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Nonextensive hydrodynamics for relativistic heavy-ion collisions
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(Received 12 October 2007; published 10 April 2008)

The nonextensive one-dimensional version of a hydrodynamic model for multiparticle production processes
is proposed and discussed. It is based on nonextensive statistics assumed in the form proposed by Tsallis and
characterized by a nonextensivity parameter q. In this formulation, the parameter q describes some specific form
of local equilibrium that is characteristic of the nonextensive thermodynamics and replaces the local thermal
equilibrium assumption of the usual hydrodynamic models. We argue that there is correspondence between the
perfect nonextensive hydrodynamics and the usual dissipative hydrodynamics. It leads to a simple expression for
dissipative entropy current and allows predictions of the ratio of bulk and shear viscosities to entropy density,
ζ/s and η/s, to be made.
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I. INTRODUCTION

Multiparticle production experiments are our main source
of information on multiparticle production processes in which
the initial kinetic energy of two projectiles is to a large
extent converted into a multitude of observed secondaries.
This is especially true in the case of heavy-ion collisions
in which one expects the formation of a new hadronic
state of matter, the quark-gluon plasma (QGP) [1]. Such
processes call for some form of statistical approach, which
is usually based on the Boltzmann-Gibbs (BG) statistics.
On the other hand, in the case of a multiparticle production
process, conditions leading to BG statistics are satisfied only
approximately at best. This is because, among other things,
hadronizing systems experience strong intrinsic fluctuations
and long-range correlations [2,3], which can be interpreted as
signals of some dynamical, nonequilibrium effects showing up
(as, for example, the flow phenomenon or decay of resonances,
see Ref. [4]). It is therefore difficult to expect the occurrence
of the usual (local) thermal equilibrium; instead, one has some
kind of stationary state. It turns out that these phenomena can
be incorporated, at least to some extent and without going
into deeper dynamical considerations concerning the sources
of such fluctuations, in the formalism of the nonextensive
statistics (which we shall apply here in the manner proposed
by Tsallis [5]) in the form of a more general equilibrium
summarily described by a single parameter q [6–9]. This
parameter characterizes the corresponding Tsallis entropy Sq ,
which in such approach replaces the usual BG entropy to which
it converges for q → 1. Because such systems are in general
nonextensive, the parameter q is usually called a nonextensivity
parameter.

Such an approach has been successfully applied to mul-
tiparticle production processes, either by using nonextensive
versions of the respective distribution functions [10–16], or by
deriving such distributions from the appropriately modified
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nonextensive version of the Boltzmann transport equation
[6,7,9,17,18]. In both cases, this amounts to replacing the usual
exponential factors by their q-exponential equivalents,

PBG(E) = exp(−E/T ) =⇒ Pq(E) = expq(−E/T )

= [1 − (1 − q)E/T ]1/(1−q). (1)

Notice that PBG(E) = Pq=1(E). In all these applications, one
finds that q > 1. It represents the effect of some intrinsic
fluctuations existing in the hadronizing system and revealing
themselves as fluctuations of its temperature or of the mean
multiplicity of secondaries.1 Generically one has that [2]

q = 1 + 〈(1/T )2〉
〈(1/T )〉2

, (2)

where, depending on the kind of process considered, T can
be replaced by some other variable [13–15]. Because different
observables are sensitive to different kinds of fluctuations,
it is natural to expect that they are described by different
values of the parameter q [14]. For example, single-particle,
one-dimensional distributions in longitudinal phase-space,
such as dN/dy, are most sensitive to fluctuations of the mean
multiplicity 〈n〉 of secondaries [13] and are described by the
nonextensivity parameter q = qL of the order of qL − 1 ∼ 0.1–
0.2.2 However, distributions in transverse momenta, dN/dpT ,

1The situation in which q < 1 was analyzed in Ref. [19]. As
discussed in Ref. [3], interpretation in terms of fluctuations is not
clear now. Instead, it was shown that in this case the first role of
the parameter q is to restrict the allowed phase space, and q < 1
reflects the fact that only a fraction K (called inelasticity) of the
initially available energy is used for the production of secondaries,
the remaining 1 − K part is to be found in the so-called leading
particles. As a result, one gets the expq<1(−X) distribution with X

limited to the X > 1/(1 − q) region only.
2Actually, these are precisely the same fluctuations that lead to

the negative binomial form of the observed multiplicity distributions,
P (n; 〈n〉; k), with its characteristic parameter k given by k = 1/(qL −
1) [13] (in this case, one can also speak of fluctuations in the so-called
partition temperature Tpt = E/〈n〉, see Ref. [20].
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which are believed to probe the local thermal equilibrium of
the hadronizing system (assuming that such a phenomenon
indeed occurs) and serve as a source of information on
the temperature T of the hadronizing system, are very
sensitive to fluctuations of this temperature represented by the
nonextensivity parameter q = qT [15]; changes as small as
qT − 1 ∼ 0.01–0.05 already substantially affect the resultant
pT spectra.3 Notice that data indicate that qL − 1 � qT − 1,
i.e., fluctuations governed by qL are dominant, and therefore
for the whole system, q ∼ qL [14].

Among statistical approaches to the multiparticle produc-
tion processes, a specially important role is played by hydro-
dynamic models (for the most recent reviews, see Ref. [21]),
which so far are all based on the BG statistics. The existing
general nonextensive version of fluid dynamics discussed in
Ref. [22] is not suitable for applications to multiparticle
production processes (among other things because of its
noncovariant formulation). We would like to fill this gap and
present a fully covariant hydrodynamic model based on q

statistics which can be applied to multiparticle production pro-
cesses, especially to relativistic heavy-ion collisions. Because
of the exploratory character of our paper, we limit ourselves
to the (1 + 1) dimensional case only and confront our results
with rapidity and transverse momenta distributions obtained
recently at the BNL Relativistic Heavy Ion Collider (RHIC),
leaving the most detailed studies of all aspects of available
experimental data for future investigations.

The hydrodynamic model of multiparticle production
means, in fact, a number of separate problems connected
with the consecutive steps of the collision process: the choice
of initial conditions summarizing the preparatory stage of
collision (it should end in some form of local thermal
equilibrium), the choice of equation of state (EOS) of the
quark-gluon and/or hadronic matter being equilibrated, further
hydrodynamic evolution of this matter assumed to form a
kind of fluid, and the final conversion of this fluid into
observed secondaries. Because dynamical factors underlying
each step are different, the resulting fluctuation patterns can
also differ, presumably leading to the parameter q changing
during the collision process. However, in the present study, we
shall restrict ourselves to only the case of the nonextensive
parameter q remaining the same in the whole collision
process.4

Recently, renewed interest in dissipative hydrodynamic
models [23–32] has been prompted by the apparent success
of hydrodynamic models in describing data obtained at

3In this case, q measures the fluctuation of temperature T as given
by the specific heat parameter C, and qT − 1 = C [2,15]. As such,
it should be inversely proportional to the volume of the interaction
region; this effect is indeed observed [15].

4Notice that our analysis of multiparticle production using a q

hydrodynamic model differs substantially from previous applications
of q statistics presented in Refs. [10–18], because now the local
thermal equilibrium (in its q version) is superimposed on the
longitudinal flow. It is therefore not clear a priori which q should
enter at which step of the collision process. We plan to discuss this
subject elsewhere.

RHIC [33–35] and by the recent calculations of transport
coefficients of a strongly interacting quark-gluon system using
the anti-de-Sitter space/conformal field theory (AdS/CFT)
correspondence [36]. The questions addressed are whether
and under what circumstances dissipative hydrodynamics is
really needed and how it should be applied. The reason is
that formulations of the relativistic hydrodynamic equations
for dissipative fluids suffer from ambiguities in the form they
are written [27], the unphysical instability of the equilibrium
state in the first-order theory [28], and the loss of causality
in the first-order equation approach [31], to mention a few. In
this work, we argue that there is a link between dissipative
hydrodynamics (d hydrodynamics) and the nonextensive
hydrodynamics (q hydrodynamics) we are proposing, which
we call nonextensive/dissipative correspondence (NexDC). In
particular, in Sec. V we demonstrate that it is possible to
write some of the corresponding transport coefficients of the
produced matter (believed to be QGP) as (implicit) functions
of the nonextensivity parameter q. The merit of using the
NexDC is that one can formulate and solve the q hydrodynamic
equations of perfect nonextensive hydrodynamics (or perfect q
hydrodynamics) in a way that is analogous to that for the usual
perfect hydrodynamics, which seems to be a priori a much
easier task. Although this does not fully solve the problems of
d hydrodynamics, nevertheless it allows us to extend the usual
perfect fluid approach (using only one new parameter q) well
beyond its usual limits, namely, toward the regions reserved
for the dissipative approach only.

The paper is organized as follows. We start in Sec. II
with a short reminder of the nonextensive version of kinetic
theory from which nonextensive hydrodynamics is derived in
Sec. III. Section IV contains examples of comparisons with
experimental data, whereas in Sec. V we discuss the possible
physical meaning of the proposed q hydrodynamics. We end
with Sec. VI, which contains our conclusions and summary.
Some specialized topics and derivations are presented in
Appendixes A–D.

II. RELATIVISTIC NONEXTENSIVE KINETIC THEORY

Following Ref. [17], we start with the nonextensive ver-
sion of the Boltzmann equation [the metric used is: gµν =
diag(1,−1,−1,−1)],

pµ∂µf q
q (x, p) = Cq(x, p), (3a)

Cq(x, p) = 1

2

∫
d3p1

p0
1

d3p′

p′0
d3p′

1

p′0
1

×{hq[f ′
q, f

′
q1]W (p′, p′

1|p, p1)

−hq[fq, fq1]W (p, p1|p′, p′
1)}. (3b)

Here fq(x, p) and Cq(x, p) are q versions of the, respectively,
corresponding phase-space distribution function and the q

collision term in which W (p, p1|p′, p′
1) is the transition rate

between the two-particle state with initial four-momenta p

and p1 and some final state with four-momenta p′ and p′
1,
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whereas hq[fq, fq1] is the correlation function related to the
presence of two particles in the same space-time position x but
with different four-momenta p and p1, respectively. Notice
two distinct features of Eq. (3a): (i) it applies to f

q
q [= (fq)q]

rather than to fq itself, and (ii) in Cq one assumes a new,
q generalized, version of the Boltzmann molecular chaos
hypothesis [6–9,17,37] according to which

hq[fq, fq1] = expq[lnq fq + lnq fq1], (4)

where expq(X) = [1 + (1 − q)X]1/(1−q) and lnq(X) =
[X(1−q) − 1]/(1 − q). Equation (4) is our central point;
it amounts to assuming that instead of the strict (local)
equilibrium, a kind of stationary state is being formed, which
also includes some interactions (see Refs. [6–9]).

