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Analyzing power in elastic scattering of electrons off a spin-0 target
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We consider the analyzing power on a spin-0 nuclear target. This observable is related to the imaginary part
of the two-photon-exchange (box) diagram. We consider the contributions of elastic and inelastic intermediate
states. The former requires knowledge of the elastic nuclear form factor, while the latter uses the optical theorem
as input. The elastic contribution scales as the nuclear charge Z, while the inelastic contribution scales as the
ratio of the atomic number and nuclear charge, A/Z. We provide estimates for *“He and 2**Pb, in the kinematics
of existing or upcoming experiments. In both cases, we predict negative values for the analyzing power of a few
parts per million, and the dominant contribution is due to inelastic intermediate states. The analyzing power can
contribute a substantial systematic error in parity-violating experiments.
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I. INTRODUCTION

Over the past few years, much attention has been paid
to the two-photon-exchange (TPE) effects in elastic electron
scattering off nucleons and nuclei. The discrepancy between
the values of the elastic form factor ratio of the proton,
G /Gy, obtained with the Rosenbluth separation technique
[1] on one hand and the polarization transfer technique [2] on
the other hand is believed to be due to these TPE effects [3].
To ultimately disentangle these effects, two experiments are
planned at JLab [4] and at VEPP ring [5] that will measure the
ratio of the electron and positron cross sections.

Another way to measure the TPE effects is to study
the analyzing power, called Mott asymmetry in low energy
polarimetry. This asymmetry involves a transversely polarized
beam of electrons. Because of time reversal symmetry, a
nonzero asymmetry requires a nonzero imaginary part of the
elastic amplitude and is due to exchange of at least two photons.
This observable scales naively as %Zozem, with m, being the
electron mass, E the beam energy, Z the charge of the target
particle, and oy, the fine structure constant. A rough estimate
gives 10 ppm for the case of 500 MeV beam scattering off the
proton target.

Parity-violating (PV) experiments use a longitudinally
polarized beam of electrons and measure the difference in
cross section due to flipping the beam polarization. Such PV
asymmetries are typically of order 1 ppm. It can be seen that
a small transverse component of the electron spin can lead to
a substantial systematical effect on the PV asymmetry. On the
other hand, the analyzing power can be measured easily with
the same apparatus used in PV experiments. There exist several
measurements of this effect [6] and a number of theoretical
estimates [7,8] for the proton target. In the case of a nuclear
target, the effects of the exchange of two photons is expected
to be even more important, as it grows with the nuclear charge
Z. This article is dedicated to calculating the analyzing power
on two spin-0 nuclear targets used in two PV experiments
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runnning at JLab. The HAPPEX experiment [9] uses the “He
target and a 3 GeV electron beam. The PREX experiment [10]
uses the 2%8Pb target and 850 MeV electrons. This article is
organized as follows. We start with defining the kinematics and
conventions in Sec. II. In Sec. III, we calculate the imaginary
part of the elastic electron-nucleus amplitude due to elastic
and inelastic intermediate states. In Sec. IV, we present the
results of our calculation for “He and 2% Pb, and discuss their
implications for the experiment.

II. KINEMATICS AND OBSERVABLES

The kinematics of elastic electron-nucleus scattering pro-
cess e(k) + N(p) — e(k’) + N(p’') is fixed by three indepen-
dent vectors,

p_Ptp
2
k+ Kk
K = 1
5 (D
q=k—kK =p' —p,
and two independent Mandelstam invariants, 0% = —q2 >0

andv = (P - K)/M,where M denotes the mass of the nucleus.
The usual polarization parameter ¢ of the virtual photon can
be related to the invariants v and Q2 (neglecting the mass of
the electron here):
- M2(1
e L MEUYD) @
24+ M2t(1+ 1)

with T = Q?/(4M?). The elastic scattering of electrons off a
spin-less nuclei is described by two amplitudes,

2
T = éa(k/) {meAy + AP u(k). 3)

The amplitudes A , are functions of the invariants v, 0%.In
the one-photon exchange (OPE) approximation, the helicity-
flip amplitude A; vanishes, while the amplitude A, is related
to the elastic nuclear form factor that only depends on #:

A = 2ZFy(0Y, )
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with Z being the nuclear charge. The unpolarized cross section
is given by

do d()'()
V(0 —— )
d QLab Fi dSQan’
with the usual Rutherford cross section
doy _ 40272 cos? % E_/3 ©
dQap o4 E’

© is the electron Lab scattering angle and E(E’) the incoming
(outgoing) electron Lab energy. The analyzing power, or beam
normal spin asymmetry, is defined as

A, = 7% 7
GT +O’¢

where o4 (o) denotes the respective elastic cross section with
the incoming electrons polarized along the positive (negative)
normal vector S7,

SY = eupys P*KPg°. ®)

This observable requires a nonzero imaginary part of the
elastic amplitude; thus it is identically zero in the OPE
approximation. Including the exchange of two photons, we
obtain to leading order in aep,

e 6 ImA
Al’l — _m_tan Zem L’ (9)
NG 2 ) ZFy(0%
with ImA| ~ O(cem).

III. IMAGINARY PART OF THE TPE AMPLTUDE
The imaginary part of the TPE amplitude is given by

s 1 /d% 1
e l;w .
@n)y ) 2E, 010}

where we explicitly set the intermediate electron on-shell,

ImTy, = W (10)

E = \/m . The leptonic tensor is given by

Lw = a(k)y(ky + me)y,u(k). an

A. Elastic contribution

In the case of the elastic intermediate state (cf. Fig. 1), the
hadronic tensor is

W = 78((P 4+ K — k1) — MH)2p + )" 2p' + ¢2)"
x Z2Fy(0%) Fx (02). (12)

Above, gi' = k — ki denote the incoming andgy = k' —k
the outgoing photon momenta, and Q? 2= qlzyz, respectively.

