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Effects of the Dirac sea on pion propagation in asymmetric nuclear matter
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We study pion propagation in asymmetric nuclear matter (ANM). One of the interesting consequences of
pion propagation in ANM is the mode splitting for the different charged states of pions. First we describe the
pion-nucleon dynamics using the nonchiral model in which one starts with pseudoscalar πN coupling, and the
pseudovector representation is obtained via suitable nonlinear field transformations. For both of these cases,
the effect of the Dirac sea is estimated. Subsequently, we present results using the chiral effective Lagrangian
where the short-distance behavior (Dirac vacuum) is included by redefining the field parameters as done in the
modern effective field theory approach developed recently. The results are compared with previous calculations
for symmetric nuclear matter. Closed form analytical results are presented for the effective pion masses and
dispersion relations by making a hard nucleon loop approximation and suitable density expansion.

DOI: 10.1103/PhysRevC.77.045201 PACS number(s): 21.65.Cd, 13.75.Cs, 13.75.Gx, 21.30.Fe

I. INTRODUCTION

Pions in nuclear physics assume a special status. They
are responsible for the spin-isospin dependent long-range
part of the nuclear force. In addition, there are variety of
physical phenomena related to pion propagation in nuclear
matter. One of the fascinating ideas in relation to the pion-
nucleon dynamics in nuclear matter is pion condensation
[1]. This might happen if there exists spacelike zero energy
excitation of pionic modes. The short-range correlation, on
the other hand, removes such a possibility at least at densities
near the saturation densities. In the context of relativistic
heavy ion collisions (RHIC), Mishustin et al. discussed
the importance of the medium-modified pion spectrum and
showed that because of the lowering of energy, the pion, in
nuclear matter, might carry a bulk amount of entropy [2].
Subsequently, Gyulassy and Greiner studied pionic instability
in great detail in the context of RHIC [3]. The production
of pionic modes in nuclear collisions was also discussed in
Ref. [4].

In experiments, the medium-dependent pion dispersion
relation can also be probed via the measurements of the dilep-
ton invariant mass spectrum. The lepton pairs produced with
invariant mass near the ρ pole are sensitive to the slope of the
pion dispersion relation in matter [5]. Particularly the softening
of momentum dependence of the pion dispersion relation in
matter leads to a higher yield of dileptons. Gale and Kapusta
were first to realize that the in-medium pion dynamics can be
studied by measuring lepton pair productions [6]. Most of the
earlier studies of in-medium pion properties were performed
in the nonrelativistic framework [7–9]. A quasirelativistic
approach was taken in Refs. [10–12], in which the calculations
were extended to finite temperature. In particular, Ref. [12]
discusses various noncollective modes with the possibility
of pion condensation. In Ref. [5], on the other hand, the
dilepton production rates were calculated using nonrelativistic
pion dispersion relations. Reference [13] treated the problem
relativistically but used the free Fermi gas model; while in
Ref. [14], pion propagation was studied by extending the
Walecka model [15] and including the � baryon. In recent

years, significant progress has been made in calculating
dilepton production rates involving pionic properties in a more
realistic framework [5,6,12,16–18].

In the present paper we study pion dispersion relations in
asymmetric nuclear matter (ANM) using relativistic models.
This is important because most of the calculations, as men-
tioned above, are either restricted to symmetric nuclear matter
(SNM) or performed in the nonrelativistic framework. Here
we focus on the propagating modes of various charged states
of pions which are nondegenerate in ANM. The importance
of relativistic corrections and density-dependent pion mass
splitting in ANM in the context of deriving pion-nucleus
optical potential was discussed in Ref. [19]. The formalism
adopted in Ref. [19] was that of chiral perturbation theory.
Recently, in the context of astrophysics, pionic properties in
ANM have also been studied by involving the Nambu-Jona-
Lasinio model [20,21]. Motivated by Ref. [19], the present
authors revisited the problem in Ref. [22], where not only
the static self-energy responsible for the mass splitting but
also the full dispersion relations for the various charged states
of pions were calculated after performing relevant density
expansion in terms of the Fermi momentum. However, in our
previous work [22], pions were included via straight-forward
pseudovector (PV) coupling in the Walecka model [15], which
renders the theory nonrenormalizable. Although the problem
of nonrenormalizability could be avoided by considering the
pseudoscalar (PS) πN coupling. This, on the other hand, fails
to account for the pion-nucleon phenomenology.

Historically, the extension of the Walecka model to include
the isovector π and ρ meson for the realistic description of
dense nuclear matter (DNM) while retaining the renormaliz-
ibility of the theory was first made by Serot [23]. However, in
that work, the calculation was restricted only to the mean field
level, which gives rise to the tachyonic mode for pions even at
density as low as 0.1ρ0, where ρ0 denotes normal nuclear
matter (NNM) density [24]. Such a nonpropagating mode
for the pions can be removed by extending the calculation
beyond the mean field level as showed by Kapusta [24]. This,
in effect, means inclusion of the π -NN loop while calculating
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the in-medium dressed propagator for the pion. This model has
an added advantage because of the presence of π -σ coupling in
addition to the usual PS coupling of the pion with the nucleons,
which is responsible for the generation of small s-wave pion
nucleon interaction in vacuum. This is consistent with the
observed characteristics of the pion-nucleon interaction, which
is dominated by p-wave scattering while the s-wave scattering
length is almost zero. In matter, however, as argued in
Refs. [24,25], such subtle cancellation does not occur resulting
in an unrealistically large mass for the pions in matter. To
circumvent this problem, it was suggested in Ref. [24] to use
the pseudovector coupling even though it makes the theory
nonrenormalizable.

The theoretical challenge, therefore, is to construct a
model with the πN PV interaction, which preserves the
renormalizability of the theory. This was accomplished in
Ref. [25] following the technique developed by Weinberg
[26–28] and Schwinger [29]. Here one starts with the PS
coupling and subsequently invokes nonlinear field transforma-
tions to obtain PV representation. Unlike the straight-forward
inclusion of the PV interaction, in this method one requires
only a finite number of counterterms, which makes the theory
renormalizable. Here we start with this model developed by
Matsui and Serot [25] to study pion propagation in ANM.
Clearly, the model adopted here is different from what we had
invoked in our previous work [22]. Furthermore, in Ref. [22],
for the determination of pion self-energy in matter, only the
scattering from the Fermi sphere was considered and the
vacuum part was completely ignored. The latter gives rise
to a large contribution to the pion self-energy in presence of
strong scalar density (ρs).

The above-mentioned model has various shortcomings too.
In fact, Ref. [25] itself discusses its limitations in describing
many-body πN dynamics. For example, the successful de-
scription of the saturation properties of nuclear matter in this
scheme requires higher scalar mass, which gives rise to larger
in-medium nucleon mass compared to the mean field theory. In
addition, it also fails to account for the observed pion-nucleus
scattering length at finite density [25]. In the same work, the
chiral π -σ model is also discussed, to which we shall come
back later. In the end, we present results calculated using this
nonchiral model together with what we obtain from a chirally
invariant Lagrangian.