With such correlation functions one finds that divergence
of the entropy current, which we define as

sµ
q (x) ≡ −kB

∫
d3p

(2πh̄)3

pµ

p0

× {
f q

q (x, p) lnq fq(x, p) − fq(x, p)
}
, (5)

is always positive at any space-time point,

∂µsµ
q (x) � 0. (6)

(This fact is equivalent to demonstrating the validity of the
relativistic local H theorem when using this q entropy current).

To obtain the explicit form of the distribution functions
fq(x, p), we proceed now as in Ref. [17]. At first, using the
momentum conservation condition in two-particle collisions,
pµ + p

µ

1 = p′µ + p′
1
µ, we form the collision invariant

F [ψ] =
∫

d3p

p0
ψ(x, p)Cq(x, p) ≡ 0, (7)

where ψ(x, p) = a(x) + bµ(x)pµ with arbitrary functions
a(x) and bµ(x). We assume here that the correlation func-
tion hq is symmetric and positive, hq[f, f1] = hq[f1, f ] � 0,
and that a detailed balance holds, i.e., W (p, p1|p′, p′

1) =
W (p′, p′

1|p, p1). For a(x) ≡ 0 and bµ(x) = constant, one gets
the q version of the local energy-momentum conservation [17],
that is,

∂νT µν
q (x) = 0, (8)

with a nonextensive energy-momentum tensor defined by

T µν
q (x) ≡ 1

(2πh̄)3

∫
d3p

p0
pµpνf q

q (x, p). (9)

At the same time for a(x) = constant and bµ(x) ≡ 0, one gets
[17]

∂µ

∫
d3p

(2πh̄)3

pµ

p0
f q

q (x, p) = 0, (10)

which implies that (d� stands for the corresponding phase-
space volume element)

d

dt

∫
d�f q(x, p) = 0, (11)

i.e., that the normalization Zq ≡ ∫
d�f

q
q (x, p) is conserved

as well.5 Since the divergence of the q entropy current can also
be expressed via the collision invariant,

∂µsµ
q = 1

(2πh̄)3
F [lnq fq(x, p)], (12)

demanding that ∂µs
µ
q (x) ≡ 0, one finally obtains

fq(x, p) = [1 + (1 − q)(a(x) + bµ(x)pµ)]1/(1−q), (13)

which represents the distribution function in a stationary state.
Setting a(x) = 0 and bµ(x) = −u

µ
q (x)/kBTq(x) [where Tq(x)

is the temperature function6] one obtains the well-known
(unnormalized) Tsallis distribution function

fq(x, p) =
[

1 − (1 − q)
pµu

µ
q

kBTq(x)

]1/(1−q)

≡ expq

[
−pµu

µ
q (x)

kBTq(x)

]
, (14)

where u
µ
q (x) should be regarded as a hydrodynamic flow four-

vector (hereafter we use the convention that h̄ = kB = c = 1).
We shall now assume that the q-modified energy-

momentum tensor T µν
q can be decomposed in the usual way

in terms of the q-modified energy density and pressure, εq and
Pq , by using the q-modified flow u

µ
q [such that for q → 1,

it becomes the usual hydrodynamic flow uµ, and in the rest
frame of the fluid, u

µ
q = (1, 0, 0, 0)], that is,

T µν
q = (εq + Pq)uµ

q uν
q − Pqg

µν (15a)

= εqu
µ
q uν

q − Pq	
µν
q , (15b)

where 	
µν
q ≡ gµν − u

µ
q uν

q . Denoting e ≡ p0/T , z ≡ m/T ,
with g being the degeneracy factor depending on the type
of particles composing our fluid, one gets that in its rest frame
(or in q equilibrium)

εq ≡ uqµT µν
q uqν

= gT 4
q

2π2

∫
de

√
e2 − z2e2 [1 − (1 − q)e]q/(1−q) , (16a)

Pq ≡ −1

3
T µν

q 	qµν

= gT 4
q

2π2

∫
de

√
e2 − z2e [1 − (1 − q)e]1/(1−q) , (16b)

5Notice that the normalization Zq and (unnormalized) energy
density T µν

q are conserved independently. Therefore our further
consideration will be concentrated only on getting fq (x, p). However,
the q-dependent normalization is important when analyzing particle
distribution functions, because it couples the widths of distributions
(as given by fq ) with their heights (as given by Zq , cf. Ref. [13]).

6One should be aware that there is still an ongoing discussion on the
meaning of the temperature in nonextensive systems. However, the
small values of the parameter q deduced from data allow us to argue
that, to first approximation, T can be regarded as the hadronizing
temperature in such a system. One must only remember that in
general what we study here is not so much the state of equilibrium
but rather some kind of stationary state. For a thorough discussion of
the temperature of nonextensive systems, see Ref. [38].
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sq ≡ sµ
q uqµ = gT 3

q

2π2

∫
de

√
e2 − z2e{e[1 − (1 − q)e]q/(1−q)

+ [1 − (1 − q)e]1/(1−q)}. (16c)

(Notice that for q < 1, the integration range is limited to
z � ε � 1/(1 − q) in order to keep the integrand positive.) It is
straightforward to check that in the baryon-free case, to which
we shall limit ourselves here,

Tqsq = εq + Pq, (17a)

and
dPq

dTq

= sq, (17b)

i.e., that the usual thermodynamic relations also hold for the
q-modified quantities.

III. THE NONEXTENSIVE (q) HYDRODYNAMIC MODEL

A. Equations of nonextensive (q) flow

Our starting point in formulating the q hydrodynamic model
is Eq. (8) with the energy-momentum tensor T µν

q given by
Eq. (9). Because of the q version of thermodynamic relations
in Eq. (17), in our case Eq. (8) also implies conservation of q

entropy, that is,

∂µsµ
q = 0, (18)

with s
µ
q (x) defined by Eq. (5), which can also be written as

sµ
q (x) = sq(x)uµ

q (x). (19)

Therefore, we have only one general equation which, when
written using general coordinates and covariant derivatives,7

takes the form

T µν
q;µ = [

(εq + Pq)uµ
q uν

q − Pqg
µν

]
;µ

= 0. (20)

This means that we are dealing here with perfect q hydrody-
namics.

Before proceeding further, some specific points of q hydro-
dynamics not mentioned in the general derivation presented
in Sec. II must be kept in mind. At first, notice that whereas
in the usual perfect hydrodynamics (based on BG statistics)
entropy is conserved in hydrodynamic evolution both locally
and globally, in the nonextensive approach it is conserved only
locally, cf. Eq. (18). The total entropy of the whole expanding
system is not conserved, because for two volumes V1,2 one
finds that

S(V1)
q + S(V2)

q 	= S(V1⊕V2)
q , (21)

where S(V )
q are the corresponding total entropies. Although,

strictly speaking, the hydrodynamic model does not require

7The covariant derivatives of the vector uµ and tensor gµν

are defined by using the Christoffel symbol �ν
λµ ≡ 1

2 gνσ (∂µgσλ +
∂λgσµ − ∂σ gλµ) and are equal to uν

;µ = ∂µuν + �ν
λµuλ and gµν

;µ =
∂µgµν + �µ

σµgσν + �ν
σµgµσ , respectively.

global entropy conservation but only its local conservation,
the above feature of q hydrodynamics should be always
remembered (the consequences of this fact will be discussed in
more detail in Sec. V). The second point concerns the causality
problem. To guarantee that hydrodynamics makes sense, there
should exist some spacial scale L such that volume L3 contains
enough particles composing our fluid. However, when there
are some fluctuations and/or correlations with some typical
correlation length l, for which we expect that l > L, one
has to use nonextensive entropy S(L3)

q [cf. Eq. (21)] and its

locally defined density sq(x) = S(L3)
q /L3. When formulating

the corresponding q hydrodynamics, one takes, as usual, the
limit L → 0, in which case explicit dependence on the scale
L vanishes whereas the correlation length leaves its imprint
as parameter q. In this sense, perfect q hydrodynamics can be
considered as preserving causality, and nonextensivity q is then
related with the correlation length l. One can argue that very
roughly q ∼ l/Leff � 1, where Leff is some effective spacial
scale of the q hydrodynamics. Note here that if the correlation
length l is compatible with the scale Leff , i.e., l ≈ Leff , one
recovers the condition of the usual local thermal equilibrium,
and in this case the q hydrodynamics reduces to the usual (BG)
hydrodynamics.

