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Asymmetry of recoil protons in neutron β decay
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A complete analysis of proton recoil asymmetry in neutron decay in the first order of radiative and recoil
corrections is presented. The possible contributions from new physics are calculated in terms of low energy
coupling constants, and the sensitivity of the measured asymmetry to models beyond the Standard Model are
discussed.
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I. INTRODUCTION

The free neutron decay, being one of the simplest semilep-
totic hadron decay processes, is very important in the search for
possible manifestations of new physics. The main advantage
of neutron decay is the possibility to describe the process with
minimal theoretical uncertainties and, as a consequence, the
possibility to interpret unambiguously experimental results.
The set of experiments for measurements of the neutron life-
time and neutron decay correlations can be used to determine
the weak vector coupling constant, to test the universality of the
weak interaction, and to search for nonstandard couplings (see,
for example, Refs. [1–8], and references therein). The detailed
analysis of required experimental accuracy and sensitivity to
new physics of different observables for standard setups in
neutron decay experiments has been done in the Ref. [9].
However, the recent measurement [10] and the new proposal
to measure [11] the integrated asymmetry of recoiled protons
in relation to the direction of neutron spin (which is known as
a C angular correlation coefficient [12,13]) raise the question
about the sensitivity of this asymmetry to new physics. To be
able to estimate the potential sensitivity of the C asymmetry
to new physics and the best accuracy of the measurement of
Standard Model parameters (e.g., the ratio of axial-vector and
vector coupling constants of weak interaction), one needs to
calculate recoil and radiative corrections for the C asymmetry,
as well as all possible contributions from the model beyond the
standard one. Moreover, all these calculations must be done in
the same framework to keep all possible uncertainties under
control.

In this article, we use results of the effective field theory
description of neutron β decay [14] as a framework for the
calculation of the C correlation coefficient in the Standard
Model (with recoil and radiative corrections). Then we
calculate possible corrections from new physics using the most
general nonstandard β-decay interactions. This provides a
consistent description of the proton recoil asymmetry in terms
of low energy coupling constants related to models beyond the
Standard one at a level well below that anticipated in the next
generation of neutron decay experiments.

*gudkov@sc.edu

II. PROTON ASYMMETRY IN THE STANDARD MODEL

We have chosen results, based on the effective field theory
(EFT) approach, of the description of the polarized neutron
decay because this approach provides a general expression
for neutron decay distribution function with the accuracy of
10−5 in terms of one free parameter —the low energy constant
(LEC) (for more details, see Ref. [14]). To calculate the angular
correlation coefficient C with the complete set of recoil and
radiative corrections, we use a general expression for the
differential neutron decay rate given by Eq. (8) in Ref. [14]. It
should be mentioned that in the tree approximation (neglecting
recoil corrections and radiative corrections) the EFT results
reproduce exactly those of a well-known formula for neutron
decay rate [15] in terms of the angular correlations coefficients
a,A, and B:
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Here, �σ is the neutron spin; me is the electron mass; Ee,Eν, �pe,
and �pν are the energies and momenta of the electron and
antineutrino, respectively; and GF is the Fermi constant of
the weak interaction (obtained from the µ-decay rate). The
function �(Ee) includes normalization constants, phase-space
factors, and standard Coulomb corrections. For the Standard
Model the angular coefficients depend only on one parameter
λ = −CA/CV > 0, the ratio of axial-vector to vector nucleon
coupling constant [in general, CV = C ′

V and CA = C ′
A are

low energy coupling constants for the low energy effective
Hamiltonian given by Eq. (10)]:

a = 1 − λ2

1 + 3λ2
, A = −2

λ2 − λ

1 + 3λ2
, B = 2

λ2 + λ

1 + 3λ2
. (2)

(The parameter b is equal to zero for vector–axial-vector weak
interactions.)

