
PHYSICAL REVIEW C 77, 045804 (2008)

Quark-meson coupling model for antikaon condensation in
neutron star matter with strong magnetic fields
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We study the effects of strong magnetic fields on antikaon condensation in neutron star matter using the
quark-meson coupling (QMC) model. The QMC model describes a nuclear many-body system as nonoverlapping
MIT bags in which quarks interact through the self-consistent exchange of scalar and vector mesons in the
mean-field approximation. It is found that the presence of strong magnetic fields alters the threshold density
of antikaon condensation significantly. The onset of K− condensation stronger depends on the magnetic field
strength, and it even shifts beyond the threshold of K̄0 condensation for sufficiently strong magnetic fields. In the
presence of strong magnetic fields, the equation of state (EOS) becomes stiffer in comparison with the field-free
case. The softening of the EOS by antikaon condensation also depends on the magnetic field strength, and it
becomes less pronounced with increasing magnetic field strength. The results of the QMC model are compared
with those obtained in a relativistic mean-field (RMF) model, and we find there are quantitative differences
between the results of the QMC and RMF models.
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I. INTRODUCTION

The study of dense stellar matter in the presence of strong
magnetic fields is of great interest in nuclear astrophysics.
Observations of ordinary radio pulsars indicate that they pos-
sess surface magnetic fields of the order of 1012 G [1]. Recent
surveys of soft-gamma repeaters (SGRs) and anomalous X-ray
pulsars (AXPs) imply that the surface magnetic field of young
neutron stars could be of order 1014–1015 G [2]. The magnetic
field strength may vary significantly from the surface to the
center in neutron stars. So far, there is no direct observational
evidence for the internal magnetic fields of the star, while it
may reach 1018 G, as estimated in some theoretical works
[3–5]. Motivated by a possible existence of strong magnetic
fields in neutron stars, theoretical studies on the effects of
extremely large fields on dense matter have been carried out
by many authors [1,3,5–8], and the inclusion of hyperons and
boson condensation has also been investigated [9–11]. There
have been some works that investigate the effects of strong
magnetic fields on neutron star properties [4,5]. In Ref. [4],
the authors studied static neutron stars with poloidal magnetic
fields and a simple class of electric current distributions,
and they found that the maximum mass among these static
configurations with magnetic fields is noticeably larger than
the maximum mass attainable with uniform rotation and no
magnetic field. In Ref. [5], the authors assumed the magnetic
field varies from the surface to the center in neutron stars,
and they found that the maximum mass of neutron stars could
substantially increase if the strongest possible magnetic fields
existed in the center of neutron stars.

It is believed that the density in the interior of neutron
stars is extremely high, and additional degrees of freedom
such as hyperons, kaons, and even quarks may occur in
the core of neutron stars [12–15]. Recently, much attention
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has been paid to the kaon/antikaon condensations based on
various models [16–22]. In general, the presence of antikaon
condensation tends to soften the equation of state (EOS) at high
density and lower the maximum mass of neutron stars. It is
interesting to investigate the influence of strong magnetic fields
on antikaon condensation. In Ref. [11], the condensation of
negatively charged K− under the influence of strong magnetic
fields has been studied within a relativistic mean-field (RMF)
model. It was found that the threshold of K− condensation
shifts to higher density in the presence of strong magnetic
fields and the EOS becomes stiffer. These qualitative features
are expected to persist in other models.

In this article, we study the effects of strong magnetic fields
on the condensations of negatively charged K− and neutral
K̄0 in neutron star matter using the quark-meson coupling
(QMC) model. The QMC model was originally proposed in
the article by Guichon [23], in which the quark degrees of
freedom are explicitly taken into account and a nuclear many-
body system is described as a collection of nonoverlapping
MIT bags interacting through the self-consistent exchange
of meson mean fields. The QMC model has been extended
and applied to various problems of nuclear matter and finite
nuclei with reasonable success [24–27]. Furthermore, the
model has also been used to investigate the properties of
neutron stars with the inclusion of hyperons, quarks, and K−
condensation [14,15,22]. In the present work, both nucleons
and antikaons are described as MIT bags that interact through
the self-consistent exchange of isoscalar scalar and vector
mesons (σ and ω) and isovector vector meson (ρ) in the
mean-field approximation. These exchanged mesons couple
directly to the confined quarks inside the bags. In contrast to
the RMF model, the quark structure plays a crucial role in the
QMC model, and the basic coupling constants are defined at
the quark level. In Ref. [28], the in-medium kaon and antikaon
properties have been studied in the QMC model. In Ref. [22],
the consequences of including K− condensation on the EOS
of neutron star matter and related compact star properties have
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been investigated using the QMC model. Next, we examine the
effects of strong magnetic fields on K− and K̄0 condensations
occurring in neutron star matter within the QMC model.