Let us now continue our presentation. When contracted
with the velocity uqν or with the projection tensor 	qλν ≡
gλν − uqλuqν, it leads to the following two equations:

uµ
q ∂µεq + (εq + Pq)uµ

q;µ − Pquqνg
µν
;µ = 0, (22)

(εq + Pq)uµ
q 	qλνu

ν
q;µ

−	qλν∂
νPq − Pq	qλνg

µν
;µ = 0. (23)

These are the equations to be solved now for the (1 + 1)
dimensional case. We shall assume longitudinal expansion
only and introduce proper time τ and the space-time
rapidity η:

τ ≡
√

t2 − z2, (24a)

η ≡ 1

2
ln

t + z

t − z
. (24b)

The corresponding metric tensor in this (τ − η) space is gµν =
diag(1,− 1

τ 2 ). The corresponding four-velocity of our fluid can
be expressed by the local fluid rapidity αq(x) as

uµ
q (x) = [cosh(αq − η),

1

τ
sinh(αq − η)]. (25)

In this case, Eq. (22) reduces to [here vq ≡ tanh(αq − η)]

∂εq

∂τ
+ vq

τ

∂εq

∂η
+ (εq + Pq)

{
vq

∂αq

∂τ
+ 1

τ

∂αq

∂η

}
= 0, (26)

whereas Eq. (23) reduces to the q generalized relativistic Euler
equation (cf. Appendix A for details):

(εq + Pq)

{
∂αq

∂τ
+ vq

τ

∂αq

∂η

}
+ vq

∂Pq

∂τ
+ 1

τ

∂Pq

∂η
= 0. (27)
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To solve these equations, one needs additional input in terms
of EOS, Pq = Pq(εq), and the choice of boundary conditions,
which we set as vq = 0 at η = 0 (because of the symmetry
α ≡ 0). At η = 0, Eqs. (22) and (23) reduce to

∂εq

∂τ
= −εq + Pq

τ

∂α

∂η

∣∣∣
η=0

, (28a)

∂Pq

∂η

∣∣∣
η=0

= 0. (28b)

B. Nonextensive equation of state: q-EOS

The next important ingredient of any hydrodynamic model
is an equation of state (EOS) defining a relation between
the pressure and the energy density, which depends on the
properties of the hadronic matter under consideration. In this
work, we shall only work with an EOS for the relativistic
pion gas (with mπ = 0.14 GeV) without considering different
phases of hadronic matter as in Ref. [39]. The pressure Pq

and the energy density εq can be connected in the form of
EOS, Pq(εq), using Eqs. (16a) and (16b). However, differently
than in the usual cases of q = 1, the additional freedom
represented by the nonextensivity parameter q makes Pq =
Pq(εq) ambiguous, and one has to additionally specify the
possible variations of the parameter q during the evolution
process. In what follows, we shall assume that the parameter q

remains fixed during the the whole evolution of our hadronic
fluid. We therefore get different EOSs for different (but fixed)
values of the parameter q, examples of which are shown in
Fig. 1. It displays the ratio Pq/εq as a function of energy density
εq for different values of q = 1.0, 1.1, and 1.2; the temperature
Tq was varied in the range 0.1–500 MeV. It turns out that
the q dependence is confined only to the very low energy
density region (supporting therefore the previous results on
this matter in Refs. [17,40]). In the region of interest, εq ∼ 0.1–
5.0 GeV/fm3, the changes are very small and rapidly vanish
with increasing ε.

FIG. 1. EOS for the relativistic nonextensive pionic gas (m =
0.14 GeV). Pq/εq is plotted as a function of energy density εq for
different nonextensivity parameters q. Notice that the q dependence
of the EOS shows mainly at low and very low energy densities.

C. Nonextensive (q) initial conditions

To solve equations of (1 + 1) q hydrodynamics, one
has to decide on the initial conditions from which the
hydrodynamic expansion starts. They must contain some
form of the local thermal equilibrium, which we assume is
established during the collision process. According to recent
estimations, this can happen very rapidly, already in the first
1 fm of expansion, if caused by some violent, nonperturbative
mechanisms operating at this stage.8 It is thus natural to
expect that there must also exist some intrinsic fluctuations
already present in this preparatory stage of the collision process
which, according to our philosophy, should be accounted
for by the same q statistical approach as that used to form
the q hydrodynamics. Following Refs. [39,43], we shall use
Gaussian initial conditions interpolating between two extreme
situations, the one described by the Bjorken scaling type model
[44] and the other corresponding to the Landau model [45],
but we shall modify them accordingly by changing exp(X) to
expq(X) [as we saw in Eq. (4), it reduces to the usual Gaussian
of Ref. [39] for q = 1]. As in Ref. [39], initial conditions are
imposed for the energy density εq expressed as a function of
rapidity η:

εq(τ0, η) = ε(in) expq

[
− η2

2σ 2

]
. (29)

In what follows we shall also require that the q-fluid and
space-time rapidities coincide at τ0, that is,

αq(τ0, η) = η. (30)

In all calculations presented in this paper, we shall assume
for simplicity that εq and αq are independent of the transverse
coordinate. However, the remaining two parameters, ε(in) and
σ, are not independent because one has to reproduce the
total energy Etot allocated to the fluid which is fixed by the
conditions of the experiment, i.e.,

Etot = πA2
T τ0

∫
dηεq(τ0, η), (31)

where AT is the transverse size of the fluid, τ0 is the initial
proper time τ when the fluid starts to expand. The Etot can be
obtained knowing the mean number of participating nucleons
Npart and the total energy loss per participating nucleon 	E,
that is,9

Etot = Npart	E. (32)

The possible initial conditions vary therefore between two
extremal situations (cf., Fig. 2):

8See, for example, the review in Ref. [41] and references therein. We
mention at this point that the so-called kinematic thermalization used
here, in which equilibration of energies is due to the collisions, has
been recently contrasted with the so-called stochastic thermalization
based on the process of erasing of memory of the initial state resulting
in a state of maximal entropy and coinciding with the above thermal
equilibrium state, see Ref. [42] and references therein.

9Notice that, in principle, both the Npart and the 	E are also
fluctuating quantities, but we shall not consider these fluctuations
here. One can argue that they are to some extent accounted for by the
nonextensive version of initial conditions considered here.
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FIG. 2. Examples of two different types of initial conditions: (a) type (i) with fixed σ = 1.25 and ε(in) varying according to Eq. (31), and
(b) type (ii) with fixed ε(in) = 28.7 GeV/fm3 [this value corresponds to the q = 1 situation in (a)] and σ varying according to Eq. (31).

(i) The width σ in Eq. (29) is assumed to be fixed and
kept constant, but its distribution varies by changing
ε(in) to reproduce the fixed total energy Etot when the
nonextensive parameter q changes.

(ii) The maximum energy density ε(in) in Eq. (29) is assumed
to be fixed and kept constant, but its distribution varies
by changing σ to reproduce the fixed total energy Etot

when the nonextensive parameter q changes.
We would like to stress at this point that such q-dependent

initial conditions introduce a completely new element to
hydrodynamic models, not discussed previously. The real
situation will interpolate in an a priori unknown manner
between these two extremes; therefore, in what follows, we
shall restrict ourself only to them. As one can see in Fig. 2,
whereas the first extreme introduces sizable q dependence,
the second one leads to only minor effects. In both cases,
increasing the value of q results, as expected [13], in the
enhancement of tails for large values of η. Following Ref. [39],
our calculations were performed for Au+Au collisions at√

sNN = 200 GeV, using results reported by the BRAHMS
experiment [46], with Etot = 26.1 TeV, Npart = 357,	E =
73 ± 6 GeV and with AT = 6.5 fm, τ0 = 1.0 fm, see

Table I. In Fig. 3 are shown the initial conditions for the energy
density εq(τ0, η), entropy density sq(τ0, η), and temperature
Tq(τ0, η) in the case of σ = 1.25 fixed [panels (a)–(c)] and
ε(in) = 27.8 GeV/fm3 fixed [panels (d)–(f)] and reproducing
the initial energy Etot = 26.1 TeV. We start with εq [panels (a)
and (d) of Fig. 3] which is given by Eq. (29), use it to solve
Eq. (16a) and find Tq(τ0) [panels (b) and (e) of Fig. 3], and
eventually obtain sq(τ0, η) using these results and Eq. (16c)
[panels (c) and (f) of Fig. 3].

D. Examples of q hydrodynamic evolution of different
thermodynamic quantities

Let us now demonstrate examples of q hydrodynamic
evolution of different thermodynamic quantities and of the
fluid rapidity. Calculations were performed using the method
presented in Appendix B. In Fig. 4 we present the evolution of
the energy density εq , temperature Tq , and entropy density
sq using the initial conditions discussed in Sec. III C (the
exact values of relevant parameters for both types of initial
conditions are listed in Table II). One can see that the initial

TABLE I. Parameters of the initial conditions used in Fig. 2. The initial temperature Tin ≡ T (τ0, η = 0) is shown for two types of EOS: for
the relativistic nonextensive pion gas for some selected values of q � 1 and for the usual BG pion gas with q = 1.

Initial condition: σ = 1.25 fixed

Etot ε(in) σ EOS Tin (GeV)

(TeV) (GeV/fm3) q = 1.00 q = 1.05 q = 1.10 q = 1.15 q = 1.00 q = 1.05 q = 1.10 q = 1.15

26.1 27.8 1.20 1.15 1.08 nonex.π gas 0.648 0.591 0.531
1.25 BG π gas 0.702

Initial condition: ε(in) = 28.7 GeV/fm3 fixed

Etot σ ε(in)(GeV/fm3) EOS Tin (GeV)
(TeV) q = 1.00 q = 1.05 q = 1.10 q = 1.15 q = 1.00 q = 1.05 q = 1.10 q = 1.15
26.1 1.25 25.9 22.4 16.8 nonex.π gas 0.631 0.556 0.464

27.8 BG π gas 0.702
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TABLE II. Values of energy density εq , entropy density sq, and temperature Tq at η = 0.0 and η = 3.0 and at τ = 5.0 and 25.0 fm for
q = 1.0 and q = 1.1 for two extremal types of initial conditions: with fixed σ = 1.25 (upper panel) and with fixed εin = 27.8 GeV/fm3 (lower
panel).