The C angular coefficient (do not mix with CV and CA)
has been defined [12] as the angular distribution of the
recoil protons in the relation to the direction of the neutron
spin, provided all other variables, including proton recoil
momentum, are averaged out. (It should be mentioned that
another definition of proton asymmetry has been proposed in
Ref. [16].) In the tree approximation, it has been calculated
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in Refs. [12] and [13], and numerical corrections to this
approximation have been calculated in Ref. [13]. Using
this definition, one can calculate the C coefficient from a
general expression for the differential neutron decay rate
(Eqs. (18)–(19) in Ref. [14]) with all (in the first order) recoil
and radiative corrections. To do this, we use the momentum
conservation condition �pν + �pe + �pp = 0, which is multiplied
by the neutron spin results in

| �pν | cos θν + | �pe| cos θe + | �pp| cos θp = 0, (3)

where �pp is the proton momentum and θν, θe, and θp are angles
between neutron spin and directions of antineutrino, electron,
and proton momenta, respectively. From Eq. (3) one can see
that protons are going to the upper hemisphere (cos θp > 0),
if | �pν | cos θν + | �pe| cos θe < 0, and to the lower hemisphere
(cos θp < 0), if | �pν | cos θν + | �pe| cos θe > 0. Therefore, the C

coefficient, being a normalized difference of the neutron decay
rate integrated over neutrino and electron angles, must be
integrated over the electron energy under these two conditions.
The integration over azimuthal angles leads to the 4π2 factors.
To calculate integrals over θν and θe, it is convenient to work
in cos variables: cos θν and cos θe. Thus, these two integrals
could be represented in terms of a two-dimensional integral
in (cos θν, cos θe) space, which must be taken separately over
lower and upper parts of the square area in the cosine plane:
([−1,1], [−1,1]). The line, dividing the area into two parts, is
given by the equation | �pν | cos θν + | �pe| cos θe = 0. It should
be noted that for both these integrals there are two different
regimes of integration: | �pν | > | �pe| and | �pν | < | �pe|. For the
first case, the integrals should be taken first over cos θν and
then over cos θe, and for the second one the integrals should
be taken in the opposite order. Applying this procedure for the
decay rate given by Eq. (1), one obtains
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Equation (4) exactly reproduces the results of the calcu-
lations of Refs. [12] and [13] [the coefficient in Eq. (4) has
a different sign because we define the positive direction of
recoil protons as the direction of the neutron spin polarization].
To obtain a general expression with radiative and recoil
corrections, one must apply the same procedure for the general
neutron decay rate given by Eqs. (8)–(19) in Ref. [14]. These
calculations are rather cumbersome but can be done exactly,
without any approximation. Then, one can represent all cor-
rections to the C coefficient in Eq. (4) as a sum of three terms


C = 
Cα + 
Cδ + 
Crec, (5)

where 
Cα contains Coulomb and radiative corrections,
which do not depend on the nucleon structure (they are also
known as the “outer” corrections), 
Cδ is the part of radiative

corrections that is dependent on the nucleon structure (or the
“inner” corrections), and 
Crec represents recoil corrections.
For recoil corrections we have
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and for the strong interaction dependent part of the radiative
corrections we have


Cδ = − (4λX1 − X)

2X(1 + 3λ2)

α

2π
eR
V , (7)

where eR
V is the LEC of the EFT [14]. The expression for 
Cα is

very long and too complicated to be presented here. However,
one observes that all coefficients in the expressions for 
C

(including 
Cα) depend only on the mass of electron and
the maximal electron energy. Therefore, one can rewrite these
expressions in a simple form (and without a loss of accuracy)
by replacing the mass of electron and the maximal electron
energy with their values: me = 0.511099 MeV and Emax

e =
1.293332 MeV. Then all dependencies on these parameters
collapse to numerical coefficients in the front of neutron
decay variables and the complete set of corrections 
C can
be written as


C = 1

(1 + 3λ2)