In Ref. [22], we discussed another interesting possibility
of the density-driven π -η mixing in ANM. However, quanti-
tatively, the mixing is found to be a higher order effect and
does not affect the pion dispersion relations at the leading
order in density. Hence in the present paper, we neglect π -η
mixing.

The plan of the paper is as follows. In Sec. II we present
the formalism, starting with PS coupling in Sec. II A. In
Sec. II B we invoke nonlinear field transformation [25] and
subsequently report results involving PV coupling. In Sec. III
we present results using a recently developed chiral effective
model in the context of the nuclear many-body problem
[30,31]. Finally, Sec. IV presents the summary and conclusion.
Detailed derivations for the Dirac part of the pion self-energy
for PS and PV couplings have been relegated to Appendixes
A and B, respectively.

II. FORMALISM

A. Model with pseudoscalar π N interaction

We start with the following interaction Lagrangian given
by [25]

L = �̄(iγµ∂µ − M)� − 1
2gρ�̄γµ

(�τ · �
µ
ρ

)
� + gs�̄
s�

− gω�̄γµ
µ
ω� − igπ �̄γ5

(�τ · �
π

)
�

+ 1
2

(
∂µ
s∂

µ
s − m2
s


2
s

) + 1
2

(
∂µ

�
π − gρ
�
ρµ × �
π

)
· (∂µ �
π − gρ

�
µ
ρ × �
π

) − 1
2m2

π
�
2

π + 1
2gφπms
s

�
2
π

− 1
4GµνG

µν − 1
4

�Bµν · �Bµν + 1
2m2

ω
ωµ
µ
ω

+ 1
2m2

ρ
�
ρµ · �
µ

ρ , (1)

where

Gµν = ∂µ
ων − ∂ν
ωµ, (2a)

�Bµν = ∂µ
�
ρν − ∂ν

�
ρµ − gρ
�
ρµ × �
ρν. (2b)

Here, �, �
π,
s, �
ρ, and 
ω represents the nucleon,
pion, σ, ρ, and ω fields, respectively, and their masses are
denoted by M,mπ,ms,mρ , and mω. This model successfully
reproduces the saturation properties of nuclear matter and
yields accurate results for closed shell nuclei in the Dirac-
Hartree approximation [32].

Note that in Eq. (1) the pion-nucleon dynamics is described
by

LPS = −igπ �̄γ5(�τ · �
π )�, (3)

where gπ is the pion-nucleon coupling constant with g2
π

4π
=

12.6 [33]. Besides this, the interaction Lagrangian of Eq. (1)
also has another term involving the coupling of pions with the
scalar meson given by

Ls = 1
2gφπms
s

�
2
π . (4)

Here, gφπ is the coupling constant of the scalar to pion field.
The πN scattering amplitude would now involve both the nu-
cleon and σ meson in the intermediate state, causing sensitive
cancellation between the two, which gives a reasonable value
for the s-wave scattering length [24] as mentioned before.
At the self-energy level, Eqs. (3) and (4) will generate the
exchange and the tadpole diagrams, as shown in Figs. 1(b)
and 1(a), respectively.

First we consider the tadpole diagram, whose contribution
to the self-energy is given by �TC = −gφπmsφ0, where φ0 =

+
π π

N

σ

π
N

π

N

(a) (b)

FIG. 1. Tadpole contribution to the pion self-energy.

045201-2



EFFECTS OF THE DIRAC SEA ON PION PROPAGATION . . . PHYSICAL REVIEW C 77, 045201 (2008)

gs

m2
s
ρs and ρs = ρs

p + ρs
n. Here ρs

i (i = p, n) represents scalar
density given by

ρs
i = M∗

i

2π2

[
E∗

i ki − M∗2
i ln

(
E∗

i + ki

M∗
i

)]
. (5)

The effective nucleon mass M∗
i in Eq. (5) can be determined

from the following self-consistent condition [34]:

M∗
i = Mi − g2

s

m2
s

(
ρs

p + ρs
n

)
. (6)

It is clear from Eq. (6) that �M∗ = Mn − Mp = �M as the
nucleon masses are modified by the scalar mean field [34],
which does not distinguish between n and p. Here, for the
moment, we neglect explicit symmetry breaking (n-p mass
difference), i.e., M∗

p = M∗
n = M∗.

Note that in the mean field theory (MFT), only Fig. 1(a),
i.e., the tadpole diagram, contributes, while Fig. 1(b) is
neglected. The origin of the tachyonic mode can now be easily
understood. The pion mass in matter due to the tadpole is given
by [24]

m∗2
π = m2

π + �TC

= m2
π − gφπmsφ0

= m2
π − gφπgs

ms

(
ρs

n + ρs
p

)
. (7)

The second term of the last equation is quite large even at
densities far below ρ0 density, viz., for ρ ∼ 0.1ρ0, m∗2

π < 0.
Figure 1(b) would involve various combinations of n and p

depending upon the various charged states of pions, as shown
in Fig. 2.

�∗(q) = −i

∫
d4k

(2π )4
Tr[{i�(q)}iGi(k + q){i�(−q)}iGj (k)],

(8)

where the subscript i(j ) denotes either p (proton) or n

(neutron). �(q) is the vertex factor. � = −iγ5 or −i
fπ

mπ
γ5γµqµ

for the PS or PV coupling, respectively. Explicitly,

Gi(k) = GF
i (k) + GD

i (k), (9)

where

GF
i (k) = k/ + M∗

i

k2 − M∗2
i + iζ

, (10a)

GD
i (k) = iπ (k/ + M∗

i )

E∗
i

δ(k0 − E∗
i )θ

(
kF
i − |k|). (10b)

Here, GF
i (k) and GD

i (k) represent the free and density-
dependent parts of the propagator. In Eq. (10), k is the nucleon
momentum, kF

i denotes the Fermi momentum, and M∗
i is the

in-medium nucleon mass modified due to the scalar mean

π0 π0
p

p
+

π0 π0π0 π0

n

n
π+,− π+,−n↪ p

p, n

(a) (b)

FIG. 2. One-loop self-energy diagrams for (a) π0 and (b) π±.