Initial condition: σ = 1.25 fixed

εq (GeV/fm3) Tq (GeV) sq (1/fm3)

τ 1 fm 5 fm 25 fm 1 fm 5 fm 25 fm 1 fm 5 fm 25 fm
η 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0

q 1.00 28.7 1.61 2.80 0.293 0.249 0.060 0.702 0.343 0.393 0.225 0.216 0.153 54.5 6.24 9.46 1.72 1.52 0.513
1.10 22.4 1.78 2.19 0.285 0.196 0.053 0.556 0.296 0.311 0.189 0.171 0.124 53.7 8.00 9.34 2.01 1.51 0.553

Initial condition: ε(in) = 28.7 GeV/fm3 fixed
εq (GeV/fm3) Tq (GeV) sq (1/fm3)

τ 1 fm 5 fm 25 fm 1 fm 5 fm 25 fm 1 fm 5 fm 25 fm
η 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0

q 1.00 28.7 1.61 2.80 0.293 0.249 0.060 0.702 0.343 0.393 0.225 0.216 0.153 54.5 6.24 9.46 1.72 1.52 0.513
1.10 28.7 1.53 2.72 0.272 0.235 0.057 0.591 0.285 0.329 0.186 0.179 0.127 64.7 7.14 11.0 1.94 1.73 0.587

functional forms of εq(τ, η), Tq(τ, η), and sq(τ, η) generally
follow their original Gaussian shapes assumed at the initial
time τ0 for q = 1.0, 1.05, and 1.1. On the other hand, during
the whole hydrodynamic evolution, both the energy density εq

and the temperature Tq calculated for q > 1 are smaller than
those for q = 1 for τ > τ0 = 1 fm (see Table II). That is even
true for the initial condition with fixed σ = 1.25, for which the
initial energy density εq=1.1(τ0, η = 3) > εq=1.0(τ0, η = 3), in
which case, after the q hydrodynamic evolution is completed,
one observes that εq=1 > εq>1. The same trend is also observed
for the temperature, i.e., Tq=1 > Tq>1 for all τ and η. However,
the corresponding entropy density sq evolves differently:
for both types of initial conditions and any η, inequality
relations between sq=1.1(τ, η) and sq=1.0(τ, η) given at initial
τ = τ0 are preserved during hydrodynamic evolution. In what
concerns the fluid rapidity αq , it is always set to be equal to
αq(τ0, η) ≡ η at τ = τ0. However, the pressure gradient, which
is characteristic to Gaussian-type initial conditions applied

here, accelerates the fluid; therefore αq evolves with time τ

(actually, this is true even for q = 1), see Fig. 5. In these figures
the fluid rapidity αq (actually its deviation from the rapidity
η, αq − η) is shown as a function of τ and the corresponding
energy density εq . Notice that αq − η ≡ 0 at τ0 for the whole
η space (i.e., for all regions of the εq). As shown in Fig. 5, the
fluid rapidity αq grows during the hydrodynamic expansion
from its initial value α(τ0, η) = η. One can observe that αq

for q > 1 is decelerated compared to the usual hydrodynamic
expansion (i.e., αq=1 > αq>1).

To summarize this part: one observes that nonextensive
fluid (q fluid with q > 1) evolves more slowly than the ideal
fluid (with q = 1).

E. Freeze-out surface and single-particle spectra

We now present examples of single-particle spectra emerg-
ing from our approach. We shall follow the simplest possibility,

FIG. 3. Dependence of initial conditions on parameter q. The initial conditions for the energy density εq (τ0, η) [(a) and (d)], the
corresponding temperature Tq (τ0, η) [(b) and (e)], and the entropy density sq (τ0, η) [(c) and (f)] are plotted for different values of q and
for the two types of initial conditions. In both cases, we assume that Etot = 26.1 TeV for all q, whereas τ0 in Eq. (29) is put equal to 1.0 fm.
Temperatures Tq for different values of q displayed on (b) and (e) are determined by solving Eq. (16a), whereas the entropy densities sq

displayed on (c) and (f) are obtained from Eq. (16c) using the values of Tq displayed in (b) and (e).
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FIG. 4. Profiles of energy density εq [(a) and (b)], entropy density sq [(c) and (d)], and temperature Tq [(e) and (f)] as functions of η

calculated for different proper times τ and different nonextensivity parameters q by using type (ii) initial conditions. We obtained similar
profiles for the type (i) initial condition case.

in which they are expressed as an integral of the phase-space
particle density over a freeze-out surface �f [47],

E
d3N

dp3
= d3N

mT dmT dydφ

= g

(2π )3

∫
�f

dσµ(x)pµfeq(x, p). (33)

FIG. 5. Evolution of fluid rapidity αq (presented as αq − η) as
a function of the energy density εq for different values of τ and for
different q with (a) fixed ε(in) = 28.7 GeV/fm3 and (b) fixed σ = 1.25
initial conditions.

In the τ − η metric, the surface element of �f is given by

dσµ = (dστ , dση) = AT τdη

(
1,−nη

nτ

)
, (34)

where nµ is the normal covariant vector of the isothermals,

nµ = (nτ , nη) =
(

−∂T

∂τ
,−∂T

∂η

)
, (35)

and AT is the transverse area of the generated fluid. In all
examples of applications to Au+Au collisions discussed in this
paper, we use AT = 6.5 fm. The momentum of the produced
particle in the τ − η metric is given by

pµ =
[
mT cosh(y − η),

1

τ
mT sinh(y − η)

]
, (36)

where y is the observed rapidity (after freeze-out). Using these
expressions, the single-particle density is given by

E
d3N

dp3
= d3N

mT dmT dy
= gA2

T

4π

∫
dητf(η)

[
mT cosh(y − η)

− 1

τ

nη(η)

nτ (η)
mT sinh(y − η)

]
fq(y, η), (37)
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FIG. 6. Examples of freeze-out surfaces of constant temperature
TF = 100 MeV calculated for different values of parameter q and for
different initial conditions: (a) with constant σ = 1.25 and (b) with
constant energy density εF = 9.82 × 10−3 GeV/fm3.

where

fq(y, η) =
[

1 − (1 − q)
mT cosh(y − η)

TF

] 1
1−q

, (38)

and TF is the freeze-out temperature, which is given by the
corresponding freeze-out energy density εF . In principle, the
freeze-out surface can be defined either as the surface of
constant temperature TF , as the surface of constant energy
density εF , or, finally, as the surface of constant entropy density
sF (cf. Table III). They all coincide in the usual extensive case
(q = 1). In Fig. 6 we show as an example freeze-out surfaces
(calculated for different values of parameter q and for different
initial conditions) for TF = 100 MeV. One observes quite a
strong q dependence of the freeze-out surface characteristics
on these parameters. These dependencies are much weaker
when calculated for the surface of constant energy density
and even weaker for constant entropy density (not shown here
explicitly). Note that values of TF corresponding to freeze-out
conditions set by fixing εF or sF now depend on the parameter
q (see Table III).

In Fig. 7 we show examples of single-particle rapidity and
transverse momentum spectra calculated for both types of

TABLE III. Values of the freeze-out temperatures TF (in MeV)
for the different freeze-out (F.O.) conditions used and different
values of q investigated.

q 1.00 1.05 1.10 1.15

F.O. = TF fixing 100 100 100 100
F.O. = εF fixing 100 91.8 83.2 74.3
F.O. = sF fixing 100 89.3 78.5 67.4

initial conditions using TF = 100 MeV. Note that different
types of the freeze-out surface used are connected with
using different sets of parameter (q, TF ), cf. Table III). Both
distributions are sensitive to q; however, in the case of dN/dy,

this dependence is almost entirely due to the q dependence of
the initial entropy density in the central region observed in
Figs. 3(c) and 3(f) and practically vanishes in the case
of normalized distributions calculated for the constant εF

freeze-out surface, as seen in Figs. 8(a) and 8(b). This is
because of the observed q dependence of the corresponding
total multiplicities and is connected with the increase of the
entropy observed in nonextensive processes, see Fig. 8(c).
We shall discuss this point in more detail in Sec. V. The
weak residual q dependence observed in this case can be
attributed to the (apparently very weak) effects of the EOS
and freeze-out surface. As for the pT spectra shown there
for different initial conditions and freeze-out surfaces, one
observes a very strong dependence on q, which changes the
slope of pT considerably. It is interesting to note that, as seen in
Fig. 7, the pT distributions apparently are sensitive to neither
to the type of initial conditions nor the freeze-out surfaces
used.

In the pT distributions, the slope depends on both q and
TF , and increasing TF while keeping constant q gives a similar
effect as increasing q at fixed TF . On the whole, one observes
the tendency that transverse expansion as measured by these
distributions gets stronger with increasing nonextensivity, i.e.,
with increasing q.

FIG. 7. dN/dy and pT spectra obtained from the q hydrodynamic evolution with constant TF =100 MeV and for different values of
parameter q and for both types of initial conditions. Rapidity spectra are obtained by integrating Eq. (37) over pT ∈ (0, 6.0) GeV/c, whereas
pT spectra are obtained by integrating Eq. (37) over |y| � 0.5.
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FIG. 8. Normalized rapidity distributions 1/N dN/dy (defined as in Fig. 7) calculated for constant energy density freeze-out surface
εF = 9.82 × 10−3 GeV/fm3 for different values of q using initial conditions with (a) fixed σ = 1.25 and (b) fixed ε(in) = 28.7 GeV/fm3. Notice
that there is only very weak q dependence confined to small and large regions of rapidity y. (c) q dependence of the total multiplicity Ntot

obtained from the q hydrodynamic evolution with fixed ε(in) = 28.7 GeV/fm3 initial condition and εF = 9.82 × 10−3 GeV/fm3 freeze-out
condition. The total multiplicity Ntot increases linearly with q.

IV. COMPARISON WITH EXPERIMENTAL DATA

We shall now confront our approach with experimental
data. Because of the still explanatory character of our work,
we limit ourselves to a comparison with only some selected
rapidity and pT distributions. At this stage, no attempts for
exact fits have been made. They must wait for a more detailed
version, which, for example, would account for the possible
changes of the nonextensivity parameter q during the collision
process as mentioned in Sec. I. The same remarks apply
to the potentially promising analysis of anisotropic flow or
particle interferometry (for example, in the way it was done in
Refs. [33–35]), which we postpone until the (1 + 2) dimen-
sional version of our approach accounting for expansion
in transverse directions is available). Because, as shown in
Sec. III E, the most sensitive for q dependence are pT distri-
butions, we start with them and show in Fig. 9 that data from
Ref. [48] prefer q = 1.08 and TF = 100 MeV. (We attribute the
visible discrepancy at largest values of pT to the contamination

FIG. 9. Comparison of q hydrodynamic model results with ex-
perimental data observed by the STAR Collaboration [48] performed
using σ = 1.30 and TF = 100 MeV for q = 1.08, 1.09, and 1.1 (with
corresponding values of ε(in) = 21.2, 205, and 19.7 GeV/fm3). The
best agreement is obtained for q = 1.08.

from quark jets which carry large momentum in the initial
stage of nuclear collisions and which are not accounted for
in q hydrodynamic model.) With these values of q and TF ,

the data provided by Ref. [49] for dN/dy distributions and by
Ref. [48] for pT were compared with predictions of different
initial conditions characterized by ε(in), see Fig. 10. As one can
see, the q hydrodynamic model with the q-Gaussian initial
condition can reproduce reasonably well both the rapidity
and transverse momentum distribution data simultaneously. It
should be stressed at this point that with the parameter q > 1,
which according to the general philosophy of the nonextensive
approach accounts for all possible intrinsic fluctuations in
the system [2,6,9], our model also accounts for the possible
presence of resonances [12,15] which therefore, to avoid
double counting, should not be added independently. It must
be noticed that in the present version we do not, in fact, account
for the possible creation of a QGP phase. For this, one should
use a more elaborate version of EOS than discussed here in
Sec. III B. Nevertheless, one can say that a simple q hy-
drodynamic model reproduces experimental data reasonably
well using ε(in) = 19.0–22.3 GeV/fm3 (σ = 1.28–1.32), TF =
100–120 MeV, and q = 1.07–1.08.

