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Partons produced in the early stage of noncentral heavy-ion collisions can develop a longitudinal fluid shear
because of the unequal local number densities of participant target and projectile nucleons. Under such fluid
shear, local parton pairs with nonvanishing impact parameters have finite local relative orbital angular momentum
along the direction opposite to the reaction plane. Such a finite relative orbital angular momentum among locally
interacting quark pairs can lead to global quark polarization along the same direction because of spin-orbital
coupling. Local longitudinal fluid shear is estimated within both the Landau fireball and the Bjorken scaling model
of initial parton production. Quark polarization through quark-quark scatterings with the exchange of a thermal
gluon is calculated beyond the small-angle scattering approximation in a quark-gluon plasma. The polarization
is shown to have a nonmonotonic dependence on the local relative orbital angular momentum dictated by the
interplay between electric and magnetic interactions. It peaks at a value of relative orbital angular momentum
which scales with the magnetic mass of the exchanged gluons. With the estimated small longitudinal fluid shear
in semiperipheral Au+Au collisions at energies currently available at the BNL Relativistic Heavy Ion Collider
(RHIC), the final quark polarization is found to be small |Pq | < 0.04 in the weak coupling limit. Possible behavior
of the quark polarization in the strong coupling limit and implications on the experimental detection of such
global quark polarization at RHIC and CERN Large Hadron Collider (LHC) are also discussed.
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I. INTRODUCTION

Collective phenomena and jet quenching as observed in
high-energy heavy-ion collisions at the BNL Relativistic
Heavy Ion Collider (RHIC) provide strong evidence for the
formation of a strongly coupled quark-gluon plasma [1,2].
Elliptic flow or azimuthal anisotropy of the hadron spectra
in semiperipheral heavy-ion collisions and its agreement with
the ideal hydrodynamic calculations [3] indicate a near perfect
fluid behavior of the produced dense matter. Such an empirical
observation of small shear viscosity [4] is consistent with the
large value of the jet transport parameter as extracted from
the jet quenching study of both single and dihadron spectra
suppression [5]. Study of the collective behavior is made
possible by investigating hadron spectra in the central rapidity
region in noncentral or semiperipheral heavy-ion collisions.
Extending the study to the large rapidity region of noncentral
heavy-ion collisions should provide more information about
not only the initial condition for the formation of the dense
matter [6] but also the dynamical properties of the strongly
coupled quark-gluon plasma.

Considering the longitudinal momentum distribution at
various transverse positions in a noncentral heavy-ion col-
lision, one will find a longitudinal fluid shear distribution
representing local relative orbital angular momentum. Re-
cently, it has been pointed out that the presence of such a
local orbital angular momentum of the partonic system at
the early stage of noncentral heavy-ion collisions can lead
to a global polarization of quarks and antiquarks [7] in the
direction orthogonal to the reaction plane. Understanding
the spin-orbital interaction inside a strongly coupled system
can open a new window to the properties of quark-gluon

plasma (QGP). Although no detailed calculations have been
carried out, an estimate using a screened static potential
model in the small-angle approximation shows qualitatively
that spin-orbital coupling in quantum chromodynamics (QCD)
can lead to a finite global quark and antiquark polarization.
Such a global quark/antiquark polarization should have many
observable consequences such as global hyperon polarization
[7,8] and vector meson spin alignment [9]. Predictions have
been made [7,9] for these measurable quantities as functions
of the global quark polarization Pq in various hadronization
scenarios. Since the reaction plane in heavy-ion collisions can
be determined in experiments by measuring the elliptic and
direct flows, measurements of the global hyperon polarization
or vector meson spin alignment become feasible. These
measurements at RHIC are being carried out, and some of
the preliminary results have already been reported [10–16].

The estimate of the global quark polarization in Ref. [7]
was obtained by evaluating the polarization cross section in
the impact parameter space with a small-angle approximation
in an effective potential model. The analytical result

Pq = −πµp/2E(E + mq) (1)

has an intuitive expression, where p is the average c.m. mo-
mentum of two partons with an average transverse separation
1/µ due to the longitudinal fluid shear. However, for a massless
quark in a small longitudinal fluid shear, the obtained quark
polarization Pq can become larger than unity, indicating the
breakdown of the small-angle approximation. A more realistic
estimate in noncentral heavy-ion collisions at RHIC indicates
a small value of the average longitudinal fluid shear. Therefore,
it is imperative to have a more realistic estimate of the quark
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FIG. 1. Noncentral heavy-ion collision with impact parameter �b.
The global angular momentum of the produced dense matter is along
−ŷ, opposite to the reaction plane.

polarization Pq beyond the small-angle approximation. This
will be the focus of this paper.

The rest of the paper is organized as follows. In Sec. II,
we calculate the average longitudinal fluid shear in two
different models of parton production. In a Landau fireball
picture, a wounded nucleon model of bulk parton production
in heavy-ion collisions is used with both simple hard-sphere
and more realistic Wood-Saxon nuclear geometry. In the
Bjorken scaling scenario, we use HIJING Monte Carlo model
to estimate the transverse shear of the rapidity distribution
of the produced parton in heavy-ion collisions at the RHIC
energy which will be used to estimate the longitudinal fluid
shear in the local comoving frame of the plasma. In Sec. III,
we use the hard thermal loop (HTL) resummed gluon
propagator in the comoving frame of the local longitudinal
fluid cell to extend the calculation of quark polarization in
Ref. [7] beyond the small-angle approximation and discuss
the relative contributions from the electric and magnetic parts
of quark-quark scattering. Finally in Sec. IV, we discuss
the numerical results and their implications for experimental
measurements at RHIC.

II. ORBITAL ANGULAR MOMENTUM AND SHEAR FLOW

Let us consider two colliding nuclei with the projectile of
beam momentum per nucleon �pin moving in the direction of the
z axis, as illustrated in Fig. 1. The impact parameter �b, defined
as the transverse distance of the center of the projectile nucleus
from that of the target, is taken to be along the x̂ direction. The
normal direction �nb of the reaction plane, given by

�nb ≡ �pin × �b
| �pin × �b| , (2)

is along ŷ. For a noncentral collision, the two colliding nuclei
carry a finite global orbital angular momentum Ly along the
direction orthogonal to the reaction plane (−ŷ). How such a
global orbital angular momentum is transferred to the final
state particles depends on the equation of state (EOS) of the
dense matter. At low energies, the final state is expected to
be the normal nuclear matter with an EOS of rigid nuclei. A

rotating compound nucleus can be formed when the colliding
energy is comparable to or smaller than the nuclear binding
energy. The finite value of the total orbital angular momentum
of the noncentral collision at such low energies provides a
useful tool for the study of the properties of superdeformed
nuclei under such rotation [17]. At high colliding energy at
RHIC, the dense matter is expected to be partonic with an
EOS of the quark-gluon plasma. Given such a soft EOS, the
global orbital angular momentum would probably never lead
to the global rotation of the dense matter. Instead, the total
angular momentum will be distributed across the overlapped
region of nuclear scattering and is manifested in the shear of
the longitudinal flow leading to a finite value of local vorticity
density. Under such longitudinal fluid shear, a pair of scattering
partons will on average carry a finite value of relative orbital
angular momentum in the direction opposite to the reaction
plane as defined in Eq. (2). According to Ref. [7], quark
(or antiquark) will acquire a global polarization after such
scatterings through the spin-orbital coupling in QCD.