π π π
N

N̄

(a) (b)

FIG. 3. Diagram (a) represents the cutting of the loop implied by
the product of two δ functions, and (b) represents the decay of the
pion into a nucleon-antinucleon pair.

field [34]. From now on, we use kp and kn to denote the proton
and neutron Fermi momenta, respectively. The nucleon energy
is E∗

i =
√
M∗2

i + k2.
Note that the total self-energy is given by �∗

total(q) =
�∗(q) + �TC. Using Eqs. (9) and (10), the expression for
self-energy given in Eq. (8) takes the form

�∗(q) = −ig2
∫

d4k

(2π )4
T

= �∗FF(q) + �∗(FD+DF)(q) + �∗DD(q). (11)

Here g is gπ (fπ/mπ ) for the PS (PV) coupling. For π± the
coupling constant gπ (or fπ ) gets replaced by

√
2gπ . The

values of the coupling constants gπ and fπ are determined
experimentally from πN and NN scattering data. T is the
trace factor which consists of four parts:

T = TFF + TFD + TDF + TDD. (12)

Detailed expressions for TFF, TFD, and TDF will be discussed
later. Here the term TDD contains the product of two δ functions
[GD(k)GD(k + q)], which puts both the loop nucleons on
shell, implying the cut in the loop [Fig. 3(a)]. This means
that the pion can decay into a nucleon-antinucleon [Fig. 3(b)]
pair which happens only in the high momentum limit; i.e.,
q > 2kp,n and also q0 > 2EF

p,n, where EF
p,n is the Fermi energy

for proton (or neutron). Under these conditions, only TDD

contributes to the self-energy. But in the present calculation,
we investigate only the low-momentum (of pion) collective
excitations [35]. Therefore, TDD [i.e., �∗DD(q)] is neglected.

Thus, the pion self-energy can now be written as

�∗(q) = −ig2
∫

d4k

(2π )4
[TFF + (TFD + TDF)]. (13)

The self-energies for different charged states of pion are
calculated using the one-loop diagram shown in the Fig. 2(b).
The first term of Eq. (13) is same as the pion self-energy in
vacuum with Mi → M∗

i . This part is divergent.

TFF
PS = 2 Tr[γ5iG

F (k)γ5iG
F (k + q)]

= −8

[
M∗2 − k · (k + q)

(k2 − M∗2)((k + q)2 − M∗2)

]
. (14)

Here the factor 2 that appears in TFF
PS, i.e., in Eq. (14), follows

from isospin symmetry for Mn = Mp. The FF part of self-
energy for the PS coupling is calculated from Eq. (13) by
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substituting TFF
PS, and it is denoted by �∗FF

PS (q) as

�∗FF
PS (q) = 8ig2

π

∫
d4k

(2π )4

×
[

M∗2 − k · (k + q)

(k2 − M∗2)((k + q)2 − M∗2)

]
. (15)

From Eq. (15) it is observed that �∗FF
PS (q) is quadratically

divergent. To eliminate these divergences, we need to renor-
malize �∗FF

PS (q). Here we adopt the dimensional regularization
technique [36–38] to regularize �∗FF

PS (q) with the following
results (details are discussed in Appendix A).

�∗R
PS (q,mπ )

= g2
π

2π2

[
− 3(M2 − M∗2) + (

q2 − m2
π

) (1

6
+ M2

m2
π

)

− 2M∗2 ln

(
M∗

M

)
+ 8M2(M − M∗)2(

4M2 − m2
π

)
− 2M∗2

√
4M∗2 − q2

q
tan−1

(
q√

4M∗2 − q2

)

+ 2M2
√

4M2 − m2
π

mπ

tan−1

(
mπ√

4M2 − m2
π

)

+
(

(M2 − M∗2) + m2
π (M − M∗)2

(4M2 − m2
π )

+ M2

m2
π

(
q2 − m2

π

))

× 8M2

mπ

√
4M2 − m2

π

tan−1

(
mπ√

4M2 − m2
π

)

+
∫ 1

0
dx 3x(1 − x)q2 ln

(
M∗2 − q2x(1 − x)

M2 − m2
πx(1 − x)

)]
(16)

It is found that the result given in Eq. (16) is finite and
no divergences appear further. In the appropriate kinematic
regime, it might generate the imaginary part

Im�∗FF
PS (q) = − g2

π

2π2

∫ 1

0
dx (M∗2 − 3q2x(1 − x))

× Im[ln(M∗2 − q2x(1 − x) − iη)]

= − g2
π

4π
[q
√

q2 − 4M∗2] θ (q2 − 4M∗2). (17)

If we consider that (M∗ − M) is small enough, then the term
ln[(M∗2 − q2x(1 − x))/(M2 − m2

πx(1 − x))] of Eq. (16) can
be approximated to 2 ln(M∗/M), and the last term of Eq. (16)
can be easily evaluated to give

�∗R
PS (q,mπ ) � −C̃ + D̃q2, (18)

where

C̃ = g2
π

2π2

[
3(2M2 − M∗2) + 2M∗2 ln

(
M∗
M

)]
,

D̃ = g2
π

2π2

[
3
(

M
mπ

)2
]

.


 (19)

The trace of the (FD+DF) part is for π0,

T FD
PS + T DF

PS

= Tr
[
γ5G

F
p (k + q)γ5G

D
p (k) + γ5G

D
p (k + q)γ5G

F
p (k)

]
+ [p → n], (20)

and for π+(−),

T FD
PS + T DF

PS = Tr
[
γ5G

F
p(n)(k + q)γ5G

D
n(p)(k)

+ γ5G
D
p(n)(k + q)γ5G

F
n(p)(k)

]
. (21)

The (FD+DF) part of the self-energy for π0 and π± can be
written as

�
∗0(FD+DF)
PS (q) = −8g2

π

∫
d3k

(2π )3E∗ APS, (22)

�
∗±(FD+DF)
PS (q) = −8g2

π

∫
d3k

(2π )3E∗ [APS ∓ BPS]

= �
∗0(FD+DF)
PS (q) ∓ δ�

∗(FD+DF)
PS (q), (23)

where

APS =
[

(k · q)2

q4 − 4(k · q)2

]
(θp + θn), (24)

BPS = 1

2

[
q2(k · q)

q4 − 4(k · q)2

]
(θp − θn), (25)

with θp,n = θ (kp,n − |k|). We restrict ourselves in the long
wavelength limit, i.e., when the pion momentum q is smaller
than the Fermi momentum kp,n of the system, where the
many-body effects manifest strongly. In this case, particle
propagation can be understood in terms of collective excitation
[35] of the system, which permits analytical solutions of the
dispersion relations [35,39]. But in the short wavelength limit,
i.e., when q is much larger than kp,n, particle dispersion
approaches that of the free propagation. Note that for SNM,
BPS = 0, implying that �

∗±(FD+DF)
PS = �

∗0(FD+DF)
PS .

In the long wavelength limit, we neglect the term q4

compared to the term 4(k · q)2 from the denominator of both
APS and BPS in Eqs. (24) and (25). Explicitly, after a straight-
forward calculation, we get

�
∗0(FD+DF)
PS (q) = g2

π

2π2

[(
kpE∗

p − 1

2
M∗2 ln

∣∣∣∣1 + vp

1 − vp

∣∣∣∣
)

+
(

knE
∗
n − 1

2
M∗2 ln

∣∣∣∣1 + vn

1 − vn

∣∣∣∣
)]

, (26)

and

δ�
∗(FD+DF)
PS (q)

= g2
π

2π2


1

2
E∗

p ln

∣∣∣∣c0 + vp

c0 − vp

∣∣∣∣ − M∗√
c2

0 − 1
tan−1

×

kp

√
c2

0 − 1

c0M∗




 q2

|q| − g2
π

2π2


1

2
E∗

n ln

∣∣∣∣c0 + vn

c0 − vn

∣∣∣∣

− M∗√
c2

0 − 1
tan−1


kn

√
c2

0 − 1

c0M∗




 q2

|q| , (27)
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where vp,n = kp,n/E
∗
p,n, E

∗
p,n =

√
M∗2 + k2

p,n, and c0 =
q0/|q|. The approximate results of Eqs. (26) and (27) are given
below.