V. DISCUSSION: CAN PERFECT q HYDRODYNAMICS
MIMIC d HYDRODYNAMICS?

A. Nonextensive/dissipative correspondence: Formulation

Our starting point is the observation made at the end of
Sec. III D that a q fluid evolves more slowly than an ideal
fluid. To this, one can add the observation from Sec. III E that
transverse expansion measured by the behavior of pT spectra
is much stronger in a q fluid. Those are precisely the features
observed in viscous fluids (cf., for example, Ref. [35]). Let us
then treat these observation seriously and look more closely
for the possible connections between q fluid and viscous fluid
apparently emerging from our q hydrodynamic model.

044903-10



NONEXTENSIVE HYDRODYNAMICS FOR RELATIVISTIC . . . PHYSICAL REVIEW C 77, 044903 (2008)

FIG. 10. Comparison of the q hydrodynamic model results with
experimental data on rapidity [49] and pT [48] distributions calculated
for q = 1.084 (fixed) and TF = 100 MeV, as in Fig. 9, but for different
(Gaussian) initial conditions parametrized by ε(in).

Let us start with recalling the possible physical meaning
of perfect q hydrodynamics. It originated from the modified
Boltzmann kinetic equation (3a) in which a new, q-generalized
version of the Boltzmann molecular chaos hypothesis [6–9,
17,37] is used in the form of Eq. (4). It can be introduced
in different ways,10 but effectively it always amounts to
postulating a new kind of equilibrium, which includes some
interactions and in which some stationary state is formed [8]
summarily characterized by parameter q. In our case, it leads to
Eq. (20), which is formally identical to a perfect hydrodynamic
equation but with all the usual ingredients replaced by their
q counterparts [“perfect” means here that there is nothing
on the right-hand side of Eq. (20)]. It is natural to ask how
Eq. (20) would look when written in terms of the usual perfect
hydrodynamic (with q = 1) and some reminder depending on
the parameter q. As we have seen, in general, q differs only
slightly from unity, q − 1 � 1; therefore, it is tempting to
simply expand Eq. (20) in the small parameter |q − 1| [11,50].
However, as shown in Appendix C, in such case one faces some
unsurmountable problems, because terms multiplying |q − 1|
are not small enough in the whole of phase space. We shall
therefore follow a more general approach.

All our results presented above come from the Eq. (20),
which is the equation for perfect q hydrodynamics. Notice that
nonextensivity affects not only the thermodynamical quantities
such as energy density ε and pressure P but also the flow

10For example, in Ref. [9] it was a random distortions of energy and
momentum conservation caused by the surrounding system which
resulted in emergence of some nonextensive equilibrium. In Refs. [6,
7] the two-body energy composition is replaced by generalized energy
sum h(E1, E2) (assumed to be associative) which is not necessarily
the simple addition and which contains contributions stemming from
the pair interaction. It turns out that under quite general assumptions
about the function h, the division of the total energy among free
particles can be done. Different forms of function h lead to different
forms of entropy formula, among which one encounters the known
Tsallis form as well. The origin of this kind of thinking can be traced
to the analysis of the q-Hagedorn model in Ref. [50].

velocity field uµ(x), that is,

ε(T ) → εq(Tq) ≡ ε(Tq) + 	εq(Tq),

P (T ) → Pq(Tq) ≡ P (Tq) + 	Pq(Tq),

uµ(x) → uµ
q (x) ≡ uµ(x) + δuµ

q (x),

where uµ(x) is formally a solution of the equation which has
the form of the dissipative hydrodynamic equation [23–32][

ε̃uµuν − P̃	µν + 2W (µuν) + πµν
]

;µ = 0. (39)

The notation used is

ε̃ = εq + 3�, P̃ = Pq + �, (40a)

Wµ = wq[1 + γ ]	µ
λ δuλ

q, (40b)

πµν = WµWν

wq[1 + γ ]2
+ �	µν

= wqδu
〈µ
q δuν〉

q , (40c)

where ε̃ is energy density, P̃ pressure, Wµ energy or heat flow
vector, and πµν the (symmetric and traceless) shear pressure
tensor, and where

wq ≡ εq + Pq, (41)

γ ≡ uµδuµ
q = − 1

2δuqµδu
µ
q , (42)

and

A(µBν) ≡ 1
2 (AµBν + AνBµ),

a〈µbν〉 ≡ [
1
2

(
	

µ
λ 	ν

σ + 	µ
σ 	ν

λ

) − 1
3	µν	λσ

]
aλbσ ,

whereas

� ≡ 1
3wq

[
γ 2 + 2γ

]
. (43)

This last quantity can be regarded as a bulk pressure to be used
below.

Now comes the crucial point of our argument. To proceed
further, we shall assume that there exists some temperature T

and velocity field δu
µ
q satisfying the following relations:

P (T ) = Pq(Tq), (44a)

ε(T ) = εq(Tq) + 3� (44b)

(ε and P are energy density and pressure defined in the usual
Boltzmann-Gibbs statistics, i.e., for q = 1). In this case, one
can transform Eq. (39) into

[ε(T )uµuν − (P (T ) + �)	µν + 2W (µuν) + πµν];µ = 0,

(45)

which has the familiar form of the usual d hydrodynamic equa-
tion. This means that perfect q hydrodynamics represented by
Eq. (20) can be regarded as being formally equivalent to some
form of d hydrodynamics as represented by Eq. (45). We
shall call this observation the NexDC correspondence [and,
respectively, we shall call Eq. (44) with Eq. (40b) and (40c)
the NexDC relations]. This observation can be traced back
to the fact of generic nonconservation of global entropy in
nonextensive systems, cf. Eq. (21), visualized in Fig. 8 as an
increase of the multiplicity with increasing q.
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B. Nonextensive/dissipative correspondence: Consequences

We shall now present shortly the most specific imme-
diate consequences of NexDC correspondence: the entropy
production and estimations of the corresponding transport
coefficients.

1. Entropy production in q hydrodynamics

Let us start with the observation that Eq. (43) and NexDC
relations (44) lead following the form of q enthalpy,

εq(Tq) + Pq(Tq) = ε(T ) + P (T )

[1 + γ ]2
, (46)

which can be also used in the definition of γ because w ≡
T s = ε + P and 1/(γ + 1) = √

1 − 3�/w (s is the entropy
density in the usual Boltzmann-Gibbs statistics). Notice that
in NexDC, one has

WµWµ = −3�w, (47a)

πµνWν = −2�Wµ, (47b)

πµνπ
µν = 6�2. (47c)

Suppose now that we define a true equilibrium state as a state
with q = 1, i.e., with no residual correlations between fluid
elements and no intrinsic fluctuations present, with energy
momentum tensor

T µν
eq ≡ T µν = ε(T )uµuν − P (T )	µν, (48)

and with equilibrium distribution given by the usual Boltzmann
distribution,

feq(x, p) = exp

[
−pµuµ(x)

kBT (x)

]
. (49)

In this case, the state characterized by fq(x, p) given by
Eq. (14) must be regarded as some stationary state existing
near equilibrium. Therefore, because we expect that |q − 1| is
small, we can define a near equilibrium state by the correlation
function hq in Eq. (4) for which the energy momentum tensor
is T µν

q ≡ (εq + Pq)uµ
q uν

q − Pqg
µν ; cf., Eq. (15). Therefore, we

can write

T µν
q = T µν

eq + δT µν, (50)

where

δT µν = −�	µν + Wµuν + Wνuµ + πµν. (51)

Using now Eq. (44), we obtain the relation

γ = √
1 + δεq − 1, (52a)

where

δεq ≡ ε(T ) − εq(Tq)

εq(Tq) + Pq(Tq)
, (52b)

which connects the velocity field u [solution of the dissipative
hydrodynamics given by Eq. (45)] with the velocity field uq

[solution of the q hydrodynamics given by Eq. (20)].
In the (1 + 1) dimensional case discussed here, one can

always parametrize these velocity fields by using the respective
fluid rapidities αq and α, u

µ
q (x) = [cosh(αq − η), 1

τ
sinh(αq −

η)] and uµ(x) = [cosh(α − η), 1
τ

sinh(α − η)]. Because γ =
uµδu

µ
q = cosh(αq − α) − 1, one has

cosh(αq − α) = √
1 + δεq, (53)

which provides us with a connection between u and uq . From
Eq. (53), one obtains finally

α = αq − log
(
εq + √

1 + δεq

)
. (54)

We abandon here another solution of Eq. (53), namely, that
α = αq + log(εq + √

1 + δεq), because it leads to the entropy
reduction; i.e., for it, [suµ];µ < 0 for q > 1. Taking the
covariant derivative of Eq. (50) and multiplying it by uν we
obtain

uνT µν
q;µ = T [suµ];µ + uνδT µν

;µ = 0. (55)

Therefore, although in ideal q hydrodynamics the q entropy
is conserved, i.e., [squ

µ
q ];µ = 0, we can rewrite it in the form

corresponding to dissipative fluid with entropy production, i.e.,

[suµ];µ = −uν

T
δT µν

;µ . (56)

To illustrate this, we show in Fig. 11 the expected entropy
production as given by Eq. (56). Notice that su

µ
;µ > 0 for the

large η region at any τ (but especially for the early stage of the
hydrodynamic evolution). It supports therefore a dissipative

FIG. 11. Evolution of the entropy production [suµ];µ and ratio [suµ];µ/s as functions of η for different values of τ for q = 1.08 with
ε(in) = 22.3 GeV/fm3 (or σ = 1.28). The error bar is estimated by the value of [squ

µ
q ]µ obtained in the numerical calculation, which should be

zero in an analytical calculation.
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analogy of the q hydrodynamics mentioned before and leads
us to the very interesting conclusion that the equilibrium state
generated in high-energy heavy-ion collisions may in fact
be the q equilibrium state which can be regarded as some
stationary state near the usual (i.e., q = 1) equilibrium state
and which contains also some dissipative phenomena.