The magnitude of the total orbital angular momentum Ly

and the resulting longitudinal fluid shear can both be estimated
within the wounded nucleon model of particle production
in which the number of produced particles is assumed to
be proportional to the number of participant nucleons. The
transverse distributions (integrated over y) of participant
nucleons in each nucleus can be written as

dN
P,T
part

dx
=

∫
dy dzρ

P,T
A (x, y, z, b), (3)

in terms of the participant nucleon number density
ρ

P,T
A (x, y, z, b) in nucleus A in the coordinate system defined

above. The superscript P or T denotes projectile or target,
respectively. The total orbital angular momentum Ly of the
two colliding nuclei can be defined as

Ly = −pin

∫
xdx

(
dNP

part

dx
− dNT

part

dx

)
, (4)

where pin is the momentum per incident nucleon.
We assume the Woods-Saxon nuclear distribution

f
P,T
WS (x, y, z, b)

= C

(
1 + exp

√
(x ∓ b/2)2 + y2 + z2 − RA

a

)−1

. (5)

The participant nucleon number density is then

ρ
P,T
A,WS(x, y, z, b) = f

P,T
WS (x, y, z, b)

{
1 − exp

[
− σNN

×
∫

dzf
T,P
WS (x, y, z, b)

]}
, (6)

where σNN ≈ 42 mb is the total cross section of nucleon-
nucleon scatterings at the RHIC energy, C is the normalization
constant, and a is the width parameter set to a = 0.54 fm.

Shown in Fig. 2 as the solid line is the numerical value of Ly

as a function of b for the Woods-Saxon nuclear distribution.
As a comparison, we also plot as the dashed line the Ly

distribution with a hard-sphere nuclear distribution which was
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FIG. 2. (Color online) Total orbital angular momentum of the
overlapping system in Au+Au collisions at the RHIC energy as a
function of the impact parameter b.

used in Ref. [7]. With the hard-sphere nuclear distribution, the
participant nucleon density is given by the overlapping area of
two hard spheres, that is,

ρ
P,T
A,HS(x, y, z, b) = f

P,T
A,HS(x, y, z, b)

× θ
(
RA −

√
(x ± b/2)2 + y2 + z2

)
, (7)

and

f
P,T
A,HS(x, y, z, b)

= 3A

4πR3
A

θ
(
RA −

√
(x ∓ b/2)2 + y2 + z2

)
, (8)

where RA = 1.12A1/3 is the nuclear radius and A the atomic
number. We note significant differences between the two
nuclear geometries in the total orbital angular momentum Ly

in the overlapped region of two colliding nuclei. In both cases,
the total orbital angular momentum is huge and of the order of
104 at most impact parameters.

Since RHIC data indicate the formation of a strongly
coupled quark-gluon plasma [1], we can assume that a partonic
system is formed immediately following the initial collision,
and interactions among partons will lead to both transverse (in
the x-y plane) and longitudinal collective motion in the QGP.
The total orbital angular momentum carried by the produced
system will manifest in the longitudinal flow shear or a finite
value of the transverse (along x̂) gradient of the longitudinal
flow velocity. How the total angular momentum is distributed
to the longitudinal flow shear and the magnitude of the local
relative orbital angular momentum depend on the parton
production mechanism and their longitudinal momentum
distributions. We consider two different scenarios in this paper:
Landau fireball and Bjorken scaling model.

By momentum conservation, the average initial collective
longitudinal momentum at any given transverse position can
be calculated as the total momentum difference between
participating projectile and target nucleons. Since the total
multiplicity in A+A collisions is proportional to the number
of participant nucleons [18], we can make the same assumption
for the produced partons with a proportionality constant c(s)
at a given center-of-mass energy

√
s.
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FIG. 3. Average longitudinal momentum distribution pz(x, b) in
units of p0 = √

s/[2c(s)] as a function of x/(RA − b/2) for different
values of b/RA with the hard-sphere and Woods-Saxon nuclear
distributions.

In a Landau fireball model, we assume the produced partons
thermalize quickly and have a common longitudinal flow
velocity at a given transverse position of the overlapped region.
The average collective longitudinal momentum per parton can
be written as

pz(x, b;
√

s) = p0

dNP
part

/
dx − dNT

part

/
dx

dNP
part

/
dx + dNT

part

/
dx

, (9)

where p0 = √
s/[2c(s)]. The distribution pz(x, b;

√
s) is an

odd function in both x and b and therefore vanishes at x = 0
or b = 0. In Fig. 3, pz(x, b;

√
s) is plotted as a function of x

at different impact parameters b. We see that pz(x, b;
√

s) is
a monotonically increasing function of x until the edge of the
overlapped region |x ± b/2| = RA beyond which it drops to
zero (gradually for Woods-Saxon geometry).

From pz(x, b;
√

s) one can compute the transverse gradient
of the average longitudinal collective momentum per parton
dpz/dx, which is an even function of x and vanishes at b = 0.
One can then estimate the longitudinal momentum difference
�pz between two neighboring partons in QGP. On average,
the relative orbital angular momentum for two colliding
partons separated by �x in the transverse direction is ly ≡
−(�x)2dpz/dx. With the hard-sphere nuclear distribution, ly
is proportional to dp0/dx ≡ p0/RA = √

s/[2c(s)RA].
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FIG. 4. Average orbital angular momentum ly ≡ −(�x)2dpz/dx

of two neighboring partons separated by �x = 1 fm as a function of
the scaled transverse coordinate x/(RA − b/2) for different values of
the impact parameter b/RA with the hard-sphere and Woods-Saxon
nuclear distributions for heavy-ion collisions at the RHIC energy with
different impact parameters.