�
∗0(FD+DF)
PS (q) � −Ã − B̃ − F̃ + G̃, (28)

δ�
∗(FD+DF)
PS (q) � Ẽ q2

q0
, (29)

where

Ã = g2
π

2π2

[
1
3

(
k3
p

E∗3
p

+ k3
n

E∗3
n

)]
M∗2,

B̃ = g2
π

2π2

[
1
5

(
k5
p

E∗5
p

+ k5
n

E∗5
n

)]
M∗2,

F̃ = g2
π

2π2

[(
kp

E∗
p

+ kn

E∗
n

)]
M∗2,

G̃ = g2
π

2π2

[
kpE∗

p + knE
∗
n

]
,

Ẽ = g2
π

2π2

[
1
3

(
k3
p

M∗2 − k3
n

M∗2

)]
.




(30)

The self-energy for PS coupling is

�
∗0,±
PS (q) = �∗R

PS (q,mπ ) + �
∗0,±(FD+DF)
PS (q). (31)

The dispersion relations are found by solving the Dyson-
Schwinger equation and obtaining

q2 − m2
π0,± − (�∗0,±(q) + �TC) = 0. (32)

Here mπ0,± are the masses of π0 and π±. The dispersion
relations without the effect of the Dirac sea for π0,± are

q2
0 � m∗2

π0,± + q2. (33)

The effective masses without the Dirac sea are

m∗2
π0 � [

�PS + �TC + m2
π0

]
,

(34)

m∗2
π± �

[
�PS + �TC + m2

π±

1 ∓ δ�PS

]
,

where

�PS = G̃ − Ã − B̃ − F̃,

δ�PS = Ẽ√
�PS+�TC+m2

π±
.


 (35)

Now we present the dispersion relations for π0,± with the
effect of the Dirac sea:

q2
0 � m∗2

π0,± + q2 (36)

The effective masses (m∗2
π0,±) with the Dirac sea for different

charged states of pion are given by

m∗2
π0 � [(

�PS − m2
π0

)/
D̃
]
,

(37)

m∗2
π± �

[(
�PS − m2

π±
)

(1 ∓ δ�PS)D̃

]
,

where

�PS = C̃ − �PS − �TC,

δ�PS = Ẽ√
(�PS−m2

π± )D̃
.


 (38)

FIG. 4. Nuclear density (ρ) dependent effective pion masses
for PS coupling at α = 0.2. The dotted, dashed, and solid curves
representing π−, π+, and π 0 without (upper panel) and with (lower
panel) the Dirac sea effect.

In the PS coupling, the asymmetry-driven mass splitting is
of O(k3

p(n)/M
∗2). The terms δ�PS and δ�PS are nonvanishing

in ANM and responsible for the pion mass splitting.
In Figs. 4 and 5 we present the density ρ and asymmetry

parameter α dependent effective masses for the various
charged states of pion. In the top panel, we present the results
without vacuum correction (Dirac sea). Here we include both
the tadpole and n-n loop.

It is evident that the inclusion of Fig. 1(b) removes the
tachyonic mode but gives rise to effective pion masses that are

FIG. 5. Asymmetry parameter (α) dependent effective pion
masses for π 0 (solid curve), π+ (dashed curve), and π− (dotted
curve) in ANM at NNM density for PS coupling. The upper and
lower panels, respectively, represent effective pion masses without
and with vacuum correction.
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TABLE I. Effective pion masses including the tadpole contri-
bution to the self-energy in PS coupling. Kapusta corresponds to
Ref. [24] and BDM corresponds to the present calculation.

m∗2π0 m∗2π±

MFT m2
π0 + �TC m2

π± + �TC

Kapusta �PS + (�TC + m2
π0 )

�PS+(�TC+m2
π± )

1∓δ�PS

BDM [C̃ − (�PS + �TC + m2
π0 )]/D̃ C̃−(�PS+�TC+m2

π± )

(1∓δ�PS)D̃

unrealistically large, as discussed by Kapusta [24] as shown in
the top panel of Fig. 4.

Note that the inclusion of the vacuum part reduces the
effective pion masses and gives reasonable value for the
density-dependent pion masses in matter at NNM density.
The reason for this could be understood from Table I, which
enumerates expressions for the effective pion masses that we
obtain in three different cases. The top row represents effective
pion masses for the case considered in Ref. [23] which gives
rise to the tachyonic mode, the second row corresponds to
the case discussed by Kapusta [24], and the last row presents
results of the present work, designated as BDM. The presence
of the additional term D̃ somewhat tames the dispersion curve
bringing the masses down compared to those in Ref. [24]. This
can be noted that at the MFT level, �TC involves the sum of
the scalar densities ρs

n and ρs
p. Therefore, in MFT, as expected,

the masses are insensitive to the asymmetry parameter α.
For Pb-like nuclei (α = 0.2), �mπ0 = 16.8,�mπ+ =

17.37, and �mπ− = 17.41 MeV with vacuum correction.
The dispersion relation for various charged states of pion

are shown in the Fig. 6, where upper and lower panels present
the dispersion curves without and with the Dirac sea including

FIG. 6. Dispersion relations of π 0 (solid curve), π+ (dashed
curve), and π− (dotted curve) for PS coupling at ρ = 0.17 fm−3

and α = 0.2. The upper and lower panels represent pion dispersions
without and with the Dirac sea.

the tadpole contribution. In the presence of the Dirac sea, π+
and π− dispersion curves are indistinguishable.

B. Renormalizable model with pseudovector π N coupling

To obtain the pseudovector representation from the starting
Lagrangian given by Eq. (1), one gives the following nonlinear
chiral transformation [25]:

� =

1 − iγ5 �τ · �ξ√

1 + �ξ 2


� ′, (39a)

�ξ =
(

fπ

mπ

)
�
′

π

= gπ
�
π

/[
M − gs
s +

√
(M − gs
s)2 + g2

π
�
2

π

]
,

(39b)

gs

′
s = M −

√
(M − gs
s)2 + g2

π
�
2

π . (39c)

The last two equations (39b) and (39c) are used to express
the old fields 
s and �
π in terms of new fields 
′

s and �
′
π .