2. Calculation of transport coefficients from q hydrodynamics

There are different formulations of d hydrodynamics [23–
32]. In what follows, we shall choose for comparison only the
second-order theory of dissipative fluids (in particular as given
by Refs. [24,25]) leaving investigations of other approaches
from nonextensive perspectives for the future. As is known,
this theory does not violate causality (at least not the global
causality over the distant scale given by the relaxation time);
on the other hand, it contains now some dissipative fluxes
such as heat conductivity and bulk and shear viscosities. We
shall now see to what extent these transport coefficients can
be calculated in q hydrodynamics.

To this end, let us start by considering more closely
the respective entropies. Dissipation is connected with the
production of entropy, and in Refs. [24,25] the most general
off-equilibrium four-entropy current σµ can be written as

σµ = P (T )βµ + βν

(
T µν

eq + δT µν
) + Qµ, (57)

where βµ ≡ uµ/T and Qµ = Qµ(δT µν) is some function
that characterizes the off-equilibrium state. In the case of
the q entropy current of Eq. (5), the NexDC conjecture [i.e.,
Eqs. (40b) and (46)] leads to the following off-equilibrium
state:

Qµ = Qµ
χ ≡ χ

[
suµ + Wµ

T

]
, (58)

with χ ≡ T
Tq

√
1 − 3�

w
− 1, which results in

σµ
q

(≡sµ
q

) = suµ + Wµ

T
+ χ

{
suµ + Wµ

T

}
. (59)

Notice that because of the strict q entropy conservation
assumed here, using Qµ = Qµ

χ one always gets σ
µ
q;µ = 0. This

means that although there is no production of q entropy, there
is production of the usual entropy; i.e., our q system is really
dissipative in the usual meaning of this word.

Let us now be more specific and use the most general
algebraic form of Qµ, calculated up to the second order in
the dissipative flux, as given by [25]

Q
µ

2nd =
[−β0�

2 + β1WνW
ν − β2πνλπ

νλ
]

2T
uµ

− α0�Wµ

T
+ α1π

µνWν

T
. (60)

Here βi=1,2,3 are the corresponding thermodynamic coeffi-
cients for the, respectively, scalar, vector, and tensor dissipative
contributions to the entropy current, whereas αi=0,1 are the
corresponding viscous/heat coupling coefficients. The � is

the bulk pressure defined before in Eq. (43).11 In the NexDC,
one has

Q
µ

2nd → �2ndsu
µ + ϒ1st

Wµ

T
, (61)

where

�2nd ≡ −3β1

2
� − (β0 + 6β2)

2w
�2, (62a)

ϒ1st ≡ −(α0 + 2α1)�. (62b)

Qµ can then be expressed by polynomials in the bulk pressure
� defined by Eq. (43). It is then natural to expect that the most
general entropy current in the NexDC approach has the form

Q
µ

full = �(�)suµ + ϒ(�)
Wµ

T
, (63)

where �,ϒ are (in general infinite) series in powers of the
bulk pressure �. In this sense, the Q

µ

full can be regarded as the
full-order dissipative current.

In general, one has entropy production/reduction, σ
µ
;µ 	= 0;

however, when �(�) = ϒ(�) = χ, one has σ
µ
χ ;µ = 0, so one

can write the full-order dissipative entropy current as

Q
µ

full = (χ + ξ )suµ + (χ − ξ )
Wµ

T
, (64)

where � and ϒ are determined by χ ≡ (� + ϒ)/2 and ξ ≡
(�-ϒ)/2. From two solutions for (�,ϒ),

�

2
≡ T

Tq

(√
1 − 3�

w
− 1

)
,

ϒ

2
≡ T − Tq

Tq

, (65a)

or

�

2
≡ T − Tq

Tq

,
ϒ

2
≡ T

Tq

(√
1 − 3�

w
− 1

)
, (65b)

only Eq. (65a) is acceptable because only for it uµQ
µ

full � 0
[i.e., entropy is maximal in the equilibrium [25], because (T −
Tq)/Tq is always positive for q � 1]. In this way, we finally
arrive at the following possible expression for the full-order
dissipative entropy current in the NexDC approach:

σ
µ

full ≡ suµ + Wµ

T
− 2T

Tq

[
1 −

√
1 − 3�

w

]
suµ

+ 2(T − Tq)

Tq

Wµ

T
. (66)

Limiting ourselves to situations when T/Tq ≈ 1 and neglect-
ing terms higher than O(3�/w)2, we obtain

Q
µ

full ≈
[
−

(
3�

w

)
− 1

4

(
3�

w

)2
]

suµ. (67)

11Notice that whereas the time evolution of � is controlled by q

hydrodynamics (via the respective time dependencies of εq, Pq, and
x), its form is determined by the assumed constraints which must
ensure that the local entropy production in the standard second-order
hydrodynamic theory [24,25] is never negative.
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Comparing now Eqs. (62) and (67), one gets12

β1 = 2

w
, β0 + 6β2 = 9

2w
, α0 + 2α1 = 0. (68)

Since in the Israel-Stewart theory [24] the relaxation time
τ is proportional to thermodynamic coefficients β0,1,2, it is
natural to assume that in our NexDC case, τ ∝ 1/w; i.e., it
is proportional to the inverse of the enthalpy (notice that for
the classical Boltzmann gas of massless particles, one obtains
β2 = 3/w [25,32]).

We shall now derive the bulk and shear viscosities emerging
from the NexDC approach. Let us start with the observation
that the local entropy production by the full-order entropy
current Eq. (66) can be also written as

σ
µ

full;µ = [(1 + χ )�µ];µ + [ξ�µ];µ, (69)

where �µ = suµ + Wµ

T
and �µ = suµ − Wµ

T
. Because the

conservation of q entropy, σ
µ
q;µ = 0, is equivalent to [(1 +

χ )�µ];µ = 0, using Eq. (46) one gets

�µ = −WνWν

3�T
uµ + Wν

2�T
πµν, (70)

and [see Appendix D for details of derivation of Eqs. (71) and
(73)]

σ
µ

full;µ = −�

T
(wuµXµ) − Wµ

T
Ỹµ + πµν

T
Zµν, (71)

where

Xµ = − ξ

�

[
∂µ�

�
+ ∂µT

T
+ ∂µξ

ξ

]
, (72a)

Yµ = ξ

�

[
2

3
uνWµ;ν + 1

3
Wµuν

;ν − 1

2
πν

µ;ν

]
, (72b)

Zµν = ξ

�

[
1

2
Wν;µ

]
, (72c)

and

Ỹµ = Yµ − �Xµ, Z̃µν ≡ Zµν + ỸµWν

2�
. (72d)

One can now use Eq. (47) to eliminate the term proportional to
heat flow Wµ

T
. In this way, one avoids the explicit contribution

to entropy production from the heat flow Wµ

T
, which is present

in Eq. (71) when one discusses a baryon-free fluid, in which
case the necessity to use the Landau frame would appear. As
one can see, Eq. (69) is covariant and therefore it does not
depend on the frame used. After that, one obtains

σ
µ

full;µ = −�

T
(wuµXµ) + πµν

T
Z̃µν. (73)

12The fact that we obtained nonzero coefficients βi=1,2,3 and cou-
plings αi=0,1 for dissipative flux of Eq. (60) as found in Eq. (68) means
that d hydrodynamics obtained via NexDC from q hydrodynamics
accounts for all second-order terms. One may conclude that it seems
that such d hydrodynamics with full-order entropy current has global
causality (over a distance scale given by relaxation time). However,
the question of whether NexDC violates causality remains so far
unsettled.

Equation (73) can be now used to find the bulk and shear
viscosities from σ

µ

full;µ given by Eq. (69). The positive transport
coefficients, bulk viscosity ζ, and shear viscosity η can be
estimated by writing the entropy production σ

µ

full;µ as

σ
µ

full;µ = �2

ζT
+ πµνπµν

2ηT
� 0 (74)

and using Eq. (47). We arrive then at the sum rule connecting
transport coefficients (expressed as ratios of bulk and shear
viscosities over the entropy density s),

1

ζ/s
+ 3

η/s
= wσ

µ

full;µ

�2
. (75)

This is as far as we can go. The heat conductivity, as shown
above, can be expressed by two other transport coefficients for
which we have only one equation in the form of sum rule (75).
To proceed any further and to disentangle Eq. (75), one has to
add some additional input. Suppose then that we are interested
in the extremal situation, when total entropy is generated by
action of shear viscosity only. In this case, one can rewrite
Eq. (73) as

σ
µ

full;µ = πµν

T

[
−πµν

6�
(wuλXλ) + Z̃µν

]
, (76)

resulting in

η

s
= γ (γ + 2)

3(γ + 1)2

[
πµν

�

Z̃µν

T
− suλXλ

]−1

. (77)

Note that Eq. (77) allows all values of η/s, in particular that
η/s < 1

4π
, what violates the limit obtained from AdS/CFT

correspondence that η/s � 1/4π [36]. To impose this limit,
we shall now use Eq. (75). This can be done only in the
region where the right-hand side of Eq. (77) is smaller than (or
equal to) 1/4π (in which case, we put η/s = 1/4π ); otherwise,
because of our earlier assumed limitation, we put ζ/s = 0 and
use Eq. (77) to evaluate η/s. The corresponding results for
ζ/s and η/s are shown in Figs.12(a) and 12(b), respectively.
Notice that when the right-hand side of Eq. (77) approaches
1/4π , the ζ/s given by Eq. (75) approaches infinity. All curves
presented in Fig. 12 were calculated for Au+Au collisions

FIG. 12. NexDC predictions for the ratios of (a) bulk and (b) shear
viscosities over the entropy density, i.e., ζ/s and η/s, respectively, as
functions of temperature T and calculated for a number of space-time
rapidities y [as in Eq. (24b) using the q hydrodynamic model].
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with an identical set of parameters as the best fit presented in
Fig. 10 above.

