃ � 0.6 fm. Then from
equivalent relations to Eqs. (23) and (40) we get

g̃2
πqq

4π
= 0.54 (63)

g̃2
σqq

4π
= 0.93, (64)

and

g̃ch = gch. (65)

For the sake of completeness we give the B8 spatial wave
function in the SU(3)flavor limit,

(�B8 )spatial(1, 2, 3; + �R/2)

=
3∏

i=1

(
1

πb̃2

) 3
4

exp[−(�ri − �R/2)2/2b̃2]. (66)

B. σ B8 B8

According to our preceding discussions the σqq

Lagrangian will be written as

L̃σqq = −g̃σqq q̄ 11SU(2) σ q, (67)

with a vertex form factor

F̃σqq(Q2) ≡
(

�̃2 − M2
σ

�̃2 − Q2

)1/2

. (68)

From this Lagrangian it is clear that the only difference
when calculating the asymptotic potential at the quark level
for the several B8B8’s has to do with the number of the pairs
of light quarks (u, d) in them allowing for the exchange of the
σ , i.e., with the number of equivalent diagrams, Figs. 1 and 4.
This number is 9 for NN, 4 for �� and 

, and 1 for ��.
Thus

(Ṽq)��→��
OSE (R → ∞) = (Ṽq)

→



OSE (R → ∞)

= 4

9
(Ṽq)NN→NN

OSE (R → ∞) (69)

(Ṽq)��→��
OSE (R → ∞) = 1

9
(Ṽq)NN→NN

OSE (R → ∞).

At the baryonic level we write the Lagrangian as

LσB8B8 ≡ −(gσB8B8 )Q2=M2
σ

B̄8 σ B8, (70)

σ, π

Λ, Σ Λ, Σ

Λ, Σ Λ, Σ

σ, π

Ξ Ξ

Ξ Ξ

FIG. 4. Asymptotic ��, 

, and �� OPE and OSE interactions
at quark level. Thin lines stand for light (u, d) quarks and thick lines
for strange (s) quarks.

with a vertex form factor

GσB8B8 (Q2) =
(

�2
σB8B8

− M2
σ

�2
σB8B8

− Q2

)1/2

. (71)

so that GσB8B8 (Q2 = M2
σ ) = 1 and where the (gσB8B8 )Q2=M2

σ

are expressed in conventional notation

(gσNN )Q2=M2
σ

≡
√

2/3 gs,1 + 1/3 gs,+ (4αs − 1)

(gσ��)Q2=M2
σ

≡
√

2/3 gs,1 − 2/3 gs,+ (1 − αs)
(72)

(gσ

)Q2=M2
σ

≡
√

2/3gs,1 + 2/3 gs,+ (1 − αs)

(gσ��)Q2=M2
σ

≡
√

2/3 gs,1 − 1/3 gs,+ (1 + 2αs),

being gs,1 ≡ (gσ0B8B8 )Q2=M2
σ

the scalar SU(3) singlet coupling
constant, gs,+ ≡ gs,D + gs,F the sum of the D (symmetric)
and the F (antisymmetric) scalar coupling constants in SU(3)
and αs ≡ gs,F /gs,+ the F/(F + D) ratio of the scalar octet.

From this baryonic Lagrangian the following relations
between the asymptotic potentials come out (from Fig. 2 and
similar figures with N substituted by �, 
, or �)

(VB)��→��
OSE (R → ∞)

=
(
g2

σ��

)
Q2=M2

σ(
g2

σNN

)
Q2=M2

σ

(VB)NN→NN
OSE (R → ∞)

(VB)

→


OSE (R → ∞)

(73)

=
(
g2

σ



)
Q2=M2

σ(
g2

σNN

)
Q2=M2

σ

(VB)NN→NN
OSE (R → ∞)

(VB)��→��
OSE (R → ∞)

=
(
g2

σ��

)
Q2=M2

σ(
g2

σNN

)
Q2=M2

σ

(VB)NN→NN
OSE (R → ∞).

From the comparison of the asymptotic potentials at the quark
and baryon levels we immediately get relations between the
coupling constants(

g2
σ��

)
Q2=M2

σ(
g2

σNN

)
Q2=M2

σ

=
(
g2

σ



)
Q2=M2

σ(
g2

σNN

)
Q2=M2

σ

= 4

9
(74)
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(
g2

σ��

)
Q2=M2

σ(
g2

σNN

)
Q2=M2

σ

= 1

9
.