The aim of the present article is to investigate the influence
of strong magnetic fields on antikaon condensation that may
occur in the core of massive stars. For antikaon condensation
in the field-free case, there have been many discussions in
the literature after the paper by Kaplan and Nelson [29] who
pointed out the possibility of the existence of K− condensation
in dense nuclear matter. In general, the chemical potential of
antikaons in dense matter decreases with increasing density
due to their interaction with nucleons. As a consequence,
the ground state of hadronic matter at high density might
contain antikaon condensation. The appearance of antikaon
condensation can soften the EOS of neutron star matter and
lower the maximum mass of neutron stars [16,22]. However,
it is known that the surface magnetic field of young neutron
stars can be of order 1014–1015 G [2], whereas the internal
magnetic fields of the star may reach 1018 G, as estimated
in some theoretical works [3–5]. The possible existence of
strong magnetic fields in neutron stars motivates us to study
the effects of extremely strong magnetic fields on dense matter.
It has been found that the composition and the EOS of neutron
star matter can be significantly affected by strong magnetic
fields [3,7,8], while the maximum mass of neutron stars might
substantially increase if the strongest possible magnetic fields
existed in the center of neutron stars [4,5]. Because antikaon
condensation can be important in the understanding of neutron
stars, an investigation of the influence of strong magnetic fields
on antikaon condensation would be of interest for the study of
compact stars in astrophysics.

This article is arranged as follows. In Sec. II, we briefly
describe the QMC model for neutron star matter with antikaon
condensation in the presence of strong magnetic fields. In
Sec. III, we show and discuss the numerical results in the QMC
model and make a systematic comparison with the results of
the RMF model. Section IV is devoted to a summary.

II. FORMALISM

We adopt the QMC model to describe neutron star matter
with antikaon condensation in the presence of strong magnetic
fields. In the QMC model, nucleons and antikaons are
described as MIT bags that interact through the self-consistent
exchange of isoscalar scalar and vector mesons (σ and ω) and
isovector vector meson (ρ) in the mean-field approximation. To
perform the calculation for neutron star matter in the presence
of strong magnetic fields, we first study the properties of
nucleons and antikaons under the influence of external meson
and electromagnetic fields using the MIT bag model. These
external fields are in principle functions of position in the bag,
which may cause a deformation of the bag. For simplicity,
we neglect the spatial variation of the fields over the small
bag volume and take the values at the center of the bag as
their average quantities [24]. We note that the spherical bag
approximation may be violated in a superstrong magnetic field
where the deformation of the bag can be significant.

For nucleons described as spherical MIT bags with external
meson and electromagnetic fields, the up and down quarks

inside the bag satisfy the Dirac equation[
iγµ∂µ − (

mq + gq
σσ

) − gq
ωωµγ µ − gq

ρτ3qρ3µγ µ

− e(1 + 3τ3q )

6
Aµγ µ

]
ψq = 0, (1)

where g
q
σ , g

q
ω, and g

q
ρ are the quark-meson coupling constants

and mq is the current quark mass. τ3q is the third component
of the Pauli matrices. σ, ωµ, ρ3µ, and Aµ are the values of the
meson and electromagnetic fields at the center of the bag.

The normalized ground state for a quark in the bag is given
by

ψq(r, t) = Nq e−iεq t/RN

[
j0(xqr/RN )

i βq �σ · r̂ j1(xqr/RN )

]
χq√
4π

, (2)

where

βq =
√

�q − RN m∗
q

�q + RN m∗
q

, (3)

N−2
q = 2 R3

N j 2
0 (xq)[�q(�q − 1) + RN m∗

q/2]/x2
q , (4)

with �q =
√

x2
q + (RN m∗

q)2 and m∗
q = mq + g

q
σσ . RN is the

bag radius of the nucleon, and χq is the quark spinor. The
boundary condition, j0(xq) = βq j1(xq), at the bag surface
determines the eigenvalue xq . The energy of a static nucleon
bag consisting of three ground-state quarks is then given by

E
bag
N = 3

�q

RN

− ZN

RN

+ 4

3
πR3

NBN, (5)

where the parameter ZN accounts for various corrections
including zero-point motion and BN is the bag constant. The
effective nucleon mass is then taken to be

M∗
N = E

bag
N . (6)

The bag radius RN is determined by the equilibrium condition
∂M∗

N/∂RN = 0. In the present calculation, we take the
current quark mass mq = 5.5 MeV. The parameter B

1/4
N =

210.854 MeV and ZN = 4.00506, as given in Ref. [15], are
determined by reproducing the nucleon mass MN = 939 MeV
and the bag radius RN = 0.6 fm in free space.