VI. SUMMARY AND CONCLUSIONS

We have presented a nonextensive version of the hydro-
dynamic model for multiparticle production processes, the
q hydrodynamic model, which is based on the nonextensive
statistics represented by Tsallis entropy and indexed by the
nonextensivity parameter q. In doing so, we have followed
the usual approach originating in the appropriate kinetic
equations formulated in nonextensive form in Ref. [17]. We
have found the nonextensive entropy current which satisfies
not only the nonextensive H theorem, Eq. (5), but also
the q version of thermodynamic relations, Eq. (17). The
(1 + 1) dimensional q hydrodynamics with the q-Gaussian
initial condition and the q-EOS can reasonably reproduce
the single-particle spectra observed at RHIC energy for q =
1.07–1.08 for TF = 100–120 MeV if quark jet contributions
to pT spectra are small, i.e., up to a transverse momentum
range around pT � 6.0 GeV/c. We also found a possible
correspondence between the q hydrodynamics and the usual
(q = 1) d hydrodynamics (NexDC) as provided by Eq. (45)
with NexDC relations Eq. (44). Based on this correspondence,
we have evaluated entropy production in relativistic heavy-ion
collisions at RHIC energy using the results of our perfect
q hydrodynamics (understood as an approach without any q

viscosity effects added). The fact that the data comparison
reveals that q > 1 indicates that, indeed, some dynamic factors
are present, the detailed form of which has not yet been
disclosed but which summarily can be accounted for by the
nonextensive approach and which action is summarized by the
parameter q − 1.

Regarding the obtained pT dependence, our formula con-
tinues the attempts that have been made to interpret power-law
spectra as a new kind of equilibrium phenomena for the
whole pT range, pushing the usual interpretation via the
onset of “hard” collisions (imposed on the “soft” ones) to
really high values of pT (cf., Refs. [8,11,15] and references
therein). In such an approach, there is no characteristic scale
at which the transition from soft (or locally thermalized) to
hard (or unthermalized) dynamics occurs, which appears in
the conventional descriptions using viscous hydrodynamics
as, for example, in Refs. [34,51].

One of the results of our investigation is that fluctuations
in the initial conditions seem to be the most important part of
the hydrodynamic model, which by using Tsallis statistics,
attempts to account for any possible fluctuations in some
general, model-independent way. This is quite a reasonable
result because at the initial stage, our system consists of
a relatively small number of degrees of freedom and is
therefore more sensitive to any fluctuations. On the contrary,
at freez-eout this number is much bigger, and the system only
weakly responds to any fluctuations. This finding agrees nicely
with a recent analysis [52] of the elliptical flow performed
by using a hydrodynamic approach that attempts to account
for fluctuations (without, however, using q statistics). On
the other hand, however, it should be remembered that the

analysis presented here is considerably simplified by using
the same nonextensivity parameter q at all stages of the
collision process. There is therefore room for improvements
which will facilitate comparison with data. One can argue
that the intrinsic fluctuations existing in different stages of the
collision process are of different (albeit connected) dynamical
origin, and therefore parameters q for the initial conditions,
for the EOS, and, finally, for the hydrodynamic expansion
should be allowed to have different values (and should be
also different for the longitudinal and transverse dynamics).
The other problem would be how to connect our q parameter
expressing fluctuations with fluctuations in all momentum
observables as seen when analyzing a nonideal liquid as was
done, for example, in Ref. [53]. We plan to address these
problems elsewhere. In any case, similar to the fact that
the concept of ideal fluid is never realized in nature [35]
(the bound of η/s � 1/4π found in Ref. [36] being a strong
argument supporting this), the q = 1 case should be replaced
by investigations of the q fluid with q > 1.

In this context, the natural question arises concerning the
deeper physical meaning of the q hydrodynamic proposed
here. The most important observation discussed in Sec. V
is the apparent correspondence found between the perfect q

hydrodynamics and the usual d hydrodynamics, which we call
the NexDC correspondence. It allows calculation of transport
coefficients of viscous fluid in terms of parameters of q (ideal)
fluid, i.e., essentially as dependent on a single parameter which,
as it was already stressed many times, represents summary
effect of many possible dynamical factors, without entering
into dynamical details (i.e., in a purely phenomenological
way). The detailed discussion of the NexDC phenomenon is,
however, outside the scope of the present paper, and we plan
to address is elsewhere.

We close by remarking that hydrodynamics can also
be derived using information theory with its method of
maximization of information entropy under some specific
constraints [54]. It is therefore plausible that our results could
also be derived using a nonextensive version of information
theory (in the same way as the work in Refs. [13,55] can be
regarded as a nonextensive generalization of the information
theory approach to single-particle distributions obtained in the
multiparticle production processes proposed in Ref. [56]). We
shall not pursue this possibility here.
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APPENDIX A: DERIVATION OF EQUATIONS (26) AND (27)

Consider some details of the (1 + 1) dimensional relativis-
tic hydrodynamics under the assumption that one ignores the
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transverse expansion of the fluid. With gµν = diag(1,−τ 2) and four fluid velocity uµ = [cosh(αq − η),−τ sinh(αq − η)], the
projection matrix is equal to

	qµν ≡ gµν − uqµuqν =
[− sinh2(αq − η) τ cosh(αq − η) sinh(αq − η)

τ cosh(αq − η) sinh(αq − η) −τ 2 cosh2(αq − η)

]
. (A1)

The nonvanishing components of Christoffel symbols are
�η

τη = �η
ητ = 1/τ and �τ

ηη = τ ; therefore, the covariant
derivative of fluid velocity, which is defined by u

µ
;ν = ∂νuµ +

�
µ
λνu

λ, has the form

uτ
q;τ = sinh(αq − η)

∂αq

∂τ
, uη

q;τ = 1

τ
cosh(αq − η)

∂αq

∂τ
,

uτ
q;η = sinh(αq − η)

∂αq

∂η
, uη

q;η = 1

τ
cosh(αq − η)

∂αq

∂η
.

Using these expressions, one obtains

uµ
q 	qτνu

ν
q;µ = cosh(αq − η) sinh(αq − η)

∂αq

∂τ

+ 1

τ
sinh2(αq − η)

∂αq

∂η
,

uµ
q 	qηνu

ν
q;µ = −τ cosh2(αq − η)

∂αq

∂τ

− cosh(αq − η) sinh(αq − η)
∂αq

∂η
.

Because g
µν
;ν = 0 for µ, ν = τ and η, Eq. (23) is reduced to

the following two equations:

(εq + Pq)
{
uµ

q 	qτνu
ν
q;µ

}
−	qττ

∂Pq

∂τ
+ 1

τ 2
	qτη

∂Pq

∂η
= 0, (A2)

(εq + Pq)
{
uµ

q 	qηνu
ν
q;µ

}
−	qητ

∂Pq

∂τ
+ 1

τ 2
	qηη

∂Pq

∂η
= 0. (A3)

Equations (A2) and (A3) are equivalent; therefore, one has
only one equation,

(εq + Pq)

{
∂αq

∂τ
+ tanh(αq − η)

τ

∂αq

∂η

}

+ tanh(αq − η)
∂Pq

∂τ
+ 1

τ

∂Pq

∂η
= 0, (A4)

which is Eq. (27). Since the four-divergence of the fluid
velocity u

µ
q;µ is given by

uµ
q;µ = sinh(αq − η)

∂αq

∂τ
+ 1

τ
cosh(αq − η)

∂αa

∂η
,

the Eq. (23) can be written as

cosh(α − η)
∂εq

∂τ
+ sinh(αq − η)

τ

∂εq

∂η

+ (εq + Pq)

{
sinh(αq − η)

∂αq

∂τ

+ 1

τ
cosh(αq − η)

∂αa

∂η

}
= 0,

leading immediately to

∂εq

∂τ
+ tanh(αq − η)

τ

∂εq

∂η

+ (εq + Pq)

{
tanh(αq − η)

∂αq

∂τ
+ 1

τ

∂αa

∂η

}
= 0,

(A5)

which is Eq. (26).

APPENDIX B: NUMERICAL METHOD USED

For the purpose of numerical calculations, we express
Eqs. (26) and (27) in the form of the finite difference equations

A
(n)
1(j )

{
ε

(n+1)
q(j ) − 1

2

[
ε

(n)
q(j+1) + ε

(n)
q(j−1)

]
	τ

}

+A
(n)
2(j )

{
ε

(n)
q(j+1) − ε

(n)
q(j−1)

2	η

}
,

+A
(n)
3(j )

{
α

(n+1)
q(j ) − 1

2

[
α

(n)
q(j+1) + α

(n)
q(j−1)

]
	τ

}

+A
(n)
4(j )

{
α

(n)
q(j+1) − α

(n)
q(j−1)

2	η

}
= 0 (B1)

and

B
(n)
1(j )

{
P

(n+1)
q(j ) − 1

2

[
P

(n)
q(j+1) + P

(n)
q(j−1)

]
	τ

}

+B
(n)
2(j )

{
P

(n)
q(j+1) − P

(n)
q(j−1)

2	η

}
,

+B
(n)
3(j )

{
α

(n+1)
q(j ) − 1

2

[
α

(n)
q(j+1) + α

(n)
q(j−1)

]
	τ

}

+B
(n)
4(j )

{
α

(n)
q(j+1) − α

(n)
q(j−1)

2	η

}
= 0. (B2)
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The subscript (j ) and superscript (n) represent the correspond-
ing grid number in the η and τ space with grid spacings 	η

and 	τ , respectively, i.e., with ηj = j	η and τn = τ0 + n	τ .

The coefficients appearing in the above equations are defined
as

A
(n)
1(j ) ≡ 1, B

(n)
1(j ) ≡ v

(n)
q(j ),

A
(n)
2(j ) ≡ [

v
(n)
q(j )

]/
τn, B

(n)
2(j ) ≡ 1/τn,

A
(n)
3(j ) ≡ (

ε
(n)
q(j ) + P

(n)
q(j )

)[
v

(n)
q(j )

]
, B

(n)
3(j ) ≡ (

ε
(n)
q(j ) + P

(n)
q(j )

)
,

A
(n)
4(j ) ≡ (

ε
(n)
q(j ) + P

(n)
q(j )

)/
τn, B

(n)
4(j ) ≡ (

ε
(n)
q(j ) + P

(n)
q(j )

)[
v

(n)
q(j )

]/
τn.

