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Sea-quark effects in the pion charge form factor
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It is shown that the data on the pion charge form factor admit the possibility for a substantial sea-quark
component in the pion wave function. If the charge form factor is calculated with instant form kinematics in
a constituent quark model that is extended to include explicit (qq̄)2 components in the pion wave function,
that component will give the dominant contribution to the calculated π+ charge form factor at large values of
momentum transfer. The present experimental values Q2 can be described fairly well with (qq̄)2 component
admixtures of up to 50%. The sensitivity of the calculated π+ charge form factor to whether one of the quarks or
one of the antiquarks is taken to be in the P state is small.
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I. INTRODUCTION

The small mass of the pion, in comparison to that of the
vector mesons, suggests that the pion is a collective state of
(qq̄)n configurations, with many values of n. Therefore, it is
something of a riddle that it is possible to describe the empirical
charge form factors of the charged pions satisfactorily with
phenomenological wave functions under the assumption that
they are pure quark-antiquark states [1]. It is then a natural
question to ask whether the empirical pion charge form
factors can exclude the presence of the expected multiquark
configurations in the pion.

The negative parity of the pion requires that in the
simplest sea-quark configuration, (qq̄)2, at most three of the
constituents can be in the ground state and that either one of
the quarks or one of the antiquarks is raised to the P state (or a
higher odd-L state). Because this is energetically unfavorable,
it suggests that the probability of that configuration may be
small in comparison to that of the qq̄ component. The situation
is analogous to that in baryons, for which positive parity
requires that in a qqqqq̄ admixture either one of the quarks or
the antiquark has to be in the P state [2].

Here the charge form factor of the (charged) pion is
calculated in an extension of the constituent quark model to
include admixtures of the simplest sea-quark configurations
(qq̄)2 in instant form kinematics. The calculation is made for
both the case where one of the quarks is in the P state and for
the case where one of the antiquarks is in the P state. It is found
in both cases that inclusion of the sea-quark configuration
allows for a good description of the empirical form factor,
even if it represents as much as half of the wave function. The
main point is, however, that as soon as there is a nonvanishing
probability for the sea-quark component in the wave function,
that component will lead to the dominant contribution to the
charge form factor at large values of momentum transfer in
the case of instant form kinematics. As a consequence the
fact that it is possible to achieve a quantitatively satisfactory
fit to the empirical charge form factor with wave function
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model for the conventional qq̄ component alone does not rule
out the presence of significant sea-quark components in the
pion.

The present results are in line with the conclusions of
Ref. [3], which were based on a phenomenological hadronic
approach to the pion wave function in (light) front form
kinematics. That analysis estimated the probability of the four-
quark component in the pion wave function to fall within the
range 10–26%. The probability for the six-quark component
was estimated to be much smaller, less than 0.3%. The
method of calculating the charge form factor in the constituent
quark model with instant form kinematics developed here
can also be readily extended to sea-quark configurations
with larger numbers of sea-quark qq̄ components. An earlier
study based on the Nambu-Jona-Lasinio model indicated that
within that model the sea-quark contribution would be at
most 10% [4].

The configurations of the (qq̄)2 system that are possible
in the pion are described in Sec. II. Section III contains a
description of the pion wave function and the different form
factor contributions. The calculated results for the pion charge
form factor are given in Sec. IV. Finally Sec. V contains a
summarizing discussion.

II. LIGHT FLAVOR (qq̄)2 CONFIGURATIONS IN THE PION

The lightest (qq̄)2 component in the pion meson contains
only the light flavor quarks u and d, which form the
fundamental representation of the SU(2) flavor symmetry. The
flavor-spin-color configurations of the qq and q̄q̄ are listed in
Table I by their Young patterns.