[
α

2π
(23.19375λ + 4.45619λ2)

+ α

2π
eR
V (0.2748 − 1.0993λ)

+ 1

mn

(2.25672λ − 0.265737λ2

− 0.0113986µV − 0.583714λµV )

− 1

mn

λ

(1 + 3λ2)
(3.1326 + 7.775λ2)

]
, (8)

where neutron mass mn is in MeV. The first term [the first
line of Eq. (9)] is 
Cα , the second term is 
Cδ , and last three
lines are recoil corrections. Now, using mn = 939.57 MeV,
µV = 3.7, α = 1/137.036, and λ = 1.2695, one obtains


C = 0.0065 − 0.00022eR
V . (9)
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Thus, all radiative and recoil corrections are expressed in
terms of only one unknown parameter (the EFT low energy
constant), which is supposed to be obtained from another
independent experiment, if possible, or should be calculated
from basic principles (for example, in lattice QCD). In the
framework of the EFT, it could be estimated as eR

V � 20
(see Ref. [14] for details). Discussions of another way of
estimating eR

V and its accuracy are given in the last section.

III. NEUTRON β DECAY BEYOND THE STANDARD
MODEL

Now, when we understand all contributions to the C angular
correlation from the Standard Model, we can consider how
possible contributions from new physics can change the value
of the C asymmetry. To calculate the possible contributions to
the C coefficient from the models beyond the Standard Model,
one can use the most general form of the Hamiltonian for the
description of neutron β decay in terms of low energy coupling
constants Ci (do not confuse with C angular correlation
coefficient) by [15,17]

Hint = (ψ̂pψn)(CSψ̂eψν + C ′
Sψ̂eγ5ψν)

+ (ψ̂pγµψn)(CV ψ̂eγµψν + C ′
V ψ̂eγµγ5ψν)

+ 1
2 (ψ̂pσλµψn)(CT ψ̂eσλµψν + C ′

T ψ̂eσλµγ5ψν)

− (ψ̂pγµγ5ψn)(CAψ̂eγµγ5ψν + C ′
Aψ̂eγµψν)

+ (ψ̂pγ5ψn)(CP ψ̂eγ5ψν + C ′
P ψ̂eψν) (10)

+ Hermitian conjugate,

where the index i = V,A, S, T , and P corresponds to vector,
axial-vector, scalar, tensor, and pseudoscalar nucleon interac-
tions. In this presentation, the constants Ci can be considered
as effective constants of nucleon interactions with defined
Lorentz structure, assuming that all high energy degrees of
freedom (for the Standard Model and any given extension
of the Standard Model) are integrated out. Because we are
interested in the C angular correlation coefficient, which is the
time reversal conserving one, all constants Ci can be chosen
to be real. Also, for the sake of simplicity, we redefine all
coupling constants Ci and C ′

i in Eq. (10) by normalizing
them by the vector coupling constant of the Standard Model
[Ci → Ci/(GF cos θC)].

To see explicitly the influence of a nonstandard interaction
on the C angular coefficient, we follow the procedure described
in Ref. [9]. First, we rewrite the coupling constants Ci as a sum
of a contribution from the standard model CSM

i and a possible
contribution from new physics δCi :

CV = CSM
V + δCV

C ′
V = CSM

V + δC ′
V

CA = CSM
A + δCA

C ′
A = CSM

A + δC ′
A

(11)
CS = δCS

C ′
S = δC ′

S

CT = δCT

C ′
T = δC ′

T .