In Au+Au collisions at
√

s = 200 GeV, the number of
charged hadrons per participating nucleon is about 15 [18].
Assuming the number of partons per (meson dominated)
hadron is about 2, we have c(s) � 45 (including neutral
hadrons). Given RA = 6.5 fm, dp0/dx � 0.34 GeV/fm, and
we obtain l0 ≡ −(�x)2dp0/dx � −1.7 for �x = 1 fm. In
Fig. 4, we show the average local orbital angular momentum
ly for two neighboring partons separated by �x = 1 fm as
a function of x for different impact parameters b for both
Woods-Saxon and hard-sphere nuclear distributions. We see
that ly is in general of the order of 1 and is comparable to or
larger than the spin of a quark. It is expected that c(s) should
depend logarithmically on the colliding energy

√
s, therefore

ly should increase with growing
√

s.
In a three-dimensional expanding system, there could be

a strong correlation between longitudinal flow velocity and
spatial coordinate of the fluid cell. The most simplified picture
is the Bjorken scaling scenario [19] in which the longitu-
dinal flow velocity is identical to the spatial velocity η =
log[(t + z)/(t − z)]. With such correlation, local interaction
and thermalization requires that a parton only interacts with
other partons in the same region of longitudinal momentum
or rapidity y. The width of such a region in rapidity is

FIG. 5. (Color online) Average rapidity 〈Y 〉 of the final state
particles as a function of the transverse coordinate x from HIJING
Mont Carlo simulations [21,22] of noncentral Au+Au collisions at√

s = 200 GeV.

determined by the half-width of the thermal distribution
f (Y, pT ) = exp[−pT cosh(Y − η)/T ] [20], which is approx-
imately �Y ≈ 1.5 (with 〈pT 〉 ≈ 2T ). The relevant measure
of the local relative orbital angular momentum between two
interacting partons is, therefore, the difference in parton
rapidity distributions at transverse distance of δx ∼ 1/µ on
the order of the average interaction range.

One needs a dynamical model to estimate the local rapidity
distributions of produced partons. For such a purpose, we
use HIJING Monte Carlo model [21,22] to calculate the
hadron rapidity distributions at different transverse coordinates
x and assume that parton distributions of the dense matter
are proportional to the final hadron spectra. Shown in Fig. 5
is the average rapidity 〈Y 〉 as a function of the transverse
coordinate x for different values of the impact parameter b.
The distributions have exactly the same features as given
by the wounded nucleon model in Fig. 3. The variation
of the rapidity distributions with respect to the transverse
coordinate is illustrated in Fig. 6 by the normalized rapidity

0

0.05

0.1

0.15

0.2

-10 -5 0 5 10

Y

P
(Y

,x
)

b=1.0 RA
x=0.0 fm
x=-2.0 fm
x=2.0 fm

FIG. 6. (Color online) Normalized rapidity distribution of par-
ticles P (Y, x) [Eq. (10)] at different transverse positions x from
HIJING simulations of noncentral Au+Au collisions at

√
s =

200 GeV.

044902-4



GLOBAL QUARK POLARIZATION IN NONCENTRAL A+ . . . PHYSICAL REVIEW C 77, 044902 (2008)

FIG. 7. (Color online) Average rapidity shear ∂〈Y 〉/∂x (1/fm) per
unit of the transverse distance within a window �Y = 1 as a function
of the rapidity Y at different transverse positions x from the HIJING
calculation of noncentral Au+Au collisions at

√
s = 200 GeV.

distributions

P (Y, x) = dN/dx dY

dN/dx
(10)

at different transverse coordinates, x = 0,±2 fm. At finite
values of the transverse coordinates x, the normalized rapidity
distributions evidently peak at larger values of rapidity |Y |. The
shift in the shape of the rapidity distributions will provide the
local longitudinal fluid shear or finite relative orbital angular
momentum for two interacting partons in the local comoving
frame at any given rapidity Y . To quantify such longitudinal
fluid shear, one can calculate the average rapidity within an
interval �Y at Y ,

〈Y 〉 ≈ Y + �2
Y

12

1

P (Y, x)

∂P (Y, x)

∂Y
. (11)

The average rapidity shear or the difference in average rapidity
for two partons separated by a unit of transverse distance �x =
1 fm is then,

∂〈Y 〉
∂x

≈ �2
Y

12

∂2 log P (Y, x)

∂Y ∂x
. (12)

Shown in Fig. 7 is the average rapidity shear as a function
of the rapidity y at different values of the transverse coordinate
x for �Y = 1. As we can see, the average rapidity shear has
a positive and finite value in the central rapidity region. The
corresponding local relative longitudinal momentum shear is

∂〈pz〉
∂x

≈ pT cosh Y
∂〈Y 〉
∂x

. (13)

With 〈pT 〉 ≈ 2T ∼ 0.8 GeV, we have ∂〈pz〉/∂x ∼
0.003 GeV/fm in the central rapidity region of a noncentral
Au+Au collision at the RHIC energy given by the HIJING
simulations, which is much smaller than that from a Landau
fireball model estimate.

III. GLOBAL QUARK POLARIZATION

As we discussed earlier, under the longitudinal fluid shear,
a pair of interacting partons will have a finite value of relative
orbital angular momentum along the direction opposite to
the reaction plane. In this section, we will calculate quark
polarization via scatterings with fixed direction of the relative
orbital angular momentum. We will assign a fixed direction of
the impact parameter �xT between two interacting partons to
reflect the direction of the relative orbital angular momentum.
The magnitude of the relative orbital angular momentum
will be characterized by the relative longitudinal momentum
p between two partons separated by a transverse distance
�x ∼ 1/µ on the order of the average interaction range. With
the averaged longitudinal fluid shear dpz/dx in the c.m. frame
of the two colliding nuclei in the Landau fireball model, we
have p = �x(dpz/dx). In the Bjorken scaling scenario with
strong correlation between spatial and momentum rapidity, the
average local longitudinal shear in the comoving frame will be
given by p = �xpT cosh(Y )∂〈Y 〉/∂x, where pT is the average
transverse momentum.

A. Quark scattering at fixed impact parameter

We consider the scattering q1(P1, λ1) + q2(P2, λ2) →
q1(P3, λ3) + q2(P4, λ4) of two quarks with different flavors,
where Pi = (Ei, �pi) and λi in the brackets denote the four
momenta and spins of the quarks, respectively. The cross
section in momentum space is given by

dσλ3 = cqq

F

1

4

∑
λ1,λ2,λ4

M(Q)M∗(Q)(2π )4

× δ(P1 + P2 − P3 − P4)
d3 �p3

(2π )32E3

d3 �p4

(2π )32E4
, (14)

where M(Q) is the scattering amplitude in momentum space,
Q = P3 − P1 = P2 − P4 is the four-momentum transfer,

cqq = 2/9 is the color factor, and F = 4
√

(P1 · P2)2 − m2
1m

2
2

is the flux factor. Since we are interested in the polarization of
one of the quarks q1 after the scattering, we therefore average
over the spins of initial quarks and sum over the spin of the
quark q2 in the final state.