The wave functions of the qq and q̄q̄ pairs in the flavor-
spin-color-orbital space should be totally antisymmetrized,
respectively. In addition, the odd parity of the pion meson
requires that either a quark or an antiquark in the qqq̄q̄

component be in the P state (or higher odd-L state).
In the case where one quark is in the P state and both

antiquarks are in the S state the flavor-spin-color wave
functions of the qq pairs in the (qq̄)2 component are totally
symmetric while that of the q̄q̄ pairs are totally antisymmetric.
This leads to four possible color singlet configurations of the
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TABLE I. The flavor-spin-color config-
urations of the qq and q̄q̄ pairs.

qq q̄q̄

SU(2)flavor [2]F , [11]F [2]F , [11]F
SU(2)spin [2]S, [11]S [2]S, [11]S
SU(3)color [2]C, [11]C [22]C, [211]C

(qq̄)2 component with JP = 0−:

(a) {[2]F [2]S[2]C}qq{[2]F [11]S[22]C}q̄q̄ ,

(b) {[2]F [2]S[2]C}qq{[11]F [2]S[22]C}q̄q̄ ,
(1)

(c) {[2]F [11]S[11]C}qq{[2]F [2]S[211]C}q̄q̄ ,

(d) {[11]F [2]S[11]C}qq{[2]F [2]S[211]C}q̄q̄ .

It is natural to assume that the (qq̄)2 configuration with the
lowest energy shall have the largest probability in the pion
besides that of the conventional qq̄ component. The splitting
of the energy of the (qq̄)2 components (2) is determined by
the hyperfine interaction between the quarks and the an-
tiquarks. This interaction will here be taken to have the
schematic form

HI = −X
∑
i �=j

�σi · �σj
�λc

i · �λc
j . (2)

Here �σ are the Pauli matrices, �λc are the Gell-Mann matrices
in color space, and X is a positive constant with the dimension
of energy. This interaction has the same color and spin
dependence as the color magnetic hyperfine interaction, which
arises from single gluon exchange. The contributions to the
energies of the four configurations (2) that arise from the
schematic hyperfine interaction (2) can be determined by
the recoupling method described in Refs. [5] and [6] and are
listed in Table II.

In the case where one antiquark is in the P state and both
the quarks are in the S state the wave functions of the qq pairs
in flavor-spin-color space must be totally antisymmetric, while
those of the q̄q̄ pairs must be totally symmetric. The possible
(qq̄)2 configurations in the pion are in this case the following:

(a′) {[2]F [2]S[11]C}qq{[2]F [11]S[211]C}q̄q̄ ,

(b′) {[2]F [2]S[11]C}qq{[11]F [2]S[211]C}q̄q̄ ,
(3)

(c′) {[2]F [11]S[2]C}qq{[2]F [2]S[22]C}q̄q̄ ,

(d ′) {[11]F [2]S[2]C}qq{[2]F [2]S[22]C}q̄q̄ .

The expectation values of the hyperfine interaction between
quarks in the (qq̄)2 configurations in (4) are listed in
Table III. The results in Tables II and III show that the hyperfine
interaction between quarks leads to the same energy levels

TABLE II. The expectation values − 1
X
〈α|HI |α〉

of the (qq̄)2 configurations in Eq. (2).

α a b c d

− 1
X
〈α|HI |α〉 −8

3 16 16
3 0

TABLE III. The expectation values − 1
X
〈α′|HI |α′〉

of the (qq̄)2 configurations in Eq. (4).

α′ a′ b′ c′ d ′

− 1
X
〈α′|HI |α′〉 16

3 0 −8
3 16

of the (qq̄)2 configurations, in which the antiquark is in the
S state and the P state. This is a consequence of the fact
that the hyperfine interaction is independent of the angular
momentum of the constituent quarks. In the case where the
antiquark is in the P state, the (qq̄)2 configuration d ′ has the
lowest energy, which is equal to that of the lowest energy
(qq̄)2 configuration b, in which the antiquark is in the S

state. These two configurations are thus likely to constitute
the most probable (qq̄)2 components and therefore to be most
significant in the structure of the pions. The roles of such
configurations in the pion charge form factor are considered
in the following section.