For antikaons, negatively charged K− and neutral K̄0, we
assume that they are described as MIT bags in the same way
as nucleons [22,28]. The exchanged σ, ω, and ρ mesons are
assumed to couple exclusively to the up and down quarks
(and antiquarks), not to the strange quark according to the
Okubo-Zweig-Iizuka (OZI) rule [22]. Hence the antiquarks, ū

in K− and d̄ in K̄0, and the s quarks satisfy the Dirac equations[
iγµ∂µ − (

mq + gq
σσ

) + gq
ωωµγ µ + gq

ρτ3qρ3µγ µ

+ e(1 + 3τ3q )

6
Aµγ µ

]
ψq̄ = 0, (7)

and (
iγµ∂µ − ms + e

3
Aµγ µ

)
ψs = 0. (8)
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Similarly, the effective mass of antikaons and kaons is
given by

m∗
K = �q + �s

RK

− ZK

RK

+ 4

3
πRK

3BK, (9)

where �q =
√

x2
q + (RK m∗

q)2 and �s = √
x2

s + (RK ms)2.
We take the strange quark mass ms = 150 MeV and the
bag constant BK = BN . The parameters ZK = 3.362 and
RK = 0.457 fm, as given in Ref. [22], are determined from
the kaon mass and the stability condition in free space.

To describe neutron star matter with antikaon condensation
in the presence of strong magnetic fields, we adopt the total
Lagrangian density written at the hadron level as the sum of
nucleonic, kaonic, and leptonic parts,

L = LN + LK + Ll , (10)

where

LN =
∑

b=n,p

ψ̄b

[
iγµ∂µ − qbγµAµ − M∗

N − gωNγµωµ

− gρNγµτiNρ
µ

i − 1

2
κbσµνF

µν

]
ψb

+ 1

2
∂µσ∂µσ − 1

2
m2

σ σ 2 − 1

4
WµνW

µν + 1

2
m2

ωωµωµ

− 1

4
RiµνR

µν

i + 1

2
m2

ρρiµρ
µ

i − 1

4
FµνF

µν, (11)

LK = D∗
µK̄DµK − m∗2

K K̄K, (12)

Ll =
∑
l=e,µ

ψ̄l[iγµ∂µ − qlγµAµ − ml]ψl. (13)

Here Aµ = (0, 0, Bx, 0) refers to a constant external magnetic
field B along the z axis. The effective masses M∗

N and m∗
K in

Eqs. (6) and (9) are obtained at the quark level. The covari-
ant derivative is defined as Dµ = ∂µ + iqKAµ + igωKωµ +
igρKτiKρi

µ. The isospin doublet for kaons is denoted by
K ≡ (K+,K0) and that for antikaons by K̄ ≡ (K−, K̄0). We
note that the electric charges of particles are qe = qµ = qK− =
−e, qn = qK̄0 = 0, and qp = e. The anomalous magnetic
moments of nucleons are included with κp = µN (gp/2 − 1) =
1.7928 µN and κn = µNgn/2 = −1.9130 µN , where µN

is the nuclear magneton. In the QMC model, the coupling
constants at the hadron level are related to the quark-meson
coupling constants as gωN = 3g

q
ω, gωK = g

q
ω, and gρN =

gρK = g
q
ρ [22,28]. The quark-meson coupling constants g

q
σ =

5.957, g
q
ω = 2.994, and g

q
ρ = 4.325 are determined by fitting

the saturation properties of nuclear matter [15]. The meson
masses mσ = 550 MeV, mω = 783 MeV, and mρ = 770 MeV
are used in the present calculation.