�
π =
[

1 − 2(fπ/mπ )
′
s

1 + (fπ/mπ )2 �
′2
π

]
�
′

π , (40a)


s =
(
1 − (fπ/mπ )2 �
′2

π

)

′

s + (gπ/gs)(fπ/mπ ) �
′2
π

1 + (fπ/mπ )2 �
′2
π

. (40b)

The transformed Lagrangian is

L′ = �̄ ′(iγµ∂µ − M)� ′ − 1

2
gρ�̄

′γµ

(�τ · �
µ
ρ

)
� ′ + gs�̄

′
′
s�

′

− gω�̄ ′γµ
µ
ρ � ′ + 1

2

(
∂µ
s∂

µ
s − m2
s


2
s

)
+ 1

2
(∂µ

�
π − gρ
�
ρµ × �
π ) · (∂µ �
π − gρ

�
µ
ρ × �
π

)
− 1

2
m2

π
�
2

π + 1

2
gφπms
s

�
2
π − 1

4
GµνG

µν

− 1

4
�Bµν · �Bµν + 1

2
m2

ω
ωµ
µ
ω + 1

2
m2

ρ
�
ρµ · �
µ

ρ

− (fπ/mπ )2

1 + (fπ/mπ )2 �
′2
π

�̄ ′γµ

(�τ · �
′
π

)
× (

∂µ �
′
π − gρ

�
µ
ρ × �
′

π

)
� ′ − (fπ/mπ )

1 + (fπ/mπ )2 �
′2
π

× �̄ ′γ5γµ�τ · (∂µ �
′
π − gρ

�
µ
ρ × �
′

π

)
� ′. (41)

We see from Eq. (41) that the π -N PS coupling has
disappeared and instead the pion-nucleon dynamics is now
governed by the last term of the above-mentioned equation.
At the leading order, one obtains the usual PV coupling
represented by

LPV = − fπ

mπ

�̄ ′γ5γ
µ∂µ(�τ · �
′

π )� ′. (42)
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Here fπ is the pseudovector coupling constant and f 2
π

4π
= 0.08

[40]. First we discuss the FF part, where the trace factor is
given by

TFF
PV = −2Tr[γ5γ

µqµiGF (k)γ5γ
νqνiG

F (k + q)]

= −8

[
M∗2q2 + k · (k + q)q2 − 2(k · q)(k + q) · q

(k2 − M∗2)((k + q)2 − M∗2)

]
.

(43)

Now the FF part of the self-energy for PV coupling is denoted
by �∗FF

PV (q). From Eqs. (13) and(43) we get

�∗FF
PV (q) = 8i

(
fπ

mπ

)2 ∫
d4k

(2π )4

×
[
M∗2q2 + k · (k + q)q2 − 2(k · q)(k + q) · q

(k2 − M∗2)((k + q)2 − M∗2)

]
. (44)

Direct power counting shows that the term �∗FF
PV (q) is

divergent. The appropriate renormalization scheme for the
present model has been developed in Ref. [25]. We
first consider a simple subtraction scheme (described in
Appendix B) to obtain

�∗R
PV(q) = q2

2π2

(
fπ

mπ

)2

×
[
2M∗2

∫ 1

0
dx ln

(
M∗2 − q2x(1 − x)

M∗2 − m2
πx(1 − x)

)]
. (45)

Now �∗R
PV(q) can be approximated to

�∗R
PV(q) � Cq2 − Dq4, (46)

where

C =
(

fπ M∗
mπ π

)2 [
m2

π

6M∗2

]
,

D =
(

fπ M∗
mπ π

)2 [
1

6M∗2

]
.


 (47)

On the other hand, borrowing results from Ref. [25], one has

�∗R
PV(q) � C ′ + D′q2, (48)

where

C ′ =
(

fπ

mπ π

)2 [
4
3M(M − M∗)m2

π

]
,

D′ =
(

fπ

mπ π

)2 [
2M∗2 ln (M∗/M)

]
.


 (49)

It might be mentioned that although C,D are different
from C ′,D′, their effects on the effective pion masses and
corresponding dispersion relations are found to be marginal,
as we will discuss later.

The FF part can also develop an imaginary part as given by

Im�∗FF
PV (q) = −

(
fπ

mπ

)2

×
[ q

π
2M∗2

√
q2 − 4M∗2

]
θ (q2 − 4M∗2). (50)

It is observed from Eq. (50) that Im�∗FF
PV (q) is nonvanishing

only if q2 > 4M∗2.

The trace of the (FD+DF) part for π0 is

T FD
PV + T DF

PV = Tr
[
γ5q/GF

p (k + q)γ5q/GD
p (k)

+ γ5q/GD
p (k + q)γ5q/GF

p (k)
] + [p → n], (51)

and for π+(−),

T FD
PV + T DF

PV = Tr
[
γ5q/GF

p(n)(k + q)γ5q/GD
n(p)(k)

+ γ5q/GD
p(n)(k + q)γ5q/GF

n(p)(k)
]
. (52)

In pure neutron (or proton) matter, one of the terms of
Eq. (52), viz., GD

p(n) = 0 for the charged pion states. The
same argument holds true for the neutral pion, where only
two terms would contribute, which can be observed from
Eq. (51). For pure neutron (or proton) matter, p(n) appears
as the intermediate state. Now the (FD+DF) part of the
self-energy for π0 and π± can be written as

�
∗0(FD+DF)
PV (q) = −8

(
fπ

mπ

)2 ∫
d3k

(2π )3E∗ APV, (53)

�
∗±(FD+DF)
PV (q) = −8

(
fπ

mπ

)2 ∫
d3k

(2π )3E∗ [APV ∓ BPV]

= �
∗0(FD+DF)
PV (q) ∓ δ�

∗(FD+DF)
PV (q), (54)

where

APV =
[

M∗2q4

q4 − 4(k · q)2

]
(θp + θn), (55)

BPV = 1

2

[
1 + 4M∗2q2

q4 − 4(k · q)2

]
(k · q)(θp − θn). (56)

In the long wavelength limit considering collective excita-
tions near the Fermi surface, the (FD+DF) part of the pion
self-energy can be evaluated analytically. In this case, we can
neglect the term q4 compared to the term 4(k · q)2 from the
denominator of APV and BPV in Eqs. (55) and (56). This
is called the hard nucleon loop (HNL) approximation [39].
Explicitly, after a straight-forward calculation, we get

�
∗0(FD+DF)
PV (q)

= 1

2

(
fπM∗

mππ

)2 [(
ln

∣∣∣∣1 + vp

1 − vp

∣∣∣∣ − c0 ln

∣∣∣∣c0 + vp

c0 − vp

∣∣∣∣
)

+
(

ln

∣∣∣∣1 + vn

1 − vn

∣∣∣∣ − c0 ln

∣∣∣∣c0 + vn

c0 − vn

∣∣∣∣
)]

, (57)

and

δ�
∗(FD+DF)
PV (q)

=
(

fπ

mππ

)2

2

3
k3
pq0 − M∗2q2

|q|


E∗

p ln

∣∣∣∣c0 + vp

c0 − vp

∣∣∣∣

− 2M∗√
c2

0 − 1
tan−1

kp

√
c2

0 − 1

c0M∗




 −

(
fπ

mππ

)2
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×

2

3
k3
nq0 − M∗2q2

|q|


E∗

n ln

∣∣∣∣c0 + vn

c0 − vn

∣∣∣∣

− 2M∗√
c2

0 − 1
tan−1

kn

√
c2

0 − 1

c0M∗




 . (58)

The approximate results of Eqs. (57) and (58) are

�
∗0(FD+DF)
PV (q) � Aq4

q2
0

+ Bq2, (59)

δ�
∗(FD+DF)
PV (q) � Eq0, (60)

where

A =
(

fπ M∗
mπ π

)2 [
1
3

(
k3
P

E∗3
p

+ k3
n

E∗3
n

)]
,

B =
(

fπ M∗
mπ π

)2 [
1
5

(
k5
P

E∗5
p

+ k5
n

E∗5
n

)]
,

E =
(

fπ M∗
mπ π

)2 [
2
5

(
k5
p

M∗4 − k5
n

M∗4

)]
.