III. π+ CHARGE FORM FACTOR

A. The form factor contribution from the qq̄ component

The present empirical results for the charge form factor of
the π+ may be well described as a qq̄ system in a Poincaré
covariant constituent quark model with the following orbital
wave function model [1]:

φ(�k1, �k2) = N2q

1(
1 +

∑2
i=1

�k2
i

2b2

)a
. (4)

Here N2q is a normalization factor, a and b are parameters
and ki, i = 1, 2, are the quark momenta in the rest frame of
π meson (

∑2
i=1

�ki = 0). This wave function model is adopted
here for the qq̄ component of the pion wave function.

In the impulse approximation the contribution of the qq̄

component to the pion charge form factor is obtained as the
matrix element of the electric current density operator between
the initial and final states in the Breit frames as

F (qq̄)
π (Q2) =

∫
d3 �p2

√
J2J

′
2Se( �p1, �p′

1) φ(�k1, �k2)φ(�k′
1,

�k′
2).

(5)

The initial and final momenta of the constituents in their
respective Breit frames are denoted �pi and �p′

i , respectively
( �p′

1 = �p1 + �Q and �p2 = �p′
2).

If the momentum transfer �Q is taken to define the z axis,
the relations in instant form kinematics between the momenta
in the Breit frames and the rest frames are

�pi⊥ = �ki⊥ = �k′
i⊥ = �p′

i⊥,

pi‖ = v0ki‖ + v‖ ωi,

p′
i‖ = v′

0k
′
i‖ + v′

‖ω
′
i , (6)

Ei = v‖ki‖ + v0ωi,

E′
i = v′

‖k
′
i‖ + v′

0ω
′
i .
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Here the energy components are defined as

ωi =
√

�k2
i + m2 , ω′

i =
√

�k′2
i + m2,

(7)
Ei =

√
�p2
i + m2, E′

i =
√

�p′2
i + m2.

In these relations m denotes the constituent mass and v =
{v0, �0⊥, v‖} and v′ = {v′

0,
�0⊥, v′

‖} denote the constituent boost
velocities in the initial and final states. These satisfy the
constraint v2 = v′2 = −1.

In instant form kinematics the boost velocities may be
defined as [7]

v‖ = − Q

2
∑n

i=1 ωi

,

(8)
v′

‖ = Q

2
∑n

i=1 ω′
i

.

Here n represents the number of constituents.
The Jacobian that is induced by the transformation between

the rest frame and the Breit frame of the meson is in the case
of the qq̄ component obtained as [8]

J2 = ω2

E2

(
1 − v‖

k1‖
E1

)
. (9)

The expression for the corresponding final state Jacobian
J ′

2 (5) is obtained by replacement of the arguments by the
corresponding primed coordinates.

The electric current density operator in Eq. (5) is taken to
be the charge component of the Dirac current for pointlike
constituents, γµ:

Se( �p, �p′) =
√

1 + Q2

4M2
π

√
(E′ + m)(E + m)

4E′E

×
{

1 + �p′ · �p
(E′ + m)(E + m)

}
. (10)

The corresponding current is conserved, as the constituents are
on the mass shell in covariant quantum mechanics [7].

The expressions for the boost velocities of the constituents
(8) reveal that their magnitudes fall with increasing number
of constituents n, if the constituent mass is constant. Given
that form factors fall with increasing momentum transfer Q2,
it follows that, at sufficiently large Q2, the wave function
component that contains the largest number of constituents
will give the largest contribution to the form factor. This feature
is explicit in instant form kinematics. It has a natural physical
interpretation in that the form factor describes the probability
that the system stays bound upon absorption of the momentum
transfer Q. The relative probability for this to happen is smaller
if few constituents absorb the momentum transfer than if many
can share it so that the fractional momentum transfer per
constituent is smaller.