In the mean-field approximation, the meson field equations
in the presence of antikaon condensation and strong magnetic
fields have the following forms:

m2
σ σ = −∂M∗

N

∂σ

(
ρp

s + ρn
s

)

− ∂m∗
K

∂σ


 m∗

K√
m∗2

K + |qK−|B
ρK− + ρK̄0


 , (14)

m2
ωω0 = gωN

(
ρp

v + ρn
v

) − gωK (ρK− + ρK̄0 ) , (15)

m2
ρρ30 = gρN

(
ρp

v − ρn
v

) − gρK (ρK− − ρK̄0 ) . (16)

The Dirac equations for nucleons and leptons are given by(
iγµ∂µ − qbγµAµ − M∗

N − gωNγ 0ω0 − gρNγ 0τ3Nρ30

− 1
2κbσµνF

µν
)
ψb = 0, (17)

(iγµ∂µ − qlγµAµ − ml)ψl = 0. (18)

The energy spectra for protons, neutrons, and leptons (elec-
trons and muons) are given by

Ep
ν,s =

√
k2
z + (√

M∗2
N +2νqpB − sκpB

)2

+ gωNω0 + gρNρ30, (19)

En
s =

√
k2
z + (√

M∗2
N + k2

x + k2
y − sκnB

)2

+ gωNω0 − gρNρ30, (20)

El
ν,s =

√
k2
z + m2

l +2ν|ql |B, (21)

where ν = n + 1/2 − sgn(qi) s/2 = 0, 1, 2, . . . enumerates
the Landau levels of the fermion i with electric charge qi

(i = p, e, or µ). The quantum number s is +1 for spin up and
−1 for spin down cases. The expressions of scalar and vector
densities for protons and neutrons are given by

ρp
s = qpBM∗

N

2π2

∑
ν

∑
s

√
M∗2

N + 2νqpB − sκpB√
M∗2

N + 2νqpB

× ln

∣∣∣∣∣∣
k

p

f,ν,s + E
p

f√
M∗2

N + 2νqpB − sκpB

∣∣∣∣∣∣ , (22)

ρp
v = qpB

2π2

∑
ν

∑
s

k
p

f,ν,s , (23)

ρn
s = M∗

N

4π2

∑
s

[
kn
f,sE

n
f − (M∗

N − sκnB)2 ln

∣∣∣∣ kn
f,s + En

f

M∗
N − sκnB

∣∣∣∣
]
,

(24)

ρn
v = 1

2π2

∑
s

{
1

3
kn3
f,s − 1

2
sκnB

[(
M∗

N − sκnB
)
kn
f,s

+En2
f

(
arcsin

M∗
N − sκnB

En
f

− π

2

)] }
, (25)

where k
p

f,ν,s and kn
f,s are the Fermi momenta of protons and

neutrons, which are related to the Fermi energies E
p

f and En
f

as

E
p

f

2 = k
p2
f,ν,s +

(√
M∗2

N + 2νqpB − sκpB

)2

, (26)

En
f

2 = kn2
f,s + (M∗

N − sκnB)2. (27)

The chemical potentials of nucleons and leptons are given by

µp = E
p

f + gωNω0 + gρNρ30, (28)
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µn = En
f + gωNω0 − gρNρ30, (29)

µl = El
f =

√
kl2
f,ν,s + m2

l + 2ν |ql| B. (30)

The equation of motion for antikaons K̄ ≡ (K−, K̄0) in
neutron star matter with magnetic fields can be explicitly
written as

(∂µ − iqK̄Aµ − igωKω0 − igρKτ3Kρ30)(∂µ − iqK̄Aµ

− igωKω0 − igρKτ3Kρ30)K̄ + m∗2
K K̄ = 0, (31)

and the energy spectra are obtained as

ωK− =
√

m∗2
K + k2

z + (2n + 1)|qK−|B − gωKω0 − gρKρ30,

(32)

ωK̄0 =
√

m∗2
K + k2

x + k2
y + k2

z − gωKω0 + gρKρ30. (33)

For s-wave condensation of negatively charged K− and neutral
K̄0, we have the chemical potentials

µK− = ωK− (n = kz = 0)

=
√

m∗2
K + |qK−|B − gωKω0 − gρKρ30, (34)

µK̄0 = ωK̄0 (kx = ky = kz = 0) = m∗
K − gωKω0 + gρKρ30.