(61)

The total pion self-energy for PV coupling is

�
∗0,±
PV (q) = �∗R

PV(q) + �
∗0,±(FD+DF)
PV (q). (62)

The approximate dispersion relations and the effective pion
masses of different charged states in ANM without and with
the Dirac sea effect are presented below.

The dispersion relations for π0,± without the effect of the
Dirac sea are

q2
0 � m∗2

π0,± + γππq2 +
[
γ 2

ππ

4
+ αππ

]
q4

m∗2
π0,±

, (63)

where m∗2
π0,± is the effective pion masses without the Dirac sea

effect, that is,

m∗2
π0 � m2

π0

1 − �PV
and m∗2

π± � m2
π±

1 − (�PV ± δ�PV)
, (64)

where

�PV = A + B,

δ�PV = E
mπ± ,

γππ = 1 − �PV
1−�PV

+ B
1−�PV

,

αππ = A
1−�PV

.


 . (65)

These results are the same as that of Ref. [22] with
some notational difference such as �PV → �2

ππ , δ�PV →
δ�2

ππ ,�PV/(1 − �PV) → χππ , and B/(1 − �PV) → βππ . In
Eqs. (67) and (64), δ�PV and δ�PV are responsible for the
asymmetry parameter (α = ρn−ρp

ρn+ρp
) dependent mass splitting,

where ρn and ρp are the neutron and proton density, respec-
tively. Clearly for SNM, δ�PV and δ�PV vanish.

The dispersion relations for π0,± including the effect of the
Dirac sea are given by

q2
0 � m∗2

π0,± + [
γππ + 2m∗2

π0,±δππ

]
q2

+
[
γ 2

ππ

4
+ αππ − δππ

(
m∗2

π0,± − 2γππ

)] q4

m∗2
π0,±

. (66)

The effective masses m∗
π of different charged states of pion are

found from Eq. (66) in the limit |q| = 0, i.e.,

m∗2
π0 � m2

π0

1 − �PV
and m∗2

π± � m2
π±

1 − (�PV ± δ�PV)
, (67)

where

�PV = A + B + C,

δ�PV = E
mπ± ,

γππ = 1 − �PV
1−�PV

+ B
1−�PV

+ C
1−�PV

,

αππ = A
1−�PV

,

δππ = D
1−�PV

.




. (68)

Note that if one uses Eq. (48) instead of Eq. (46), then m2
π0,±

and C will be replaced by (m2
π0,± + C ′) and D′, respectively,

and δππ will vanish. Numerically, as mentioned before,
Eqs. (46) and (48) give results very close to each other. Clearly
from Eq. (61), E indicates that the asymmetry-driven mass
splitting is of O(k5

p(n)/M
∗4) for PV coupling.

Typical values of the pion mass shifts for PV coupling
at normal nuclear density (ρ0 = 0.17 fm−3) for Pb-like nuclei
are �mπ0 = 6.07,�mπ+ = 4.6, and �mπ− = 8.02 MeV with
vacuum correction, and the corresponding values are 4.95,
3.47, and 6.82 MeV without vacuum correction.

In Fig. 7, we show results for the density dependence of
effective pion masses for various charge states at α = 0.2.
It is observed that the π− mass increases in matter, while
π+ decreases at higher density. The mass splitting is quite
significant even at density ρ >∼ 1.5ρ0. In the lower panel, we
present results with vacuum corrections. Evidently the effect
of vacuum corrections is small.

It should, however, be mentioned that the vacuum correction
part for PV coupling is rather small. For loops involving heavy
baryons it could be quite high. For detailed discussion, we
refer the reader to Refs. [41,42]. In the present case, we take
only the nucleon loop in the presence of the scalar mean field.

FIG. 7. Effective masses (for PV coupling) of π0 (solid curve),
π+ (dashed curve), and π− (dotted curve) are represented without
the Dirac sea (upper panel) and with the Dirac sea (lower panel) at
α = 0.2.
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FIG. 8. Asymmetry parameter (α) dependent effective masses
(for PV coupling) of π 0 (solid curve), π+ (dashed curve), and π−

(dotted curve) at ρ = 0.17 fm−3 without (upper panel) and with (lower
panel) vacuum correction.

We also present results of asymmetry parameter depen-
dence effective masses for different charge states of pion in
Fig. 8 at normal nuclear matter density. The upper and lower
panels present the effective pion masses without and with
vacuum correction. It can be observed that the asymmetry
parameter dependent pion mass splitting is insensitive to the
vacuum correction. The pion dispersions in the medium for
various charge states of pion are presented in Fig. 9 for PV
coupling.

III. MODERN TECHNIQUE

In the previous sections, we have discussed pion propaga-
tion in ANM using both the PS and PV interaction within the
framework of a nonchiral model. However, the interactions as
represented by Eqs. (1) and (41) fail to describe in-medium

FIG. 9. Pion dispersion relation without (upper panel) and with
(lower panel) the effect of the Dirac sea for PV coupling. The solid,
dashed, and dotted curves, respectively, indicate the dispersion curves
of π 0, π+, and π− at ρ = 0.17 fm−3 and α = 0.2.

πN dynamics as shown in Ref. [25]. It was also observed
that the chirally symmetric model (linear) has also various
limitations [25]. For example, as mentioned before, it fails
to account for the pion-nucleus dynamics in nuclear matter
in both the PS and PV representations. In fact, it gives too
strong of a pion nucleon interaction in matter, which cannot be
adjusted by fixing the s-wave π -N interaction in free space,
even in the PV case. In this context, the Dirac vacuum involving
baryon loops was found to play a significant role. If one
uses the chiral model and breaks the symmetry explicitly, the
results are found to be very sensitive to the renormalization
scheme [25]. In Ref. [43], it was shown that the relativistic
chiral model with a light scalar meson appears to provide
an economical marriage of successful relativistic MFT and
chiral symmetry. It, however, fails to reproduce the observed
properties of finite nuclei, such as spin-orbit splittings, shell
structure, charge densities, and surface energies. Since then,
there has been a series of attempts to construct a model that has
the virtue of describing both the properties of nuclear matter
and finite nuclei [30,31,41,44–46]. Currently, the nonlinear
chiral effective field theoretic approach seems to be quite
successful in this respect. It might be recalled here that in such
a framework, the explicit calculation of the Dirac vacuum is
not required; on the contrary, here the short distance dynamics
are absorbed into the parameters of the theory adjusted
phenomenologically by fitting empirical data [30,31,42]. Now
we proceed to calculate the effective pion masses in ANM in
this approach.