B. The form factor contribution from the (qq̄)2 component

In the case where both of the antiquarks in the (qq̄)2

component are in the S state, the wave function of the
(qq̄)2 component, which has the symmetry configuration b in

Eq. (2), and which is expected to have the lowest energy, may
be expressed as

|π+〉S = − 1√
2

uu(d̄ū − ūd̄) {[1S ⊗ 1′
S]1 ⊗ 1X}0−

× {6C ⊗ 6̄C}1C
�(�k1, �k2, �k3, �k4). (11)

Here �ki, i = 1 . . . 4, are the momenta of the constituent
quarks in the rest frame of the pion (

∑4
i=1

�ki = 0). The spin
triplet combinations of the qq and q̄q̄ pairs are denoted 1S

and 1′
S , respectively. These combine with the P -state qq

pairs to the total quantum numbers of pion JP = 0−. The
spherical harmonic for the qq pairs in the (qq̄)2 component is
defined as

1X,m = ξ1m , �ξ1 = 1√
2

(�k1 − �k2), (12)

where ξ1m (m = −1, 0, 1) are the spherical components of �ξ1.
In Eq. (11) we have denoted the Young pattern representations
of the color states of qq and q̄q̄ pairs in Table I with their
corresponding dimensions (6).

The orbital wave function of the (qq̄)2 component is taken
to have the form

�(�k1, �k2, �k3, �k4) = N4q

1(
1 +

∑4
i=1

�k2
i

2B2

)A+1 , (13)

where N4q is a normalization factor.
Then the contribution to the π+ charge form factor from

the qqq̄q̄ component in the case where one of the antiquarks
is in the S state may be written as

FS
π+(Q2) = 4

3AS(Q2) − 1
3BS(Q2). (14)

Here the terms A and B are defined as

AS(Q2) = 1

3

∫
d3 �p2d

3 �p3d
3 �p4

√
J4(1)J ′

4(1)Se( �p1, �p′
1)�ξ1 · �ξ ′

1

×�(�k1, �k2, �k3, �k4)�(�k′
1,

�k′
2,

�k′
3,

�k′
4), (15)

BS(Q2) = 1

3

∫
d3 �p1d

3 �p2d
3 �p3

√
J4(4)J ′

4(4)Se( �p4, �p′
4)�ξ1 · �ξ ′

1

×�(�k1, �k2, �k3, �k4)�(�k′
1,

�k′
2,

�k′
3,

�k′
4). (16)

Here AS(Q2) represents the matrix element where a photon
couples to the first quark in the (qq̄)2 component, while
BS(Q2) represents the matrix element where the photon
couples to the antiquark (the fourth constituent).

The Jacobians for the transformations between the corre-
sponding Breit frames and the rest frames are

J4(1) = ω2ω3ω4

E2E3E4

(
1 − v‖

k1‖
E1

)
, (17)

J4(4) = ω1ω2ω3

E1E2E3

(
1 − v‖

k4‖
E4

)
. (18)

As in the case of Eq. (5), the primed variables in Eqs. (15) and
(16) represent the final states variables that correspond to the
initial state variables without primes. Here we do not take into
account the Wigner rotation of the spin axis that is caused by
the boosts, as its consequences are numerically insignificant
for momentum transfers below 10 GeV2 [7,9]. Comparison of
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the expressions for the Jacobians (9) and (18) for the case of
two and four constituents, respectively, makes it clear how to
generalize these expressions to the case of n constituents.

In the case where one antiquark is in the P state and both
quarks are in the ground state, the wave function of the (qq̄)2

component with the lowest energy, which has the symmetry
configuration d ′ in Eq. (4), may be obtained from that in the
case where one of the quarks is in the P state (11) by the
replacements

u ↔ −d̄ d ↔ ū. (19)

The explicit expression is then

|π+〉P = 1√
2

(ud − du)d̄d̄ {[1S ⊗ 1′
S]1 ⊗ 1′

x}0−

× {6C ⊗ 6̄C}1C
�(�k1, �k2, �k3, �k4). (20)