(35)

The number densities of antikaons are given by

ρK− = 2
√

m∗2
K + |qK−|B K̄K, (36)

ρK̄0 = 2m∗
K K̄K. (37)

For neutron star matter with uniform distributions, the com-
position of matter is determined by the requirements of
charge neutrality and β-equilibrium conditions. In the present
calculation with antikaon condensation, the β-equilibrium
conditions are expressed by

µn − µp = µK− = µe = µµ, (38)

µK̄0 = 0, (39)

and the charge neutrality condition is given by

ρp
v = ρK− + ρe

v + ρµ
v , (40)

with ρ
p
v and ρK− given in Eqs. (23) and (36). The vector density

of leptons has a similar expression to that of protons

ρl
v = |ql| B

2π2

∑
ν

∑
s

kl
f,ν,s . (41)

We solve the coupled Eqs. (14)–(16) and (38)–(40) self-
consistently at a given baryon density, ρB = ρ

p
v + ρn

v , in the
presence of antikaon condensation and strong magnetic fields.
The total energy density of neutron star matter is given by

ε = εp + εn + εK̄ + εl + 1
2m2

σ σ 2 + 1
2m2

ωω2
0 + 1

2m2
ρρ

2
30,

(42)

where the energy densities of nucleons, antikaons, and leptons
have the following forms:

εp = qpB

4π2

∑
ν

∑
s


k

p

f,ν,sE
p

f +
(√

M∗2
N + 2νqpB − sκpB

)2

× ln

∣∣∣∣∣∣
k

p

f,ν,s + E
p

f√
M∗2

N + 2νqpB − sκpB

∣∣∣∣∣∣

 , (43)

εn = 1

4π2

∑
s

{
1

2
kn
f,sE

n3
f − 2

3
sκnBEn3

f

×
(

arcsin
M∗

N − sκnB

En
f

− π

2

)

−
(

sκnB

3
+ M∗

N − sκnB

4

)

×
[

(M∗
N − sκnB)kn

f,sE
n
f

+ (M∗
N − sκnB)3 ln

∣∣∣∣ kn
f,s + En

f

M∗
N − sκnB

∣∣∣∣
]}

, (44)

εK̄ =
√

m∗2
K + |qK−|B ρK− + m∗

K ρK̄0 , (45)

εl =
∑
l=e,µ

∑
ν

∑
s

|ql|B
4π2

[
kl
f,ν,sE

l
f + (

m2
l +2ν|ql |B

)

× ln

∣∣∣∣∣ kl
f,ν,s + El

f√
m2

l +2ν|ql |B

∣∣∣∣∣
]
. (46)

The antikaons do not contribute directly to the pressure
because they are in the s-wave condensation. The pressure
of the system can be obtained by

P =
∑

i

µiρ
i
v − ε = µnρB − ε. (47)

We note that the contribution from electromagnetic fields to
the energy density and pressure, εf = Pf = B2/8π , is not
taken into account in the present calculation. In general, the
strong magnetic fields in neutron stars can produce magnetic
forces that play an important role in determining the structure
of the star [4].

III. RESULTS AND DISCUSSION

In this section, we analyze the properties of neutron star
matter with antikaon condensation in the presence of strong
magnetic fields using the QMC model. The effective masses
of nucleons and kaons in the QMC model are obtained self-
consistently at the quark level, which is the main difference
from the RMF model [30]. To show how the results depend on
the models based on different degrees of freedom, we make
a systematic comparison between the QMC model and the
RMF model with the TM1 parameter set [31]. As a nonlinear
version of the RMF model, the TM1 model has been widely
used in many studies of nuclear physics [11,32–35]. The TM1
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model includes nonlinear terms for both σ and ω mesons, and
its parameters were determined by reproducing the properties
of nuclear matter and finite nuclei including neutron-rich
nuclei [31]. It has be pointed in Refs. [16,17] that antikaon
condensation in the RMF models is quite sensitive to the
antikaon optical potential at normal nuclear matter density,
UK̄ (ρ0) = gσKσ − gωKω0. In the QMC model, the antikaon
optical potential is given by UK̄ = m∗