We should emphasize that these ratios are preserved in the
limit Mσ → 0, i.e.,(

g2
σ��

)
Q2=M2

σ →0(
g2

σNN

)
Q2=M2

σ →0

=
(
g2

σ



)
Q2=M2

σ →0(
g2

σNN

)
Q2=M2

σ →0

= 4

9
(75)(

g2
σ��

)
Q2=M2

σ →0(
g2

σNN

)
Q2=M2

σ →0

= 1

9
.

It is interesting to compare these Mσ → 0 ratios with the
average QCDSR predictions at Q2 = 0 in the SU(3) limit.
From Ref. [19] we take(

g2
σ��

)
Q2=0(

g2
σNN

)
Q2=0

= (0.43)2 = 0.19

(
g2

σ



)
Q2=0(

g2
σNN

)
Q2=0

= (0.91)2 = 0.83 (76)

(
g2

σ��

)
Q2=0(

g2
σNN

)
Q2=0

= (0.08)2 = 0.006.

As can be checked our ratios differ by a factor 2 (1/2)
for � − N and 
 − N (� − N ) from the QCDSR ones. We
may interpret this again as a reflection of the non-Goldstone
character of the σ meson.

1. Coupling constants and form factors values

From Eq. (74) and from the calculated value
(g2

σNN )Q2=M2
σ
/4π = 68.2 we predict the coupling constants(

g2
σ��

)
Q2=M2

σ

4π
=

(
g2

σ



)
Q2=M2

σ

4π
= 30.3

(77)(
g2

σ��

)
Q2=M2

σ

4π
= 7.6.

Concerning the F/(F + D) ratio we have from Eq. (74)
(gσ��)Q2=M2

σ
= (gσ

)Q2=M2

σ
what implies from Eq. (72)

αs = 1, (78)

or

gS,D = 0. (79)

Regarding gs,1 and gS,+, we can use the fact that from the ideal
mixing we have assumed g(ss)NN = −1/

√
3 gs,1 + √

2 gs,F −√
2/3 gs,D = 0. Then from Eq. (79) we immediately obtain

gs,+ = 1/
√

6 gs,1. If we substitute this relation and Eq. (78) in
the first expression of Eq. (72) we get (gσNN )Q2=M2

σ
= 3gs,+,

from where

g2
s,+

4π
= 7.6 (80)

g2
s,1

4π
= 45.5, (81)

satisfying

g2
s,1

g2
s,+

= 6. (82)

With respect to the cutoff parameters �σB8B8 we can tentatively
use our on-shell couplings ratios, Eq. (74), altogether with the
QCDSR ones at Q2 = 0 detailed above, Eq. (76), to establish
a range of variation for them. Explicitly we can write

[(
g2

σB8B8

)
Q2=0(

g2
σNN

)
Q2=0

]
=

[(
g2

σB8B8

)
Q2=M2

σ(
g2

σNN

)
Q2=M2

σ

] (�2
σB8B8

−M2
σ

�2
σB8B8

)
(�2

σNN−M2
σ

�2
σNN

) , (83)

or equivalently

�σB8B8 = �σNN

[
M2

σ

�2
σNN (1 − xB8 ) + xB8M

2
σ

] 1
2

, (84)

where

xB8 ≡
[ (g2

σB8B8
)Q2=0

(g2
σNN )

Q2=0

]
[ (g2

σB8B8
)
Q2=M2

σ

(g2
σNN )

Q2=M2
σ

] . (85)

By using the average value �σNN = 3.97 fm−1, Eq. (47), we
get

�σNN = 3.97 fm−1

�σ�� = 4.48 fm−1

(86)
�σ

 = 4.75 fm−1

�σ�� = 3.45 fm−1.

Thus we could use �σB8B8 � 4.0 fm−1 as an average value for
the whole baryon octet.

C. a0 B8 B8

The results obtained for σ can be extrapolated to the
a0 meson in a straightforward way. Let us recall that in
the additive constituent quark pattern one has degenerate
masses Ma0 = Mσ (see Ref. [11] for an explanation of the
nondegeneracy). Then by writing the a0 on-shell couplings in
SU(3) language

(ga0NN )Q2=M2
a0

= gs,+
(ga0

)Q2=M2

a0
= 2gs,+αs (87)

(ga0��)Q2=M2
a0

= gs,+(2αs − 1),

and imposing the degeneracy we predict from our value for
gs,+ [Eq. (80)](

g2
a0NN

)
Q2=M2

a0

4π
=

(
g2

a0��

)
Q2=M2

a0

4π
= 7.6

(88)(
g2

a0



)
Q2=M2

a0

4π
= 30.3.
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D. π B8 B8

To avoid mass factors we use the pseudovector coupling for
the pion, i.e., the Lagrangian