By retaining only the lowest order terms in the pion
fields, one obtains the following Lagrangian from the chirally
invariant Lagrangian [31]:

L = �̄(iγµ∂µ − M)� + gs�̄φs� − gω�̄γµ
µ
ω�

− gA

fπ

�̄γ5γµ∂µ�τ · �
π� + 1

2

(
∂µ
s∂

µ
s − m2
s


2
s

)
+ 1

2

(
∂µ

�
π · ∂µ �
π − m2
π

�
2
) − 1

4
GµνG

µν

+ 1

2
m2

ω
ωµ
µ
ω + LNL + δL. (69)

The terms LNL and δL contain, respectively, the nonlinear
terms of the meson sector and all of the counterterms. The
explicit expressions for LNL and δL can be found in Ref. [31].

Note that the meson self-energy can be found by differenti-
ating the energy density [31] at the two-loop level with respect
to the meson propagator, as indicated in Fig. 10. One may,
therefore, identify the FF, FD, and DD parts of the self-energy
with the vacuum-fluctuation (VF), Lamb-shift (LS), and ex-
change (EX) contributions to the self-energy, respectively. The
VF and LS terms are related to the short-range physics, while
the EX part is related to the long-range physics. The detailed

(a) (b)

FIG. 10. Diagrams correspond to the two-loop self-energy and
energy.
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FIG. 11. Effective pion mass at different densities with α = 0.2.

discussion about this short- and long-distance separation can
be found in Refs. [30,31,42]. The diverging FF part of the
self-energy and LS can be expressed as a sum of terms which
already exists in the effective field theoretical Lagrangian and
can be absorbed into the counterterms. The short-distance
physics, as shown in Ref. [31], while calculating exchange
energies, are either removed by field redefinitions or the
coefficients are determined by fitting with the empirical data.
The long-range part is computed explicitly, which produces
modest corrections to the nuclear binding energy curve. This
can be compensated for by a small adjustment of the coupling
parameters.

Recently in Ref. [31], the exchange energy contributions
of the pion have been calculated within this theoretical
framework. We adopt the same parameter set as designated by
“MOA” in Ref. [31] to calculate the π self-energy explicitly.
The corresponding results are presented in Fig. 11. Here we
simply depict the final results, because the expressions, at this
order, for the pion self-energy and density-dependent masses
of π0 and π± remain the same as those of Eq. (67) except for
the coupling parameters. Quantitatively, it is found that for the
lower density, i.e., ρ ∼ ρ0, the effective masses for π−, π0,
and π+ states are comparable with those of PV coupling
(Fig. 7); while at higher density, the mass splitting is signifi-
cantly enhanced. The charged states, i.e., π±, show stronger
density dependence than in the PV coupling. We also observe
that the density dependence of π0 is rather weak.

IV. SUMMARY AND CONCLUSION

In the present paper, pion propagation in ANM has been
studied within the framework of relativistic hadrodynamics in
presence of the scalar mean field. We start with the model
developed in Ref. [25], and present analytical results for the
pion dispersion relations in ANM by making the HNL approx-
imation and a suitable density expansion. Subsequently, we
invoke the chirally invariant Lagrangian [47,48] by retaining
only the lowest order terms in the pion field and compare
the results with the nonchiral model calculations performed in
Sec. II.

The splitting of the various charged states of pion even at
normal nuclear matter density is found to be quite significant.
Such mode splitting in ANM is, in fact, a generic feature of

all the isovector mesons. Therefore, it would be interesting to
estimate similar splitting for the ρ meson and other isovector
states. It is to be noted that the mass splitting is related to the
pion-nucleus optical potential [19,22]. As for the dispersion
relations, we restricted our calculation to only the timelike
region, which can also be extended to study the spacelike
modes both for the pions and ρ mesons.
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APPENDIX A

After using the Feynman parametrization, the term �∗FF
PS (q)

in Eq. (15) can be written as

�∗FF
PS (q) = 8ig2

πµ2ε

∫
dNk

(2π )N

∫ 1

0
dx

×
[

M∗2 − k · (k + q)

((k + qx)2 + q2x(1 − x) − M∗2)2

]

= g2
π

2π2

∫ 1

0
dx(4πµ2)ε

�(ε)

1 − ε

×
[
M∗2 − 3q2x(1 − x) + 2εq2x(1 − x)

(M∗2 − q2x(1 − x))ε

]

= g2
π

2π2

q2

3
+ g2

π

2π2

1

ε

(
M∗2 − q2

2

)

− g2
π

2π2

(
M∗2 − q2

2

)
(γ ′

E − ln(4πµ2))

− g2
π

2π2

∫ 1

0
dx(M∗2 − 3q2x(1 − x))

× ln(M∗2 − q2x(1 − x)). (A1)

Here ε = 2 − N
2 and µ is an arbitrary scaling parameter.

γE is the Euler-Mascheroni constant and γ ′
E = (γE − 1). The

imaginary part of �∗FF
PS (q) can easily be found by simply

replacing ln(M∗2 − q2x(1 − x)) with ln(M∗2 − q2x(1 − x) −
iη), where η is an arbitrarily small parameter and the term
iη comes from the denominator of GF

i when the Feynman
parametrization is performed considering iζ in the denomina-
tor of the propagator.

Here the term ln(M∗2 − q2x(1 − x)) has a branch cut
only for M∗2 − q2x(1 − x) < 0, and it begins at q2 = 4M∗2,
i.e., the threshold condition for nucleon-antinucleon pair
production. So the limit of the x integration changes from

(0,1) to ( 1
2 − 1

2α, 1
2 + 1

2α), where α =
√

1 − 4M∗2

q2 , and we

used Im ln(Z − iη) = −π . Now,

∫ 1
2 + 1

2 α

1
2 − 1

2 α

dx θ (q2 − 4M∗2) =
√

1 − 4M∗2

q2
θ (q2 − 4M∗2).