The pseudoscalar coupling constants are neglected here,
because we treat [15] nucleons nonrelativistically. Then, we
apply the above-described procedure to the calculation of the
C angular correlation coefficient from the Hamiltonian (10)
using Eq. (5) of Ref. [9]. [It should be noted that in the case of
all δCi being equal to zero, the results is Eq. (4).] The obtained
corrections to the C correlation coefficient due to contributions
from nonstandard modes can be written as

δCNewPhys = X1L1
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The coefficients Li depend only on new physics contributions:

L0 = (δCV + δC ′
V ) + (δCV

2 + δC ′
V

2 + δCS
2 + δC ′

S

2)/2

+ 3[λ(δCA + δC ′
A) + (δCA

2 + δC ′
A

2

+ δCT
2 + δC ′

T

2)/2], (13)

L1 = −2(δCA + δC ′
A) + 3δCT δC ′

T − 2(δCV δC ′
A

+ δC ′
V δCA) + 2λ(δCV + δC ′

V ),
(14)

L2 =
√

1 − α2[(δCS + δC ′
S) + δCSδCV + δC ′

SδC
′
V

+ 3(λ(δCT + δC ′
T ) + δCT δCA + δC ′

T δC ′
A)],

L3 =
√

1 − α2[−2λ(δCT + δC ′
T ) − λ(δCS + δC ′

S)

+ (δCT + C ′
T ) + 2δCT δC ′

A + 2δCAδC ′
T + δCSδC

′
A

+ δCAδC ′
S + δCV δC ′

T + δCT δC ′
V ]. (15)

In the above expressions, we have neglected radiative correc-
tions and recoil effects for the new physics contributions, but
kept Coulomb corrections because they can be important for
a low energy part of the electron spectrum. These expressions
without Coulomb corrections correspond to results in Ref. [12]
obtained for the case of Cs = −C ′

s , CT = −C ′
T , CV = −C ′

V ,
and CA = −C ′

A. Contributions from nonstandard β-decay
interactions have been considered also in Ref. [13] (in the
VAST model family parametrization [13]) and they have the
same order of magnitude as contributions in Eq. (12). However,
because the results presented in Ref. [13] are numeric ones, it
is difficult to make the exact comparison in a general case.

From Eq. (12), one can see that, as in the case of radiative
and recoil corrections, all coefficients in the expression are
functions only of electron mass and maximum electron energy.
Therefore, we simplify the general expressions for the contri-
butions from new physics, by substituting numerical values for
all known parameters (electron mass, electron maximal energy,
as well as for α = 1/137.036 and λ = 1.2695) and keep only

045502-3



V. GUDKOV PHYSICAL REVIEW C 77, 045502 (2008)

TABLE I. Possible manifestations of new physics.

Model Exotic fermion Leptoquark Contact interactions SUSY Higgs

āLL 0.2–0.03
āLR 0.01 0.01
ĀLL + ĀLR 0.01 7.5 · 10−4 3 · 10−6

−ĀLL + ĀLR 3.10−6

first order contributions from nonstandard interactions. Then,
Eq. (12) transforms into

δCNewPhys

= 0.05657(δCV + δC ′
V ) + 0.04456(δCA + δC ′

A)

− 0.06234(δCS + δC ′
S) + 0.02132(δCT + δC ′

T ). (16)

Instead of the presentation of these corrections in terms of
low energy coupling constants related to the Lorentz structure
of weak interactions, we can rewrite them in terms of quark
and lepton current constants āj l and Ājl , defined in Ref. [7].
Using the transformation rules [9]

δCV + δC ′
V = 2(āLL + āLR),

δCA + δC ′
A = 2λ(āLL − āLR),

(17)
δCS + δC ′

S = 2gS(ĀLL + ĀLR),

δCT + δC ′
T = 4gT ᾱLL,

and assuming [7] gS = 1 and gT = 1, we obtain the expression
for corrections from new physics as

δCNewPhys = 0.11314(āLL + āLR) + 0.11314(āLL − āLR)

− 0.12468(ĀLL + ĀLR) + 0.08528ᾱLL. (18)

The parameters āj l , ᾱj l , and Ājl describe contributions
to the low energy Hamiltonian from current-current interac-
tions in terms of j type of leptonic current and i type of
quark current. For example, āLR is the contribution to the
Hamiltonian from left-handed leptonic current and right-
handed quark current normalized by the size of the Standard
Model (left-left current) interactions. gS and gT are form
factors at zero-momentum transfer in the nucleon matrix
element of scalar and tensor currents. For more details, see
Ref. [7].