L̃PV
πqq = − f̃πqq

Mπ

q̄ iγ5γµ�τ∂µ �π q (89)

with the vertex form factor

F̃πqq(Q2) ≡
(

�̃2 − M2
π

�̃2 − Q2

)1/2

(90)

to derive the asymptotic pion exchange central potentials. To
perform the calculation we choose a total (spin, isospin) in
each case. By considering the 1S0 partial wave, for instance,
we take (0, 1) for NN and �� and (0, 0) for 

 interactions.
Then we have

(Vq)NN→NN
OPE (R → ∞) = f̃ 2

πqq

4π

[
−75

9
e

M2
π b̃2

2

]
1

3

e−Mπ R

R

(Vq)

→


OPE (R → ∞) = f̃ 2

πqq

4π

[
32

3
e

M2
π b̃2

2

]
1

3

e−Mπ R

R
(91)

(Vq)��→��
OPE (R → ∞) = f̃ 2

πqq

4π

[
−3

9
e

M2
π b̃2

2

]
1

3

e−Mπ R

R
.

However, at the baryonic level the Lagrangians can be
expressed as

LPV
πNN = − (fπNN )Q2=M2

π

Mπ

N̄ iγ5γµ �τ ∂µ �π N (92)

LPV
π

 = − (fπ

)Q2=M2

π

Mπ

( �̄
 × �
 )γ5 γµ ∂µ �π (93)

LPV
π�� = − (fπ��)Q2=M2

π

Mπ

�̄ iγ5 γµ �τ ∂µ �π �, (94)

with form factors

GπNN (Q2) =
(

�2
πNN − M2

π

�2
πNN − Q2

) 1
2

Gπ

(Q2) =
(

�2
π

 − M2

π

�2
π

 − Q2

) 1
2

(95)

Gπ��(Q2) =
(

�2
π�� − M2

π

�2
π�� − Q2

) 1
2

, (96)

and where in conventional SU(3) notation

(fπNN )Q2=M2
π

= fp,+
(fπ

)Q2=M2

π
= 2fp,+αp

(fπ��)Q2=M2
π

= −fp,+(1 − 2αp),

having introduced fp,+ ≡ (fp,D + fp,F ) as the sum of the
symmetric and antisymmetric pseudoscalar octet coupling
constants and αp ≡ fP,F /(fP,D + fP,F ) as the F/(F + D)
ratio of the pseudoscalar octet.

By using the same total (spin, isospin) channels as above
the corresponding asymptotic pion exchange central potentials

are

(VB)NN→NN
OPE (R → ∞) =

(
f 2

πNN

)
Q2=M2

π

4π
[−3]

1

3

e−Mπ R

R

(VB)

→


OPE (R → ∞) =

(
f 2

π



)
Q2=M2

π

4π
[6]

1

3

e−Mπ R

R
(97)

(VB)��→��
OPE (R → ∞) =

(
f 2

π��

)
Q2=M2

π

4π
[−3]

1

3

e−Mπ R

R
.

Then from the comparison of the asymptotic potentials at the
baryon level and quark level the following relations come out

(
f 2

πNN

)
Q2=M2

π

= f̃ 2
πqq

25

9
e

M2
π b̃2

2

(
f 2

π



)
Q2=M2

π

= f̃ 2
πqq

16

9
e

M2
π b̃2

2 (98)

(
f 2

π��

)
Q2=M2

π

= f̃ 2
πqq

1

9
e

M2
π b̃2

2 ,

and (
f 2

π



)
Q2=M2

π(
f 2

πNN

)
Q2=M2

π

= 16

25
(99)(

f 2
π��

)
Q2=M2

π(
f 2

πNN

)
Q2=M2

π

= 1

25
.

1. Coupling constants and form factors values

From Eqs. (99) and the standard value (f 2
πNN )Q2=M2

π
/4π =

0.079 we predict the numerical values(
f 2

π



)
Q2=M2

π

4π
= 0.051

(100)(
f 2

π��

)
Q2=M2

π

4π
= 0.0032,

or (
g2

π



)
Q2=M2

π

4π
= 9.4

(101)(
g2

π��

)
Q2=M2

π

4π
= 0.6,

and

αp = 0.4. (102)

This compares quite well with a derived value of αp � 0.365 ±
0.007 from the F/D ratio extracted from semileptonic decays
of baryons [20].