We work in the c.m. frame of the two-quark system. For
simplification, we neglect thermal momentum in the transverse
direction and assume the relative momentum of the two
quarks separated by a transverse distance �x of the order
of the effective interaction range 1/µ is simply given by the
longitudinal fluid shear.

One can integrate over the final momentum �p4 of the quark
q2 and the longitudinal component p3z of the quark q1, and
obtain

dσλ3 = cqq

4F

1

4

∑
λ1,λ2,λ4

∑
i=+,−

× 1

E2

∣∣pi
3z

∣∣ + E1

∣∣pi
3z

∣∣M(Qi)M∗(Qi)
d2 �qT

(2π )2
, (15)
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where p±
3z = ±

√
p2 − qT

2, corresponding to two possible
solutions of the energy-momentum conservation in the elastic
scattering process, p = | �p1| = | �p2|; and �qT = �p3T is the trans-
verse momentum transfer. For simplicity, we will suppress the
summation notation over i = +,− hereafter, but keep in mind
that the final cross section includes the two terms.

Since we would like to calculate the polarization of one
final-state quark with a fixed direction of the orbital angular
momentum, or fixed direction of the impact parameter, we will
cast the cross section in impact parameter space by making
a two-dimensional Fourier transformation in the transverse
momentum transfer �qT , i.e.,

d2σλ3

d2 �xT

= cqq

16F

∑
λ1,λ2,λ4

×
∫

d2 �qT

(2π )2

d2�kT

(2π )2
ei(�kT −�qT )·�xT

M(�qT )


(�qT )

M∗(�kT )


∗(�kT )
, (16)

where M(�qT ) and M(�kT ) are the scattering matrix elements
in momentum space with four-momentum transfer Q = (0, �q)
and K = (0, �k), respectively, and


(�qT ) =
√

(E1 + E2)|p+
3z|. (17)

To calculate the quark-quark scattering amplitude in a
thermal medium, we will use the hard thermal loop (HTL)
resummed gluon propagator [23,25],

�µν(Q) = P
µν

T

−Q2 + �T (x)

+ P
µν

L

−Q2 + �L(x)
+ (α − 1)

QµQν

Q4
, (18)

where Q denotes the gluon four-momentum and α is the gauge
fixing parameter. The longitudinal and transverse projectors
P

µν

T,L are defined by

P
µν

L = −1

Q2q2
(ωQµ − Q2Uµ)(ωQν − Q2Uν), (19)

P
µν

T = g̃µν + Q̃µQ̃ν

q2
, (20)

with ω = Q·U, Q̃µ = Qµ − Uµω, q2 = −Q̃2, and g̃µν =
gµν − UµUν . Here U is the fluid velocity of the local medium.
The transverse and longitudinal self-energies are given by [23]

�L(x) = µ2
D

[
1 − x

2
ln

(
1 + x

1 − x

)
+ i

π

2
x

]
(1 − x2), (21)

�T (x) = µ2
D

[
x2

2
+ x

4
(1 − x2) ln

(
1 + x

1 − x

)

− i
π

4
x(1 − x2)

]
, (22)

where x = ω/q and µ2
D = g2(Nc + Nf /2)T 2/3 is the Debye

screening mass.

With the above HTL gluon propagator, the quark-quark
scattering amplitudes can be expressed as

M(�qT ) = uλ3 (P1 + Q)γµuλ1 (P1)�µν(Q)

× uλ4 (P2 − Q)γνuλ2 (P2), (23)

M∗(�kT ) = uλ1 (P1)γαuλ3 (P1 + K)�αβ∗(K)

× uλ2 (P2)γβuλ4 (P2 − K). (24)

The product M(�qT )M∗(�kT ) can be converted to the following
trace form,∑

λ1,λ2

M(�qT )M∗(�kT )

= �µν(Q)�αβ∗(K)Tr
[
uλ3 (P1 + K)

× ūλ3 (P1 + Q)γµ(P1/ + m1)γα

]
Tr

[
uλ4 (P2 − K)

× ūλ4 (P2 − Q)γν(P2/ + m2)γβ

]
. (25)

In calculations of transport coefficients such as the jet
energy loss parameter [24] and thermalization time [25],
which generally involve cross sections weighted with trans-
verse momentum transfer, the imaginary part of the HTL
propagator in the magnetic sector is enough to regularize the
infrared behavior of the transport cross sections. However, in
our following calculation of quark polarization, total parton
scattering cross section is involved. The contribution from
the magnetic part of the interaction has therefore infrared
divergence, which can only be regularized through the in-
troduction of the nonperturbative magnetic screening mass
µm ≈ 0.255

√
Nc/2g2T [26].

Since we have neglected the thermal momentum perpen-
dicular to the longitudinal flow, the energy transfer ω = 0 in
the c.m. frame of the two colliding partons. This corresponds
to setting x = 0 in the HTL resummed gluon propagator in
Eq. (18). In this case, the c.m. frame of scattering quarks
coincides with the local comoving frame of QGP, and the
fluid velocity is Uµ = (1, 0, 0, 0). The corresponding HTL
effective gluon propagator in Feynman gauge that contributes
to the scattering amplitudes is reduced to

�µν(Q) = gµν − UµUν

q2 + µ2
m

+ UµUν

q2 + µD
2
. (26)

The differential cross section can in general be decomposed
into a spin-independent and a spin-dependent part,

d2σλ3

d2 �xT

= dσ

d2 �xT

+ λ3
d�σ

d2 �xT

, (27)

with

d2σ

d2 �xT

= 1

2

(
dσ+
d2 �xT

+ dσ−
d2 �xT

)
, (28)

d2�σ

d2 �xT

= 1

2

(
dσ+
d2 �xT

− dσ−
d2 �xT

)
. (29)

The spin-dependent part will mostly determine the po-
larization of the final state quark q1 via the scattering. The
calculation is involved. A simple estimate was given in
Ref. [7], using a screened static potential model and small-
angle approximation. In this case, the cross sections can be
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written in a general form as

d2σ

d2 �xT

= F (xT , E), (30)

d2�σ

d2 �xT

= �n · (�xT × �p)�F (xT , E), (31)

where �n is the polarization vector for q1 in its rest frame.
F (xT , E) and �F (xT , E) are functions of both xT ≡ |�xT |
and the c.m. energy E of the two quarks. We can show
that the quark-quark scattering with HTL propagators has
the same form as that in the static potential model [7]. But
the detailed expressions of F (xT , ŝ) and �F (xT , ŝ) are much
more complicated.

In fact, one can show that these two parts of the cross
sections should have the same form as given in Eqs. (30)
and (31) due to parity conservation in the scattering process.
We note that in an unpolarized reaction, the cross section
should be independent of any transverse direction. Hence
dσ/d2 �xT depends only on the magnitude of xT but not on
the direction. For the spin-dependent part, the only scalar that
we can construct from the available vectors is �n · ( �p × �xT ).