K − mK − gωKω0 [22],
and we obtain UK̄ (ρ0) = −123 MeV with the parameters used
in the present study, which agrees with the result given in
Ref. [22]. We note that the basic coupling constants in the
QMC model are defined at the quark level. Therefore, UK̄ (ρ0)
is a predicted value with determined g

q
σ and g

q
ω. However,

UK̄ (ρ0) in the RMF model is usually taken to be in a range and
used to determine the kaon-meson couplings. Here we take
gωK = gωN/3 and gσK = 0.926 in the TM1 model, which is
determined by fitting UK̄ (ρ0) = −123 MeV obtained in the
QMC model, so the comparison between the QMC and TM1
models is more meaningful. It is well known that the direct
URCA process produces the most powerful neutrino emission
in the core of neutron star and leads to rapid cooling of the star.
In the QMC model at B = 0, the direct URCA process occurs
at the critical density ρURCA ≈ 0.29 fm−3, which implies the
direct URCA process can take place for neutron star with
gravitational mass M > 1.08 M�. These values in the TM1
model are ρURCA ≈ 0.21 fm−3 and M > 0.81 M�. We note
that the maximum masses of neutron stars adopting the QMC
and TM1 equations of state with antikaon condensation in the
field-free case are about 1.85 M� and 2.09 M�, respectively.

In this article, we present numerical results for the magnetic
field strengths B∗ = B/Be

c = 0, 105, and 106 (Be
c = 4.414 ×

1013 G is the electron critical field). We note that the
magnetic fields B∗ = 105 and 106 may be too large for static
configurations of neutron stars to exist. In Ref. [36], the
authors performed relativistic calculations of axisymmetric
neutron star. They found that the maximum allowable poloidal
magnetic field is of the order of 1018 G when the magnetic
pressure is comparable to the fluid pressure at the center of the
star. In Ref. [4], the authors studied static neutron stars with
poloidal magnetic fields and a simple class of electric current
distributions, and they obtained that the maximum magnetic
field strengths at the center of neutron stars could be as large
as about 5 × 1018 G.

We show in Fig. 1 the effective masses of nucleons and
kaons as a function of the baryon density in neutron star matter
for B∗ = 0, 105, and 106. The results of the QMC model in the
upper panel are compared with those of the TM1 model in the
lower panel. It is shown that the effective nucleon masses in
the QMC model are larger than those in the TM1 model, but
the opposite is true for the effective kaon masses. Note that the
effective masses of nucleons and kaons in the QMC model are
obtained self-consistently at the quark level, whereas they are
simple linear functions of σ in the TM1 model. We find that
the influence of the magnetic field on the effective masses is
not observable until B∗ > 105, and the effective masses of both
nucleons and kaons in strong magnetic fields are larger than the
field-free values. In Fig. 2, we present the antikaon fractions,
YK− = ρK−/ρB (left panels) and YK̄0 = ρK̄0/ρB (right panels),
again for B∗ = 0, 105, and 106. It is seen that the threshold
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FIG. 1. (Color online) The effective masses of nucleons and
kaons, M∗/M , as a function of the baryon density, ρB , for the
magnetic field strengths B∗ = 0, 105, and 106. The results of the
QMC model shown in the upper panel are compared with those of
the TM1 model shown in the lower panel.

density of antikaon condensation is significantly changed by
the magnetic field when B∗ is large enough. In the QMC model
(upper panels), the threshold densities of K− condensation are
0.513, 0.572, and 1.277 fm−3 corresponding to B∗ = 0, 105,
and 106, whereas those of K̄0 condensation are 0.750, 0.728,
and 0.934 fm−3, respectively. In contrast, for the TM1 model
in the lower panels, the threshold densities are 0.514, 0.588,
and 1.732 fm−3 for K− condensation, whereas they are 0.905,
0.885, and 1.316 fm−3 for K̄0 condensation. We note that
the results of the TM1 model shown in Refs. [11,16] can
be obtained using twice lower gρN than given in Ref. [31].
Therefore, they are different from our results of the TM1
model.
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FIG. 2. (Color online) The antikaon fractions, YK− (left panels)
and YK̄0 (right panels), as a function of the baryon density, ρB , for
B∗ = 0, 105, and 106. The results of the QMC and TM1 models are
shown in the upper and lower panels, respectively.
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It is very interesting to compare the effect of the magnetic
field on K− and K̄0 condensations. The onset of K−
condensation shifts to higher density in the presence of strong
magnetic fields, and it even occurs beyond the threshold
of K̄0 condensation. This is mainly because the negatively
charged K− gets a large chemical potential in the presence
of strong magnetic fields, as given in Eq. (34) due to the term
|qK−|B. However, the threshold density of K̄0 condensation for
B∗ = 105 is slightly smaller than the field-free value, whereas
the one for B∗ = 106 significantly increases. Although K̄0 is
a neutral particle, its chemical potential given by Eq. (35)
is indirectly influenced by the magnetic field through the
dependence of meson mean fields on the magnetic field. We
conclude that K− condensation depends more on the magnetic
field than does K̄0 condensation. By comparing the results
of the QMC model with those of the TM1 model, one can
see that the onset of antikaon condensation in the presence
of strong magnetic fields occurs at lower densities within
the QMC model. This is because the chemical potentials of
antikaons in the QMC model decrease more rapidly than those
in the TM1 model. We note that the threshold densities of
antikaon condensation is mainly determined by the behavior
of the chemical potentials, and the chemical potentials are
related to the meson fields by Eqs. (34) and (35). Because the
TM1 model includes nonlinear terms for both σ and ω mesons,
the density dependence of the meson fields in the TM1 model
is quite different from those in the QMC model, and it leads to
different behavior of the chemical potentials in the two models.
Although there are quantitative differences between the QMC
and TM1 models, we find that qualitative trends of magnetic
field effects are similar in the two models.