With respect to the couplings at Q2 = 0 we can rely on the
quite approximate Goldstone boson character of the pion and
assume they are given by (f 2

πB8B8
)Q2=0 � (f 2

πB8B8
)Q2=M2

π →0.

As in this limit the ratios between the couplings are the same
than the on-shell ones obtained above, Eq. (99), we can use
them altogether with (f 2

πNN )Q2=M2
π →0/4π = 0.072, Eq. (35),
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TABLE II. Pion and sigma coupling constants to quarks in our
SU(2) ⊗ SU(2) and SU(3) ⊗ SU(3) models.

m SU(2) ⊗ SU(2) SU(3) ⊗ SU(3)

(π, σ ) g2
ch/4π = 0.535 g̃2

ch/4π = 0.535
π g2

πqq/4π = 0.55 g̃2
πqq/4π = 0.54

σ g2
σqq/4π =1.59 g̃2

σqq/4π = 0.93

to predict (
f 2

π



)
Q2=0

4π
� 0.046

(103)(
f 2

π��

)
Q2=0

4π
� 0.0029,

or (
g2

π



)
Q2=0

4π
� 8.5

(104)(
g2

π��

)
Q2=0

4π
� 0.5.

Moreover the preservation of the ratios implies the equality
of the form factors. From (f 2

πNN )Q2=0 � (f 2
πNN )Q2=M2

π →0 and
(f 2

πNN )Q2=M2
π

we deduce

�πB8B8 � 2.35 fm−1. (105)

IV. SUMMARY

From a SU(2)⊗SU(2) chiral quark Lagrangian incorpo-
rating spontaneous chiral symmetry breaking, and its gen-
eralization to SU(3)⊗SU(3), asymptotic meson exchange
B8B8 → B8B8 interaction potentials are derived in the Born-
Oppenheimer approximation. The comparison with the corre-
sponding potentials from a SU(2) or SU(3) invariant hadronic
Lagrangian allows for the expression of the πB8B8 and σB8B8

coupling constants in terms of the elementary πqq and σqq

ones. By using the πNN coupling constant as an input the
πqq one gets fixed. From it the rest of coupling constants
(σqq, πB8B8, and σB8B8) are predicted. Their Mm → 0
limits are also of interest to be compared with the values of the
couplings at Q2 = 0 provided by phenomenological analyses
or QCDSR. The similar value obtained for πNN indicates the
quite approximate Goldstone boson nature of the pion. On the
contrary, σB8B8 couplings are significantly different as might
be expected.

TABLE III. Predicted pairs [(g2
mB8B8

/4π )Q2=M2
m
, �mB8B8 (fm−1)]

from the chiral quark potential model, for exact SU(3) symmetry
(M� = M
 = M� = MN = 939 MeV). The superindex ∗ indicates
the πNN coupling constant value used as input.

m mNN m�� m

 m��

π (14.6∗, 2.35) (9.4, 2.35) (0.6, 2.35)
σ (68.2, 3.97) (30.3, 4.48) (30.3, 4.75) (7.6, 3.45)

Further information about the couplings can be extracted
under the assumption that our on-shell model predictions and
the Q2 = 0 values from external analyses can be managed
jointly. Though this assumption is debatable it allows to get
some insight into the cutoff parameters �mB8B8 at the baryonic
level.

We summarize in Table II the pion and sigma coupling
constants to quarks in our models. In Table III the values
obtained for the coupling constants and the form factors
parameters at the baryon level are listed. By making use of the
a0-σ degeneracy in our quark model we have also predicted
a0B8B8 on-shell couplings. Concerning other diagonal mBB

couplings such as f0B8B8, ηB8B8, and η′B8B8, to which our
formalism could be also applied, the situation gets complicated
by the presence of the strange quark and/or antiquark that may
give rise to relevant SU(3) breaking effects out of the scope of
our symmetry treatment.

Let us finally add that in our model Goldberger-Treiman
relations of the form (gA)πB8B8/2fπ = (fπB8B8 )Q2=M2

π
/Mπ ,

where gA stands for the axial coupling constant and fπ for
the pion decay constant, can be immediately applied. In our
nonrelativistic description (gA)πNN = 5/3, a value consider-
ably larger than the experimental one, 1.267. Consequently
fπ = 116 MeV, which is 20% bigger than the experimental
value of 93 MeV. Regarding these discrepancies it has been
shown [18] that a relativistic treatment, beyond our present
approach, could correct them to a good extent.
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