We note that, �xT × �p is nothing but the relative orbital
angular momentum of the two-quark system, �l = �xT × �p.
Therefore, the polarized cross section takes its maximum
when �n is parallel or antiparallel to the relative orbital angular
momentum, depending on whether �F is positive or negative.
This corresponds to quark polarization in the direction �l or −�l.

As discussed in the last section, the average relative orbital
angular momentum �l of two scattering quarks is in the opposite
direction of the reaction plane in noncentral A+A collisions.
Since a given direction of �l corresponds to a given direction
of �xT , there should be a preferred direction of �xT at a
given direction of the nucleus-nucleus impact parameter �b.
The distribution of �xT at given �b depends on the collective
longitudinal momentum distribution shown in the last section.
For simplicity, we consider a uniform distribution of �xT in all
possible directions in the upper half-xy-plane with x > 0. In
this case, we need to integrate d�σ/d2 �xT and dσ/d2 �xT over
the half-plane above the y axis to obtain the average cross
section at a given �b, i.e.,

σ =
∫ +∞

0
dx

∫ +∞

−∞
dy

d2σ

d2 �xT

, (32)

�σ =
∫ +∞

0
dx

∫ +∞

−∞
dy

d2�σ

d2 �xT

. (33)

The polarization of the quark is then obtained as

Pq = �σ

σ
. (34)

B. Small angle approximation

We only consider light quarks and neglect their masses. Car-
rying out the traces in Eq. (25), we can obtain the expression of
the cross section with HTL gluon propagators. The results are
much more complicated than those obtained in Ref. [7] using a
static potential model. However, if we use small-angle or small

transverse momentum transfer approximation, the results are
still very simple. In this case, with qz ∼ 0 and qT ≡ |�qT | 
 p,
we obtain the spin-independent (unpolarized) cross section

d2σ

d2 �xT

= g4cqq

8

∫
d2 �qT

(2π )2

d2�kT

(2π )2
ei(�kT −�qT )·�xT

×
(

1

q2
T + µ2

m

+ 1

q2
T + µ2

D

)

×
(

1

k2
T + µ2

m

+ 1

k2
T + µ2

D

)
, (35)

and the spin-dependent differential (polarized) cross section

d2�σ

d2 �xT

= −i
g4cqq

16

∫
d2 �qT

(2π )2

d2�kT

(2π )2
ei(�kT −�qT )·�xT

× (�kT − �qT ) · ( �p × �n)

p2

(
1

q2
T + µ2

m

+ 1

q2
T + µ2

D

)

×
(

1

k2
T + µ2

m

+ 1

k2
T + µ2

D

)
. (36)

We note that the polarized differential cross can be related to
the unpolarized one by

d2�σ

d2 �xT

= − 1

2p2
( �p × �n) · �∇T

d2σ

d2 �xT

. (37)

Completing the integration over the transverse momentum
transfer, ∫

d2 �qT

(2π )2

ei �qT ·�xT

q2
T + µ2

m

=
∫

qT dqT

2π

J0(qT xT )

q2
T + µ2

m

, (38)

∫ ∞

0
qT dqT

J0(qT xT )

q2
T + µ2

m

= K0(µmxT ), (39)

where J0 and K0 are the Bessel and modified Bessel functions,
respectively, we obtain

d2σ

d2 �xT

= cqq

2
α2

s [K0(µmxT ) + K0(µDxT )]2, (40)

d2�σ

d2 �xT

= cqqα
2
s

2

( �p × �n) · x̂T

p2
[K0(µmxT ) + K0(µDxT )]

× [µmK1(µmxT ) + µDK1(µDxT )], (41)

where x̂T = �xT /xT is the unit vector of �xT . We compare the
above results with those in the screened static potential model
(SPM) where one also made the small-angle approximation,[

dσ

d2 �xT

]
SPM

= g4cT

4

∫
d2 �qT

(2π )2

d2�kT

(2π )2
ei(�kT −�qT )·�xT

× 1

q2
T + µ2

D

1

k2
T + µ2

D

, (42)

[
d�σ

d2 �xT

]
SPM

= −i
g4cT

8

∫
d2 �qT

(2π )2

d2�kT

(2π )2
ei(�kT −�qT )·�xT

× (�kT − �qT ) · ( �p × �n)

p2(q2
T + µ2

D)(k2
T + µ2

D)
. (43)

We see that the only difference between the two results is
the additional contributions from magnetic gluons, whose
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contributions are absent in the static potential model. Using
Eqs. (38) and (39), we recover the results in Ref. [7],[

dσ

d2 �xT

]
SPM

= α2
s cT K2

0 (µDxT ), (44)

[
d�σ

d2 �xT

]
SPM

= α2
s cT

( �p × �n) · �̂xT

p2
µDK0(µDxT )K1(µDxT ).

(45)

C. Beyond small-angle approximation

Now we present the complete results for the cross section in
impact parameter space using HTL gluon propagators without
the small-angle approximation. The unpolarized and polarized
cross sections can be expressed in general as

dσ

d2 �xT

= g4cqq

64p2

∫
d2 �qT

(2π )2

d2�kT

(2π )2
ei(�kT −�qT )·�xT

f (�qT , �kT )


(�qT )
(�kT )
,

(46)

d�σ

d2 �xT

= −i
g4cqq

64p3

∫
d2 �qT

(2π )2

d2�kT

(2π )2
ei(�kT −�qT )·�xT

�f (�qT , �kT )


(�qT )
(�kT )
,

(47)

where the kinematic factor becomes 
(�qT ) =
√

2p|p+
3z|; f

and �f are given by

f (�qT , �kT ) = Amm(�qT , �kT )(
q2 + µ2

m

)(
k2 + µ2

m

)
+ Aee(�qT , �kT )(

q2 + µ2
D

)(
k2 + µ2

D

)
+ Ame(�qT , �kT )(

q2 + µ2
m

)(
k2 + µ2

D

)
+ Ame(�kT , �qT )(

q2 + µ2
D

)(
k2 + µ2

m

) , (48)

�f (�qT , �kT ) = �Amm(�qT , �kT )(
q2 + µ2

m

)(
k2 + µ2

m

)
+ �Aee(�qT , �kT )(

q2 + µ2
D

)(
k2 + µ2

D

)
+ �Ame(�qT , �kT )(

q2 + µ2
m

)(
k2 + µ2

D

)
− �Ame(�kT , �qT )(

q2 + µ2
D

)(
k2 + µ2

m

) , (49)

Amm(�qT , �kT ) = (�q · �k)2 + 8p2(�q · �k)

+ 8p3(qz + kz) + 16p4, (50)