Here the spherical harmonic for the q̄q̄ pair is denoted as

1′
x,m = ξ3m, �ξ3 = 1√

2
(�k3 − �k4). (21)

The explicit expression for the π+ charge form factor in the
case where one antiquark is in the P state is

FP
π+(Q2) = 1

3AP (Q2) + 2
3BP (Q2). (22)

Here the orbital integrals are defined as

AP (Q2) = 1

3

∫
d3 �p2d

3 �p3d
3 �p4

√
J1(1)J ′

1(1)Se( �p1, �p′
1)�ξ3 · �ξ ′

3

×�(�k1, �k2, �k3, �k4)�(�k′
1,

�k′
2,

�k′
3,

�k′
4), (23)

BP (Q2) = 1

3

∫
d3 �p1d

3 �p2d
3 �p3

√
J4(4)J ′

4(4)Se( �p4, �p′
4)�ξ3 · �ξ ′

3

×�(�k1, �k2, �k3, �k4)�(�k′
1,

�k′
2,

�k′
3,

�k′
4). (24)

The symmetrical form of the expressions (11) and (20) has the
consequence that

AP (Q2) = BS(Q2), BP (Q2) = AS(Q2). (25)

Because of the symmetry structure of the spin-flavor-color
state of the (qq̄)2 components, there is no contribution of off-
diagonal (qq̄)2 → qq̄ transition matrix elements to the pion
charge form factor. In the case of the nucleons the contribution
of such transition matrix elements to the form factors are
much larger than that of the corresponding diagonal matrix
elements [8].

IV. RESULTS

To investigate a possible role of the (qq̄)2 component in the
form factor of the π+ meson, the wave function parameters
are chosen so that the combined contribution of the qq̄ and
the (qq̄)2 components yields a form factor that agrees with the
empirical one under the assumption of a probability for the
latter component of 10%. The corresponding wave function
parameters a, b (4) and A,B (13) are listed in Table IV. The
constituent quark mass was taken to be 120 MeV, which is close
to the value required to describe the nucleon form factors in
instant form kinematics with a wave function of corresponding

TABLE IV. The model parameters.

(qq̄)2 mq (MeV) b (MeV) B (MeV) a A

10% 120 190 100 2.3 1.8
20% 120 190 110 2.3 2.0
40% 120 190 139 2.3 2.21
50% 120 190 143 2.3 2.25

form [7]. The wave function parameters for the qq̄ and the
(qq̄)2 components were chosen such that the empirical mean
square radius for the pion, r2

π = 0.44 fm2, was recovered.
The calculated result for the π+ charge form factor is shown

in Fig. 1 for the case where both antiquarks are in the S state in
the (qq̄)2 component. The result indicates that above 1 GeV2

with these parameters the main form factor contribution arises
from the smaller (qq̄)2 component. That this should be so is,
in fact, quite natural, as in the case of elastic form factors,
the form factor falloff with momentum should depend on Q2

divided by the square of the number of involved constituents. In
this case the contribution of the (qq̄)2 component is very small
(and in fact negative): −0.03 fm2. The sign of this contribution
depends on the parameter values.

The corresponding calculated results for the π+ charge
form factor for the case where one of the antiquarks is in the P

state are shown in Fig. 2. These results are, in fact, very similar
to those obtained in the former case, where both antiquarks
are in the S state, the main difference being a slightly larger
magnitude for the contribution to the mean square radius from
the (qq̄)2 component in the present case (−0.04 fm2).