(A2)
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Now, the imaginary part of �∗FF
PS (q) is

Im�∗FF
PS (q) = − g2

π

2π2

∫ 1

0
dx(M∗2 − 3q2x(1 − x))

× Im[ln(M∗2 − q2x(1 − x) − iη)]

= − g2
π

4π
[q
√

q2 − 4M∗2]θ (q2 − 4M∗2). (A3)

It is clear from the expression of Eq. (A1) that the second
term is divergent in the limit ε → 0 (as N → 4). To remove
the divergences, we need to add the counterterms [25] in
the original Lagrangian interaction. The diverging part of
Eq. (A1) is

DPS = g2
π

2π2

1

ε

(
M∗2 − q2

2

)

= g2
π

2π2

[
M2

ε
− 2

ε
Mgsφ0 + 1

ε
g2

s φ
2
0 − q2

2ε

]
. (A4)

In Eq. (A4) we substitute the effective nucleon mass M∗ =
(M − gsφ0), where M is the nucleon mass and φ0 is the vacuum
expectation value of the scalar field φs . The expression given
in Eq. (A4) tells us that we need to add four counterterms [25]
with the original interaction Lagrangian to remove the diver-
gences from �∗FF

PS . Therefore, the counterterm Lagrangian [25]
is denoted as

LCT = − 1

2!
β1
π · (∂2 + m2

π

) · 
π + 1

2!
β2


2 + 1

2!
β3φs


2
π

+ 1

2!2!
β4φ

2
2
π . (A5)

The value of the counterterms β1, β2, β3, and β4 are determined
by imposing the appropriate renormalization conditions,
that is,

β1 =
(

∂�FF
PS(q)

∂q2

)
q2=m2

π

, (A6)

β2 = (
�FF

PS

)
q2=m2

π

, (A7)

β3 = −gs

(
∂�FF

PS(q)

∂M

)
q2=m2

π

, (A8)

β4 = −δλ + g2
s

(
∂2�FF

PS(q)

∂M2

)
q2=m2

π

. (A9)

Here β1 and β2 are the wave function and pion mass
renormalization counterterms, respectively, while β3 and β4

are the vertex renormalization counterterms for the φs

2
π

vertex and φ2
s 


2
π vertex, respectively. The conditions of

Eqs. (A6) and (A7) imply that the pion propagator Gπ =
[q2 − m2

π − �∗R
PS (q)]−1 reproduces the physical mass of pions

in free space. The counterterm β4 determines the strength of
coupling of the φ2

s 

2
π vertex. In fact, �FF

PS(q) is found by
simply replacing M∗ with M in Eq. (A1). We can set δλ = 0
to minimize the effects of many-body forces in the nuclear
medium [25], which is consistent with the renormalization
scheme for scalar meson. Using the conditions given in

Eqs. (A6)–(A9), the following results are found:

β1 = g2
π

2π2

[
1

3
−1

2

(
1

ε
− γ ′

E + ln(4πµ2)

)]

+ g2
π

2π2

[∫ 1

0
dx3x(1 − x) ln

(
M2 − m2

πx(1 − x)
)]

+ g2
π

2π2

[∫ 1

0
dx

M2x(1 − x) − 3m2
πx2(1 − x)2

M2 − m2
πx(1 − x)

]
,

(A10)

β2 = g2
π

2π2

[
m2

π

2
+

(
M2 − m2

π

3

) (
1

ε
− γ ′

E + ln(4πµ2)

)]

− g2
π

2π2

[∫ 1

0
dx

(
M2 − 3m2

πx(1 − x)
)

× ln
(
M2 − m2

πx(1 − x)
)]

, (A11)

β3 = g2
π

2π2

[
−gs(2M)

(
1

ε
− γ ′

E + ln(4πµ2)

)]

+ g2
π

2π2

[
gs(2M)

∫ 1

0
dx ln

(
M2 − m2

πx(1 − x)
)]

+ g2
π

2π2

[
gs(2M)

∫ 1

0
dx

(
M2 − 3m2

πx(1 − x)

M2 − m2
πx(1 − x)

)]
,

(A12)

β4 = − g2
π

2π2
6g2

s + g2
π

2π2

[
2gs

(
1

ε
− γ ′

E + ln(4πµ2)

)]

− g2
π

2π2

[
2g2

s

∫ 1

0
dx ln

(
M2 − m2

πx(1 − x)
)]

− g2
π

2π2

[
2g2

s

∫ 1

0
dx

4M2m2
πx(1 − x)(

M2 − m2
πx(1 − x)

)2

]
. (A13)

Now the renormalized �∗FF
PS (q) is

�∗R
PS (q,mπ ) = �∗FF

PS (q) − β1
(
q2 − m2

π

)
−β2 − β3φ0 − 1

2β4φ
2
0 . (A14)

Substituting �∗FF
PS (q) from Eq. (A1) and β1, β2, β3, β4

from Eqs. (A10)–(A13) into Eq. (A14), it is found that the
divergences in �∗FF

PS (q) are completely eliminated by the
counterterms. After simplification, �∗R

PS (q,mπ ) reduces to

�∗R
PS (q,mπ )

= g2
π

2π2

[
− 3(M2 − M∗2) + (

q2 − m2
π

) (1

6
+ M2

m2
π

)

− 2M∗2 ln

(
M∗

M

)
+ 8M2(M − M∗)2(

4M2 − m2
π

)
− 2M∗2

√
4M∗2 − q2

q
tan−1

(
q√

4M∗2 − q2

)
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+ 2M2
√

4M2 − m2
π

mπ

tan−1

(
mπ√

4M2 − m2
π

)

+
(

(M2 − M∗2) + m2
π (M − M∗)2(
4M2 − m2

π

) + M2

m2
π

(
q2 − m2

π

))

× 8M2

mπ

√
4M2 − m2

π

tan−1

(
mπ√

4M2 − m2
π

)

+
∫ 1

0
dx 3x(1 − x)q2 ln

(
M∗2 − q2x(1 − x)

M2 − m2
πx(1 − x)

)]
.

(A15)

APPENDIX B

After Feynman parametrization, Eq. (44) reduces to

�∗FF
PV (q)

= 8i

(
fπ

mπ

)2

µ2ε

∫
dNk

(2π )N

∫ 1

0
dx

×
[

(M∗2 + q2x(1 − x) + k2)q2 − 2(k · q)2

((k + qx)2 + q2x(1 − x) − M∗2)2

]

= − q2

2π2

(
fπ

mπ

)2 ∫ 1

0
dx(4πµ2)ε�(ε)

×
[

2M∗2

(M∗2 − q2x(1 − x))ε

]

= q2

2π2

(
fπ

mπ

)2

[2M∗2(γE − ln(4πµ2))]

+ q2

2π2

(
fπ

mπ

)2 [
2M∗2

∫ 1

0
dx ln(M∗2 − q2x(1 − x))

]

− q2

2π2

(
fπ

mπ

)2 [2M∗2

ε

]
(B1)

The imaginary part of �∗FF
PV (q) can be found as

Im�∗FF
PV (q)

= −
(

fπ

mπ

)2 [ q

π
2M∗2

√
q2 − 4M∗2

]
θ (q2 − 4M∗2). (B2)

It is clear from Eq. (B2) that Im�∗FF
PV (q) vanishes for q2 <

4M∗2. With the same argument as stated for PS coupling,
we excluded the imaginary part. The diverging part of
�∗FF

PV (q) is

DPV = − q2

2π2

(
fπ

mπ

)2 [2M∗2

ε

]
. (B3)

Here we use simple subtraction to remove the divergence. So,
the finite FF part of the self-energy is

�∗R
PV(q) = �∗FF

PV (q) − �∗FF
PV (mπ ) = q2

2π2

(
fπ

mπ

)2

×
[
2M∗2

∫ 1

0
dx ln

(
M∗2 − q2x(1 − x)

M∗2 − m2
πx(1 − x)

)]
. (B4)
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