Aee(�qT , �kT ) = Amm(�qT , �kT ) + 4p(qz + kz)[(�q · �k)

+p(qz + kz) + 2p2], (51)

Ame(�qT , �kT ) = Amm(�qT , �kT ) + [−2qzkz(�q · �k)

+ 4pkz(�q · �k) − 2pq2
z kz

− 2pqzkz
2 + 4p2kz

2 + 8p3kz)], (52)

�Amm(�qT , �kT ) = −{[�q · �k + 4p2 − 2p(qz + kz)]

× (kz �qT − qz
�kT ) + 2p(�q · �k + 4p2)(�qT

− �kT )} · ( �p × �n), (53)

�Aee(�qT , �kT ) = �Amm(�qT , �kT ) − 4p(qz + kz)[(kz �qT

− qz
�kT ) − p(�kT − �qT )] · (p̂ × �n), (54)

�Ame(�qT , �kT ) = �Amm(�qT , �kT )

+ 2pkz[2p(�kT − �qT ) + (qz − kz)�qT

− (kz �qT − qz
�kT )] · (p̂ × �n) + 2qzkz(kz �qT

− qz
�kT ) · (p̂ × �n), (55)

where p ≡ | �p|. It is useful to note that

Amm(�qT , �kT ) = Amm(�kT , �qT ), (56)

Aee(�qT , �kT ) = Aee(�kT , �qT ). (57)

Hence, f (�qT , �kT ) is symmetric in its two variables

f (�qT , �kT ) = f (�kT , �qT ). (58)

Similarly, from

�Amm(�qT , �kT ) = −�Amm(�kT , �qT ), (59)

�Aee(�qT , �kT ) = −�Aee(�kT , �qT ), (60)

we know that �f (�qT , �kT ) is antisymmetric,

�f (�qT , �kT ) = −�f (�kT , �qT ). (61)

As mentioned above, to get the average polarization for a
fixed direction of the reaction plane in heavy-ion collisions, we
need to average over the distribution of �xT . For this purpose,
we take the approach as in Ref. [7], and integrate dσ/d2 �xT

and d�σ/d2 �xT over the half plane above the y axis as shown
in Eqs. (32) and (33). It is convenient to carry out first the
integration over x and y then that over �qT and �kT . To do this,
we use the identity,

2
∫ +∞

0

dx

2π

∫ +∞

−∞

dy

2π
ei(�kT −�qT )·�xT

= δ2(�kT − �qT ) + i

π
δ(ky − qy)P 1

kx − qx

, (62)

where P denotes the principal value.
It is useful to note that δ2(�kT − �qT ) = δ2(�qT − �kT ) and

P 1
kx−qx

= −P 1
qx−kx

. Therefore, only the first term on the
right-hand side of Eq. (62) contributes to the total unpolarized
cross section,

σ = g4cqq

64p2

1

2

∫
qT � p

d2 �qT

(2π )2

f (�qT , �qT )


2(�qT )
. (63)

The polarized cross section �σ receives a contribution only
from the second term,

�σ = g4cqq

64p3

∫ p

−p

dqy

2π

∫ √
p2−qy

2

−
√

p2−qy
2

dqx

2π

∫ √
p2−qy

2

−
√

p2−qy
2

dkx

2π

× 1

kx − qx

�f (qx, qy ; kx, qy)


(�qT )
(�kT )
. (64)
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Changing the integration variable qT = p sin θ and ξ =
sin2(θ/2) in the expression of the total cross section σ , we
obtain

σ = πcqqα
2
s

4ŝ

∫ 1

0
dξ

{
1 + ξ 2

(ξ + βmT̃ 2)2
+ (1 − ξ )2

(ξ + βDT̃ 2)2

+ 2(1 − ξ )

(ξ + βDT̃ 2)(ξ + βmT̃ 2)

}
, (65)

where βD = (µD/T )2 = 4παs(Nc + Nf /2)/3, βm =
(µm/T )2 = 0.2552(4π )2α2

s Nc/2, and T̃ = T/
√

ŝ with
√

ŝ the
center of mass energy of the qq system. The integration can

be carried out analytically,

σ = πcqqα
2
s

4ŝ

{
4 + 1

βmT̃ 2
+ 1

βDT̃ 2
− 2

1 + βmT̃ 2

− 2

(
βmT̃ 2 + 1 + βmT̃ 2

βmT̃ 2 − βDT̃ 2

)
ln

(
1 + 1

βmT̃ 2

)

− 2

(
βDT̃ 2 + βmT̃ 2 − 2βDT̃ 2 − 1

βmT̃ 2 − βDT̃ 2

)
ln

(
1 + 1

βDT̃ 2

) }
.

(66)

Similarly, we make the variable substitutions qy =
p
√

1 − t2, qx = pt
√

1 − ξ 2, kx = pt
√

1 − η2 in the integra-
tion for �σ and obtain

�σ = −cqqα
2
s

8πŝ

∫ 1

−1
dt

∫ 1

0
dξ

∫ 1

0
dη

t2√ξη√
1 − t2

√
1 − ξ 2

√
1 − η2

×
{

(1 − t2)(4 + tξ + tη) − 2(t2ξη + 1) + 2t(1 + ξη)(5 + t2ξη)/(ξ + η)

(1 − tξ + 2βmT̃ 2)(1 − tη + 2βmT̃ 2)

+ (1 − t2)(tξ + tη) + 2(t2ξη + 1) + 2t(1 + ξη)(1 + t2ξη)/(ξ + η)

(1 − tξ + 2βDT̃ 2)(1 − tη + 2βDT̃ 2)

+2(1 − t2)(2 + tξ + tη) + 8t(1 + ξη)(1 + tη)/(ξ + η)

(1 − tξ + 2βmT̃ 2)(1 − tη + 2βDT̃ 2)

}
. (67)

Note that in the calculation of both the polarized and
unpolarized cross sections, we have limited the range of
integration over the transverse momentum due to energy
conservation. Such restriction is not imposed in the small-angle
approximation in Ref. [7]. We see that, at given βm and βD ,
both σ and �σ are functions of the variable T̃ = T/

√
ŝ. Since

βm and βD depend on αs , the polarization Pq = �σ/σ also
depends on the value of αs .

We can now carry out the integration numerically to get the
quark polarization Pq . Before we show the numerical results,
it is useful to look at two limits.