(B3)

Introducing now the notation

c
2(n)
s(j ) ≡ P

(n)
q(j )

ε
(n)
q(j )

, (B4)

where c
2(n)
s(j ) is a function of ε

(n)
q(j ) [due to the equation of state

Pq(εq)], one can rewrite these two equations in the form

[
A

(n)
1(j )

]
ε

(n+1)
q(j ) + [

A
(n)
3(j )

]
α

(n+1)
q(j ) − 1

2

[
A

(n)
1(j ) − A

(n)
2(j )

	τ

	η

]
ε

(n)
q(j+1)

− 1

2

[
A

(n)
1(j ) + A

(n)
2(j )

	τ

	η

]
ε

(n)
q(j−1)

− 1

2

[
A

(n)
3(j ) − A

(n)
4(j )

	τ

	η

]
α

(n)
q(j+1)

− 1

2

[
A

(n)
3(j ) + A

(n)
4(j )

	τ

	η

]
α

(n)
q(j−1) = 0, (B5)

and

c
2(n+1)
s(j )

[
B

(n)
1(j )

]
ε

(n+1)
q(j ) + [

B
(n)
3(j )

]
α

(n+1)
q(j )

− c
2(n)
s(j+1)

2

[
B

(n)
1(j ) − B

(n)
2(j )

	τ

	η

]
ε

(n)
q(j+1)

− c
2(n)
s(j−1)

2

[
B

(n)
1(j ) + B

(n)
2(j )

	τ

	η

]
ε

(n)
q(j−1)

− 1

2

[
B

(n)
3(j ) − B

(n)
4(j )

	τ

	η

]
α

(n)
q(j+1)

− 1

2

[
B

(n)
3(j ) + B

(n)
4(j )

	τ

	η

]
α

(n)
q(j−1) = 0. (B6)

Eliminating α
(n+1)
q(j ) from the above two equations, one obtains

F
(n)
10(j )ε

(n+1)
q(j ) + F

(n)
1+(j )ε

(n)
q(j+1) + F

(n)
0−(j )ε

(n)
q(j−1) + G

(n)
0+(j )α

(n)
q(j+1)

+G
(n)
0−(j )α

(n)
q(j−1) = 0, (B7)

where

F
(n)
10(j ) ≡ 1 − c

2(n+1)
s(j )

[
v

(n)
q(j )

]2
,

F
(n)
0+(j ) ≡ −1

2

(
1 − c

2(n)
s(j+1)

[
v

(n)
q(j )

]2)

+ 1

2

(
1 − c

2(n)
s(j+1)

) [
v

(n)
q(j )

]
τn

	τ

	η
,

F
(n)
0−(j ) ≡ −1

2

(
1 − c

2(n)
s(j−1)

[
v

(n)
q(j )

]2)

− 1

2

(
1 − c

2(n)
s(j−1)

) [
v

(n)
q(j )

]
τn

	τ

	η
,

G
(n)
0+(j ) ≡ +1

2

(
1 − [

v
(n)
q(j )

]2)(
ε

(n)
q(j ) + P

(n)
q(j )

) 1

τn

	τ

	η
,

G
(n)
0−(j ) ≡ −1

2

(
1 − [

v
(n)
q(j )

]2)(
ε

(n)
q(j ) + P

(n)
q(j )

) 1

τn

	τ

	η
.

One can now find ε
(n+1)
q(j ) by solving the nonlinear Eq. (B7). For

v
(n)
q(j ) = 0 (i.e., for the scaling case where η = α), one obtains

ε
(n+1)
q(j ) − ε

(n)
q(j ) + ε

(n)
q(j ) + P

(n)
q(j )

τn

	τ = 0, (B8)

where relations α
(n)
q(j+1) − α

(n)
q(j−1) = 2	η and 1

2 [ε(n)
q(j+1) +

ε
(n)
q(j−1)] = ε

(n)
q(j ) were used. After finding ε

(n+1)
q(j ) , one can find

α
(n+1)
q(j ) by using the recurrence formula

α
(n+1)
q(j ) = 1

2

[
α

(n)
q(j+1) + α

(n)
q(j−1)

]

− 1

2

[
α

(n)
q(j+1) − α

(n)
q(j−1)

]v
(n)
q(j )

τn

	τ

	η

+ vq(j )

2

[
c

2(n)
s(j+1)

1 + c
2(n)
s(j )

ε
(n)
q(j+1)

ε
(n)
q(j )

+ c
2(n)
s(j−1)

1 + c
2(n)
s(j )

ε
(n)
q(j−1)

ε
(n)
q(j )

− 2
c

2(n+1)
s(j )

1 + c
2(n)
s(j )

ε
(n+1)
q(j )

ε
(n)
q(j )

]

−1

2

[
c

2(n)
s(j+1)

1 + c
2(n)
s(j )

ε
(n)
q(j+1)

ε
(n)
q(j )

− c
2(n)
s(j−1)

1 + c
2(n)
s(j )

ε
(n)
q(j−1)

ε
(n)
q(j )

]
1

τn

	τ

	η
.

(B9)
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APPENDIX C: INADEQUACY OF THE SIMPLE
EXPANSION IN |q − 1|

From previous experience in applying q statistics to
multiparticle production [10–15], we know that |q − 1| <

1. It seems then natural to argue that (see, for example,
Refs. [11,50]) one could simply expand fq(x, p) = [1 − (1 −
q) pµuµ

kBT (x) ]
1/(1−q) from Eq. (14) in z = 1 − q, retaining only

terms linear in z, and obtain

fq(x, p) = f (z) = [1 − zA]
1
z ≡

[
1

z
ln(1 − zA)

]

� f (z = 0) + z
df (z)

dz

∣∣∣
z=0

, (C1)

Here, A = A(x, p) = pµuµ(x)
kBT

and the arguments (x, p) are
suppressed for clarity.

However, such expansion can only be performed under
some conditions, which we shall clarify in what follows. It
is straightforward to show that to get the first step of the
expansion,

f (z) � exp

[
−A

(
1 + A

2
z + · · ·

)]

= exp [−A] exp

[
−A2

2
z − · · ·

]
, (C2)

it is necessary that

zA(x, p) < 1. (C3)

The second step needed is to additionally expand the exponent,
and this requires

zA2(x, p) < 2. (C4)

When this is satisfied, one finally gets fq(x, p) in terms of
fq=1(x, p) only, i.e.,

fq(x, p) � fq=1(x, p) + (1 − q)

[
1 − A2(x, p)

2

]
fq=1(x, p).

(C5)

At first this procedure looks very promising because using
it one gets

T µν
q ≡ T µν

q=1 + (q − 1)τµν
q , (C6)

where Tq=1 is the usual energy-momentum tensor for the
equilibrium of the Boltzmann-Gibbs statistics, i.e., the one
usually used when describing an ideal fluid,

T µν

q=1 ≡ g

(2π )3

∫
d3p

p0
pµpν exp

(
−pu

T

)
, (C7)

whereas the nonextensive correction tensor τ
µν
q is given by

τµν
q ≡ g

(2π )3

∫
d3p

p0
pµpν

× exp
(
−pu

T

) [
−

(pu

T

)
+ 1

2

(pu

T

)2
]

. (C8)

However, in our case, condition (C4) would impose too severe
constraints on the allowed q and the region of phase space,
p and x, considered, thus rendering this approximation rather
unpractical for our purposes.

APPENDIX D: DERIVATION OF EQUATIONS (71)
AND η/s, EQUATION (73).

The entropy production is given by

σ
µ

full;µ = [ξ�µ];µ = ∂µξ

ξ
ξ�µ + ξ�µ

;µ, (D1)

where

�µ = −WνWν

3�T
uµ + Wν

2�T
πµν

= −1

6�T
{2WνWνu

µ − 3Wνπ
µν} . (D2)

Then,

�µ
;µ =

(
∂µ�

�
+ ∂µT

T

)
�µ + −1

6�T
ψµ

;µ, (D3)

where ψµ ≡ 2WνWνu
µ − 3Wνπ

µν . The ψ
µ
;µ is explicitly

written as

ψµ
;µ = {2WνWνu

µ − 3Wνπ
µν};µ

= [
4Wν;µuµ + 2Wνu

µ
;µ − 3πµ

ν;µ

]
Wν + [−3Wν;µ]πµν,

(D4)

and

−1

6�T
ψµ

;µ = −1

�

[
2

3
Wν;µuµ + 1

3
Wνu

µ
;µ − 1

2
πµ

ν;µ

]
Wν

T

+ −1

�

[
−1

2
Wν;µ

]
πµν

T
. (D5)

Hence we obtain that

ξ�µ
;µ = ξ

(
∂µ�

�
+ ∂µT

T

)
�µ

− ξ

�

[
2

3
Wν;µuµ + 1

3
Wνu

µ
;µ − 1

2
πµ

ν;µ

]
Wν

T

− ξ

�

[
−1

2
Wν;µ

]
πµν

T

= ξ

(
∂µ�

�
+ ∂µT

T

)
�µ − Yν

Wν

T
+ Zµν

πµν

T
. (D6)

Finally one arrives at

σ
µ

full;µ = [
ξ�µ

]
;µ

= ξ

�

(
∂µξ

ξ
+ ∂µ�

�
+ ∂µT

T

)
��µ

−Yν

Wν

T
+ Zµν

πµν

T

= −XµT �µ �

T
− Yν

Wν

T
+ Zµν

πµν

T
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= −Xµ(wuµ)
�

T
− Ỹν

Wν

T
+ Zµν

πµν

T
. (D7)

This is Eq. (71). Using now πµνWν = −2�Wµ, one gets

σ
µ

full;µ = −Xµ(wuµ)
�

T
− Ỹν

Wν

T
+ Zµν

πµν

T

= −Xµ(wuµ)
�

T
+

[
ỸνWν

2�T
+ Zµν

]
πµν

T

= −Xµ(wuµ)
�

T
+ Z̃µν

πµν

T
, (D8)

which is Eq. (73).
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