In Figs. 3, 4, and 5, we show the electron fraction
Ye = ρe

v/ρB , the muon fraction Yµ = ρµ
v /ρB , and the proton

fraction Yp = ρ
p
v /ρB as functions of ρB for B∗ = 0, 105,
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FIG. 3. (Color online) The electron fraction, Ye, as a function of
the baryon density, ρB , for B∗ = 0, 105, and 106. The results with
and without K̄ condensation are shown in the right and left panels,
respectively. The results of the QMC model shown in the upper panels
are compared with those of the TM1 model shown in the lower panels.
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FIG. 4. (Color online) The muon fraction, Yµ, as a function of
the baryon density, ρB , for B∗ = 0, 105, and 106. The results with
and without K̄ condensation are shown in the right and left panels,
respectively. The results of the QMC model shown in the upper panels
are compared with those of the TM1 model shown in the lower panels.

and 106. One can obtain the neutron fraction Yn = ρn
v /ρB

as Yn = 1 − Yp. The charge neutrality condition gives the
relation Yp = YK− + Ye + Yµ. The results with and without
K̄ condensation are displayed in the right and left panels,
respectively. The negatively charged K− play the same role
as electrons and muons in maintaining the charge neutrality.
Therefore, the presence of K− condensation decreases Ye and
Yµ as shown in the right panels of Figs. 3 and 4. In the presence
of strong magnetic fields, the chemical potentials µe, µµ,
and µK− are influenced by the magnetic field. As a result,
drops of Ye and Yµ in Figs. 3 and 4 become less steep for
large magnetic field strength B∗. In Fig. 4, it is seen that the
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FIG. 5. (Color online) The proton fraction, Yp , as a function of
the baryon density, ρB , for B∗ = 0, 105, and 106. The results with
and without K̄ condensation are shown in the right and left panels,
respectively. The results of the QMC model shown in the upper panels
are compared with those of the TM1 model shown in the lower panels.
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threshold densities for the appearance of muons are affected
by the magnetic field. The threshold of muons for B∗ = 105

is slightly smaller than the field-free value, whereas the one
for B∗ = 106 significantly increases. The presence of K−
condensation leads to an enhancement of Yp as shown in the
right panels of Fig. 5. At high density where K̄0 condensation
occurs, Yp = 0.5 is obtained for B∗ = 0. This is because
β-equilibrium conditions enforce ρ

p
v = ρn

v as discussed in
Ref. [16]. The feature is changed in the presence of strong
magnetic fields, and we get En

f − E
p

f =
√

m∗2
K + |qK−|B −

m∗
K derived from the β-equilibrium conditions when the

condensations of isospin doublet, K− and K̄0, occur together
in neutron star matter. By comparing the right and left panels
of Figs. 3, 4, and 5, we find that the presence of antikaon
condensation can significantly change the particle fractions. It
is obvious that the composition of neutron star matter with
antikaon condensation depends on both the magnetic field
strength B∗ and the baryon density ρB . We note that the
tendencies in the upper panels obtained in the QMC model
are quite similar to those of the TM1 model in the lower
panels of Figs. 3, 4, and 5. In the right panels of Figs. 3 and
4 where antikaons are included, Ye and Yµ decrease more
rapidly at high densities in the QMC model than in the TM1
model. This is due to the same reason as that discussed for
the earlier appearance of antikaon condensation in the QMC
model. Because the β-equilibrium condition µK− = µe = µµ

should be satisfied, µe and µµ in the QMC model decrease
more rapidly than those in the TM1 model, just like the case of
µK− . This leads to a quicker drop in the upper right panels of
Figs. 3 and 4 comparing with those in the lower right panels.