(i) High-energy limit. At very high energies,
√

ŝ � T or
T̃ 
 1, we have

σ = πcqqα
2
s

4ŝT̃ 2

{
1

(1 + 4βmT̃ 2)βm

+ 1

(1 + 4βDT̃ 2)βD

+ 2

βD − βm

ln
βD(1 + 4βmT̃ 2)

βm(1 + 4βDT̃ 2)

}
, (68)

�σ = −4cqqα
2
s

π ŝ

∫ 1

0
dt

[
1√

t2 + 4βmT̃ 2
tan−1

√
1 − t2

t2 + 4βmT̃ 2

+ 1√
t2 + 4βDT̃ 2

tan−1

√
1 − t2

t2 + 4βDT̃ 2

]2

. (69)

This is the case where the small-angle approximation
can be made. The above can also be obtained from
Eqs. (35) and (36) by carrying out the integration over
�xT in the half-plane of x > 0.

(ii) Low-energy limit. In the limit
√

ŝ 
 T , we have
q2

T + µ2
D ≈ µ2

D and q2
T + µ2

m ≈ µ2
m, the cross sections

become

σ = cqqα
2
s

8ŝ
π

(√
ŝ

T

)4 (
8

3β2
m

+ 2

3β2
D

+ 2

βmβD

)
, (70)

�σ = −cqqα
2
s

16πŝ

(√
ŝ

T

)
4

[
− 1

β2
m

(
1

192
�4

(
1

4

)
+ 1

2
�4

(
3

4

))

+ 1

β2
D

(
1

192
�4

(
1

4

)
+ �4

(
3

4

))

+ 2

βmβD

(
1

192
�4

(
1

4

)
+ �4

(
3

4

)) ]
. (71)

Given the corresponding values of the � function, one can
obtain numerically

�σ ≈ −cqqα
2
s

16πŝ

(√
ŝ

T

)4 (
−2.03

β2
m

+ 3.15

β2
D

+ 6.30

βmβD

)
. (72)
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We see that in the low-energy limit, the magnetic part
contributes with a different sign from the electric one. The
polarization Pq = �σ/σ is given by

Pq ≈ − 3

2π2

−2.03β2
D + 3.15β2

m + 6.30βmβD

8β2
D + 2β2

m + 6βmβD

, (73)

which tends to be a constant in this low-energy limit. In the
weak coupling limit αs 
 1, βD � βm, the above constant
Pq ≈ 0.04 is a small positive number.

It is also interesting to look at the contributions from the
electric part only. The corresponding cross sections, denoted

with subscript E, are(
dσ

d2 �xT

)
E

= g4cqq

64p2

∫
d2 �qT

(2π )2

d2�kT

(2π )2

× Aee(�qT , �kT )ei(�kT −�qT )·�xT


(�qT )
(�kT )
(
q2 + µ2

D

)(
k2 + µ2

D

) , (74)

(
d�σ

d2 �xT

)
E

= −i
g4cqq

64p3

∫
d2 �qT

(2π )2

d2�kT

(2π )2

× �Aee(�qT , �kT )ei(�kT −�qT )·�xT


(�qT )
(�kT )
(
q2 + µ2

D

)(
k2 + µ2

D

) . (75)

Carrying out the integration over d2 �xT in the half-plane with
x > 0, we obtain

σE = πcqqα
2
s

4ŝ

∫ 1

0

(1 − ξ )2dξ

(ξ + βDT̃ 2)2
= πcqqα

2
s

4ŝ

[
2 + 1

βDT̃ 2
− 2(1 + βDT̃ 2) ln(1 + 1

βDT̃ 2
)

]
, (76)

�σE = −cqqα
2
s

8πŝ

∫ 1

−1
dt

∫ 1

0
dξ

∫ 1

0
dη

t2√ξη√
1 − t2

√
1 − ξ 2

√
1 − η2

×
{

(1 − t2)(tξ + tη) + 2(t2ξη + 1) + 2t(1 + ξη)(1 + t2ξη)/(ξ + η)

(1 − tξ + 2βDT̃ 2)(1 − tη + 2βDT̃ 2)

}
. (77)

In the high-energy limit, where the small-angle approxima-
tion is applicable, we have

σE = πcqqα
2
s

4ŝβDT̃ 2(1 + 4βDT̃ 2)
, (78)

�σE = −4cqqα
2
s

π ŝ

∫ 1

0

dt

t2 + 4βDT̃ 2

[
tan−1

√
1 − t2

t2 + 4βDT̃ 2

]2

.

(79)

In the low-energy limit, we have

σE = cqqα
2
s

12ŝβ2
D

π

(√
ŝ

T

)4

, (80)

�σE = −cqqα
2
s

16πŝ

(√
ŝ

T

)4
1

β2
D

(
1

192
�4

(
1

4

)
+ �4

(
3

4

))
. (81)

The polarization in this case

P E
q ≡ �σE

σE

= − 3

4π2

(
1

192
�4

(
1

4

)
+ �4

(
3

4

))
≈ −0.24 (82)

is a negative constant, which can also be obtained from
Eq. (73) by taking the limit βm � βD .

D. Numerical results and comparison with data

We now carry out the integration in Eq. (67) numerically
and obtain the results for the quark polarization at intermediate
energies between the high- and low-energy limits. The results
are shown in Fig. 8 as functions of

√
ŝ/T . The quark

polarization (−Pq) along the reaction plane approaches a small

negative value, as we have shown in the last subsection in the
low-energy limit. The value of the low-energy limit varies
with αs as given by Eq. (73). Such a dependence on αs is a
consequence of the magnetic and electric screening masses
in the polarized and unpolarized cross sections which have
different dependence on αs . However, from Eq. (73), the low-
energy limit of the quark polarization becomes independent of
αs in the weak coupling limit αs → 0 when βm 
 βD .

As one increases the relative c.m. energy, the quark
polarization changes drastically with

√
ŝ/T . It increases to

some maximum value and then decreases with the growing
energy, approaching the result of then small-angle approxi-
mation in the high-energy limit. This structure is caused by
the interpolation between the high-energy and low-energy
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FIG. 8. (Color online) Quark polarization −Pq as a function of√
ŝ/T for different values of αs .
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FIG. 9. (Color online) Quark polarization −Pq as a function of√
ŝ/µm for different values of αs .

behavior dominated by the magnetic part of the interaction in
the weak coupling limit αs < 1. Therefore, the position of the
maxima in

√
ŝ should approximately scale with the magnetic

mass µm. This is indeed the case, as shown in Fig. 9.
To further understand the interpolation between the high-

and low-energy limits in the numerical results, we also
compare them in Fig. 10 with the results with the electric gluon
exchange only. Without the contribution from the magnetic
gluon interaction, the quark polarization takes a relatively large
value Pq ≈ −0.24 at low energies and then decreases with

√
ŝ

at high energies. The magnetic interaction in the low-energy
limit apparently has a different sign in the contribution to the
polarized cross section relative to that of the electric one. The
net polarization is therefore reduced at finite αs to smaller
negative values when αs 
 1. The electric contribution to the
net quark polarization also corresponds to the limit µm � µD

or αs � 1 in the full result. Even though our perturbative
approach is no longer valid in such a limit, it indicates that the
net quark polarization remains a finite negative value in the
strong coupling limit as shown in Fig. 9.
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FIG. 10. (Color online) Quark polarization −Pq as a function of√
ŝ/T with the full HTL gluon propagator (solid) compared with the

results with the electric part of the interaction only (dashed).
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√ŝ


/T

FIG. 11. (Color online) Comparison of the results obtained using
HTL gluon propagator (solid line) with those under the small-angle
approximation (dashed line) and those using the screened static
potential model under the small-angle approximation (dotted line).