In Fig. 3 the form factor is shown as obtained for different
values of the probability for the (qq̄)2 component. These
results were obtained by only slight variation of the two
parameters in the wave function of the (qq̄)2 component (13).
These results show that the present empirical data on the pion

FIG. 1. The π+ charge form factor obtained with a 10% (qq̄)2

component probability with both antiquarks in the S state. Solid line,
the contribution from the qq̄ component; dashed line, the contribution
from the (qq̄)2 component; dotted line, the result combining the
contributions from the qq̄ and the (qq̄)2 components. The data sets
CERN 1986, DESY 1978, JLAB 2006, and JLAB 2007 are taken
from Refs. [10–13], respectively. The data point at Q2 = 1.60 GeV2

from Ref. [13] has been shifted for better visibility.
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FIG. 2. The π+ charge form factor with a 10% probability for the
(qq̄)2 component with one antiquark in the P state. The labeling of
the curves is the same as that in Fig. 1.

FIG. 3. The π+ charge form factor obtained with 10–50% (qq̄)2

component probabilities with both antiquarks in the S state. The data
sets CERN 1986, DESY 1978, JLAB 2006, and JLAB 2007 are taken
from Refs. [10–13], respectively. The data point at Q2 = 1.60 GeV2

from Ref. [13] has been shifted for better visibility.

FIG. 4. The π+ charge form factor for the pure qq̄ model. The
labeling of the curves is the same as that in Fig. 1.

FIG. 5. The “charge density” of the π+ for a (qq̄)2 component
with 20% probability. The contributions from the qq̄ and (qq̄)2

components are denoted 2Q and 4Q, respectively.

charge form factor can allow for a (qq̄)2 component probability
of up to 50%.

For comparison the form factor that is obtained for the pure
qq̄ quark model for the pion is shown in Fig. 4. These results
were obtained with the constituent quark mass value 80 MeV
and with the parameters a = 2.0 and b = 198 MeV in the
qq̄ wave function model (4). This shows that the pion charge
form factor may be described with such a simple model wave
function in instant form kinematics, a result that was noted for
the case of front form kinematics in Ref. [1].

V. CONCLUSIONS

The results of this study show that the present data for the
charge form factor of the charged pions may be described
almost as well with inclusion of sea-quark configurations with
probabilities up to at least 50% in the covariant constituent
quark model with instant form kinematics as without such
configurations. The results in Fig. 3 do nevertheless indicate
a slight preference for the smaller admixtures of 10–20% of
sea-quark configurations. This conclusion is similar to that
obtained in the hadronic approach with front form kinematics
previously [3].

In this phenomenological study the parameters in the wave
function model were determined by a fit to the empirical form
factor. When the sea-quark component is included in the form
factor, that component will give the dominant contribution to
the form factor at sufficiently large Q2, which dominates over
that from the qq̄ component, however small its probability. The
(qq̄)2 component corresponds to structures that have shorter
range than the basic qq̄ component. This is illustrated in
Fig. 5, where the charge density contributions from the qq̄

and the (qq̄)2 components, along with their sum, are shown
for the case in which the probability of the latter component is
20%. If the probability of the (qq̄)2 component is taken to be
larger, the peak in the profile r2ρ(r) moves toward that of the
qq̄ component.

The fact that the sea-quark contribution gives the largest
contribution to the form factor at (sufficiently) large values
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of momentum transfer is a consequence of the fact that the
magnitude of the energy denominator in the expressions for
the boost velocities for the constituents (8) grows with the
number of constituents. This implies that the momentum
transfer is shared by the largest number of constituents and, in

effect, to a smaller relative momentum transfer per constituent.
Because the form factor is a monotonically falling function
of momentum transfer, the consequence is that the largest
contribution at large Q2 is given by the component with the
largest number of constituents.

[1] F. Coester and W. N. Polyzou, Phys. Rev. C 71, 028202 (2005).
[2] C. Helminen and D. O. Riska, Nucl. Phys. A699, 624 (2002).
[3] A. Szczurek, H. Holtmann, and J. Speth, Nucl. Phys. A605, 496

(1996).
[4] R. H. Lemmer and R. Tegen, Nucl. Phys. A593, 315 (1995).
[5] F. Close, An Introduction to Quarks and Partons (Academic

Press, London, 1979).
[6] R. L. Jaffe, Phys. Rev. D 15, 267 (1977); 15, 281 (1977).
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