The expected values of these parameters vary over a wide
range from 0.07 to 10−6 (see Table I and Ref. [7] for the
comprehensive analysis and for discussions of significance of
each of these parameters for models beyond the Standard one).

IV. CONCLUSIONS

Taking into account the results of Eqs. (4), (5), (12), and
(18), one can write the complete expression for the C angular
coefficient (Ctotal) as a sum of the tree-level approximation C,
radiative and recoil corrections in the Standard Model 
C,
and possible contributions from new physics δCNewPhys:

Ctotal = C + δC + δCNewPhys. (19)

It should be noted that this equation is the exact expression
of the C angular correlation coefficient in the first order of
recoil corrections, radiative corrections, and low energy con-
tributions from new physics. Therefore, it could be considered
as the complete expression up to the level of accuracy of 10−5,
provided the EFT LEC is given. Otherwise, it could be consid-
ered as a parametrization in terms of one free parameter—LEC
with the same accuracy of 10−5. Would the parameter eR

V

be determined from another independent experiment (for
example, from the precise measurement of neutrino-deuteron
cross-sections) or calculated using lattice QCD approach,
Eq. (19) could be used to test the Standard Model up to the
level of accuracy of about 10−5, by comparing a theoretical
prediction with experimental results. Unfortunately, neutrino
experiments and QCD calculations with the required accuracy
are rather difficult problems and we cannot rely on them at the
present time.

To understand the desirable level of accuracy in a search
for new physics, one can use first a conservative approach:
the estimate for the LEC as eR

V � 20 given in Ref. [14].
Then, the level of theoretical uncertainties due to strong
interactions, according to Eq. (9), is about 0.0044, which is
comparable to the claimed experimental accuracy 0.0026 of
the recent experiment [10]. However, as it was mentioned in
Ref. [14], by comparing the results of the EFT approach and
the calculations of radiative corrections for total neutron decay
rate [18–20], one can find the correspondence between these
two calculations, which results [14] in the following equation

eR
V = −5

4
− 4 ln

(
mW

mZ

)
+ 3 ln

(
mW

mN

)
+ ln

(
mW

mA

)

+ 2CBorn + Ag. (20)

Here mW,mZ are the masses of the W,Z bosons and mA is
the axial mass scale, which are rather well known. The source
of theoretical uncertainties is related to two last terms CBorn

and Ag (see, for details, Refs. [18–21]). Changing from the
EFT “ideology” with one unknown LEC to direct calculations
using strong interaction models, we lost the attractive feature
of the model independent EFT approach and have to deal
with dependencies on strong interaction models applied for the
description of the internal structure of nucleons. On the other
hand, in the given framework [18–20], which is actually a very
well recognized standard approach to general analysis of weak
interactions, we can reduce uncertainties in the estimation of
LEC to the uncertainties of calculations of CBorn and Ag terms.
Then, using the results of recent calculations of the terms
[21] CBorn � 0.829 and Ag � −0.34 with the claimed level of
uncertainty of 10%, one can reduce the level of uncertainty of
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the obtained theoretical description of the C angular coefficient
to the level of about 10−5, i.e., to the level of validity of the
description of neutron decay in Ref. [14].

Accepting these estimates, one can see from Eqs. (16) and
(18) that precise measurements of the C angular correlation
can provide limits for nonstandard interactions in terms of
δCi coupling constants up to the level of about (2 − 5) · 10−4,
or, in terms of parameters related to nonstandard currents, up
to the level of about 10−4. However, to be able to constrain

new physics parameters at this level, the currently achieved
experimental accuracy [10] must be improved by two orders
of magnitude.
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