In Fig. 11 we also compare the full numerical results (solid
lines) with those of the small-angle approximation in the
high-energy limit (dashed lines) as given by Eqs. (68) and
(69). These two groups of results indeed agree with each other
at high energies. However, they both are different from the
results of the static potential model in the small angle limit
(dotted lines) [9] which does not have the energy conservation
restriction in the integration over the transverse momentum
transfer.

In semiperipheral Au+Au collisions (b = RA) at the
RHIC energy, one can assume an average temperature T ≈
400 MeV [27]. With αs ≈ 0.3 and µm = 0.47 GeV, the global
quark polarization reaches its peak value at c.m. energy
about 1.8 GeV. Since the magnetic interaction dominates the
quark-quark interaction in our calculation, we can assume that
the average interaction range in the transverse direction is given
by the magnetic mass, �x ∼ 1/µm. According to our estimates
of the longitudinal fluid shear, the average c.m. energy of the
quark pair under such fluid shear is

√
ŝ ∼ 0.08˜GeV2/µm ≈

0.17 GeV (from Fig. 4) in the Landau fireball model. In the
Bjorken scaling model (from Fig. 7), the c.m. energy provided
by the local fluid shear is

√
ŝ ∼ 0.004〈pT 〉 cosh(y)fm−1/µm ≈

0.001 GeV in the central rapidity region (we assume 〈pT 〉 ∼
2T ). In both cases, the longitudinal fluid shear is so weak
that the global quark polarization due to perturbative quark-
quark scatterings is very small (close to zero) according to
our numerical calculations that go beyond the small-angle
approximation.

As has been pointed out in Refs. [7,9], the global quark
polarization can be transferred to final hadrons and lead to
global polarization of hyperons and spin alignment of vector
mesons in noncentral A+A collisions. The magnitudes of
global hyperon polarizations depend on the hadronization
mechanisms but are of the same order of Pq . For the vector
meson spin alignments, the effect is independent of the
direction of the reaction plane, but the magnitude can only
be of the order of P 2

q . Measurements on both global hyperon
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polarization and vector meson spin alignment have been
carried out [10–16]. Within the large statistic errors of the
current measurements, no significant global polarization was
found that was consistent with our calculations presented
above. However, the statistics are not high enough to make
any definitive conclusions. According to our estimate in the
Bjorken scaling scenario of the HIJING model, the fluid shear
increases rapidly with rapidity [Eq. (13)]. It will be helpful
to have measurements in the forward rapidity region where
the effect of quark polarization might be large enough to be
measurable.

In heavy-ion collisions at the CERN Large Hadron Collider
(LHC) energy

√
s = 5.5 TeV, the average multiplicity density

per participant nucleon pair was estimated to be about a
factor of 3 larger than that at the RHIC energy [28]. The
corresponding longitudinal fluid shear and the average c.m.
energy of a quark pair will be about a factor 6 larger than that
at the RHIC energy in the Landau fireball model, assuming
the temperature is about 1.44 higher. One can also expect the
average local longitudinal fluid shear in the Bjorken scenario
at LHC to be similarly amplified over that at the RHIC energy,
particularly at large rapidity. Therefore, the resulting net quark
polarization should also be larger at LHC.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have extended an earlier study [9] of
the global quark polarization caused by the longitudinal fluid
shear in noncentral heavy-ion collisions. We have calculated
the average local relative orbital angular momentum or longi-
tudinal fluid shear with two extreme models: Landau fireball
and Bjorken scaling. In the Landau fireball model, we assumed
a wounded nucleon model for local particle production with
both the hard-sphere and Woods-Saxon nuclear distributions.
Each parton is then assumed to carry an average longitudinal
flow velocity calculated from the net longitudinal momentum
at a given transverse position. In the Bjorken scaling model,
we considered correlation between spatial and momentum
rapidity in a three-dimensional expanding system for which
we calculated the average rapidity or longitudinal momentum
shear (derivative of the average rapidity or the longitudinal
momentum) with respect to the transverse position x. The
shear determines the local relative orbital angular momentum
in the comoving frame at a given rapidity. These two model
calculations provide estimates of the local fluid shear in two
extreme limits.

We have also extended the calculation of the global quark
polarization Pq within perturbative QCD at finite temperature
beyond the small-angle approximation of the previous study
[9], which might not be valid for small values of the local
longitudinal fluid shear or the average c.m. energy

√
ŝ of a

colliding quark pair. We found that the magnetic part of the
interaction in one-gluon exchange is particularly important at
low energies, which cancels the contribution from the electric
interaction and leads to smaller negative values of the net quark
polarization in the weak coupling limit (αs < 1). The final
global quark polarization therefore is small in both the low- and
high-energy limits. It can, however, reach a peak value of about
Pq ≈ −0.24 at an energy determined by the nonperturbative
magnetic mass

√
ŝ ∼ 4µm ≈ g2T

√
Nc/2. For

√
ŝ < µm, the

average quark polarization becomes significantly smaller.
For Au+Au collisions at RHIC, the longitudinal fluid shear

in both Landau and Bjorken models is so weak that the global
quark polarization due to perturbative quark-quark scatterings
is quite small according to our estimates that go beyond the
small-angle approximation. The effect is expected to be larger
at LHC.

We want to emphasize that the numerical estimate presented
above is based on a perturbative calculation via quark-quark
scatterings in the weak coupling limit. It is still possible
that quarks could acquire large global polarization through
interaction in the strong coupling limit, as hinted at by our
results with large values of the strong coupling constant even
though such a perturbative approach becomes invalid. The
finite value of the quark polarization could be detected via
measurements of the global hyperon polarization or the vector
meson spin alignment with respect to the reaction plane.
According to our estimate of the longitudinal fluid shear, the
effect is more significant at large rapidity under the Bjorken
scenario of the initial parton production. The effect could be
also larger in the case of jet production, where fluid shear is
apparently much more significant [8].

In the limit of vanishing local orbital angular momentum
provided by the longitudinal fluid shear, the approach we used
in this paper in the impact-parameter representation might not
be valid anymore. However, the final spin-polarization due to
the spin-orbital interaction should approach zero in this limit,
which is approximately the result of our full calculation.
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