In Fig. 6, we show the matter pressure P as a function of the
matter energy density ε for the magnetic field strengths B∗ =
0, 105, and 106. The results with and without K̄ condensation
are plotted in the right and left panels, respectively. It is seen
that the presence of K̄ condensation makes the EOS softer
compared with the case without K̄ condensation. The softening
of the EOS becomes less pronounced with increasing magnetic
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FIG. 6. (Color online) The matter pressure, P , versus the matter
energy density, ε, for B∗ = 0, 105, and 106. The results of the QMC
model with and without K̄ condensation are shown in the upper right
and upper left panels, respectively. Those in the TM1 model are shown
in the lower panels for comparison.

field for B∗ > 105. This is because the threshold of antikaon
condensation shifts to higher density and the effect of antikaon
condensation on the EOS gets weaker with increasing B∗. At
higher densities, the influence of strong magnetic fields on the
EOS becomes noticeable as the field strength increases above
B∗ ∼ 105. Here we include the anomalous magnetic moments
of nucleons, which play an important role in the study of
neutron star matter with strong magnetic fields as discussed in
our previous work [8]. The results of the QMC model in the
upper panels are compared with those of the TM1 model in the
lower panels. The EOS in the QMC model is slightly softer
than the one in the TM1 model.

IV. SUMMARY

In this article, we have studied the effects of strong
magnetic fields on antikaon condensation in neutron star matter
using the QMC model. Nucleons and antikaons in the QMC
model are described as MIT bags that interact through the
self-consistent exchange of scalar and vector mesons in the
mean-field approximation. In the QMC model, the effective
masses of nucleons and kaons are obtained self-consistently
at the quark level, which is the main difference from the
RMF models. It is clear that the effects of strong magnetic
fields become significant only for magnetic field strength
B∗ > 105. We found that the presence of strong magnetic
fields significantly alters the threshold density of antikaon
condensation. The threshold of antikaon condensation shifts
to higher density in the presence of strong magnetic fields. For
B∗ = 0, 105, and 106, we obtained the threshold densities of
K− condensation are 0.513, 0.572, and 1.277 fm−3, whereas
those of K̄0 condensation are 0.750, 0.728, and 0.934 fm−3.
It is obvious that the threshold density of K− condensation
depends strongly on the magnetic field strength, and it even
shifts beyond the threshold of K̄0 condensation for sufficiently
strong magnetic fields. Because the negatively charged K− can
play the same role as electrons and muons in maintaining the
charge neutrality, the presence of K− condensation decreases
the fractions of electrons and muons dramatically, and the
drops become less steep for larger field strength. It is found
that the presence of antikaon condensation can significantly
change the composition of neutron star matter, and the particle
populations depend on both the magnetic field strength B∗ and
the baryon density ρB .

The presence of antikaon condensation can make the EOS
softer compared with the case without antikaon condensation.
The softening of the EOS becomes less pronounced with
increasing magnetic field for B∗ > 105. It is known that the
Landau quantization of charged particles causes a softening
in the EOS, whereas the inclusion of nucleon anomalous
magnetic moments leads to a stiffening of the EOS. At high
densities, the softening of the EOS from Landau quantization
with increasing magnetic field for B∗ > 105 can be over-
whelmed by the stiffening resulting from the incorporation
of anomalous magnetic moments. We have made a systematic
comparison between the results of the QMC and TM1 models.
It is found that quantitative differences exist between the two
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models, but qualitative trends of magnetic field effects on
antikaon condensation and EOS are quite similar.

Finally, we would like to give a few remarks on the
limitations of the results presented in this article. Although
the QMC model is constructed at the quark level, it is certainly
approximate due to several reasons. The MIT bag model itself
is known to be a simplification, and the mean-field treatment
for meson fields is an approximation. The adopted model
of spherical bags can be violated in a superstrong magnetic
field, because the magnetic localization length for protons
on the ground Landau level with B∗ ∼ 106 is of the same
order as the bag radius used in the present calculation. These
approximations need to be examined more carefully in further

work. For neutron star matter at high density, hyperons may
appear before the onset of antikaon condensation. It would
be interesting and important to include hyperons and antikaon
condensation in the study of neutron star matter with strong
magnetic fields.
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