N %

FIG. 1. The nucleus box-graph. The shaded blobs represent the
nuclear form factor.
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Gauge invariance of the leptonic tensor leads to gi'l,, =
g5l = 0. For the imaginary part, the form factors Fy are
the on-shell form factors, and we use experimental fits for
them.

Evaluating the remaining é function in the c.m. frame, we
are left with the integral over electron’s solid angle €21,

2264 E] dQ]
872 s ) 0103
with the invariant s = (P 4+ K)*> =

ImT5), = Lowp" p" Fx(03) Fn(03), (13)

M?* +2Mv + Q?/2, and

E = ’2_\73 denoting the c.m. energy of the intermediate
electron. w? stands for the invariant mass squared of the

intermediate hadronic state. It equals to M? for the elastic,
and lies between the threshold for pion production (M 4+ m )
and the full energy s for inelastic intermediate states.

The integral over the intermediate electron’s solid angles

can be rewritten in terms of the exchanged photons’ virtualities
2

1,2°
4EE
‘ d
[asi=gp [ / 2 .
1 03)(0:-02-)
(14)
The limits of the integration Q. are given by
_ El 2 2 QZQ%
0:= 20 +01 -2

E 2 2
+2 /ngf\/fl 1— 4%) <1 - 4EQ;51). (15)

Figure 2 displays the area of the accessible values of Qiz for
different kinematics and for the case of the nucleon target.
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FIG. 2. (Color online) Allowed values of the exchanged photon
virtualities Q7 , are restricted to be inside the ellipses. The left
panels display the allowed range of the photon virtualities for Ey ., =
850 MeV, and the right panels show those for Er, =3 GeV for
three different values of the c.m. scattering angle. The upper panels
in both cases correspond to the elastic intermediate state, w = M,
while the lower panels show the case of inelastic intermediate states
with w > M.
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By means of standard methods including Dirac algebra and
the reduction of vector 4-point integrals to scalar 3- and 4-point
integrals, we can identify the imaginary part of the amplitude
A

A — Z%a 0? s + M?
! 02 — =M 5 — M2

T
4E2 0. 402
x f do? / 2Q2 -
oo J(e-0)(ei-0)
Q*— 01— 0} 2 2
X ———————=Fn(07)Fn(0Q3)
We notice that the analyzing power does not contain any IR

(infrared) divergencies, so that the integrand in the above
formula is regular for any allowed values of Qiz.

(16)

B. Inelastic contribution

We next estimate the contribution of the inelastic interme-
diate states to the imaginary part of A in the case of forward
scattering angles. We can provide a realistic estimate for the
case of nearly forward scattering, as it was proposed for the
proton target in Refs. [11] and [12]. In the forward direction,
the imaginary part of the doubly virtual Compton scattering
amplitude is given in terms of the structure functions W, », and
making use of Callan-Gross relation, we have

WH =W, (wz, Q%)
Plq] + P'qy  (q192)
(PK) (PK)?

The structure function W is related to the virtual photon
cross section,

x {—g‘“’—}— P“P”}. (17)

w? — M?

W, =
! 2me?

oyn (w2 07). (18)
In Ref. [12], it was shown that for the analyzing power at

very forward angles, the Qf , dependence of the cross section

can be neglected, as it leads to corrections in powers of Q%/k?;
thus,

w2_M2

—5ozorn ).
The integral over the electron’s angles can be performed

analytically, and we are left with the integral over the

_ wi-M2.
laboratory photon energy w = “—7~:

W ~ (19)

: 1 M [P 2 (Ey :
ImA™ = — —— | dowo,y(w)In Q2 (Erw _ 1 ,
4 2 ELab 0 m2 w
(20)
where Ey,, = % is the laboratory electron energy. The pho-

toabsorption cross section has been measured from threshold
to high energies for various nuclei, and it is known to approx-
imately scale as the atomic number of the nucleus. Therefore,
the inelastic contribution to A, scales approximately as %,
while it scales as Z for the elastic contribution.
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IV. RESULTS AND DISCUSSION

We now present our results for the analyzing power. We
combine Eq. (16) with Eq. (9) for the contribution of the elastic
intermediate state. For the inelastic contribution, additional
input is required. We have calculated the imaginary part of the
amplitude A; by taking the exact forward limit for the nuclear
Compton amplitude where the optical theorem is applicable.
To depart from zero scattering angle, we have to make an
assumption about the # dependence of the Compton scattering
amplitude. In the case of the proton, Refs. [11] and [12] use the
slope of the differential Compton cross section for the proton
target [13] known for —¢ = 0?<1GeV?,

d
a0 d_" x P
dt dt |,_o

with B ~ 8 GeV~2. Because the differential cross section is
related to the amplitude squared, the ¢ dependence is naturally
modeled by

@1

ImA, (v, 0%) ~ ImA;(v) x e B2"/2, (22)

Generalizing this approach to the case of the nuclear target,
we can write for the analyzing power

L ne ﬂé gN(Qz) an Oc.m.
477 Er 5 Z Fn(0) 2

Evrap 2 2
X fda)a)oyl,(a)) In |:Q_2 <ELab _ 1) :| @3
0 m w

where gy (Q?) is the phenomenological Compton form factor
for a nucleus N, and we made use of an approximate scaling
of the photo absorption cross section with the atomic number
A. Unfortunately, the ¢ dependence of Compton data is not
known for nuclei. Because the ¢ dependence of the elastic
form factors of nuclei is much steeper than that of the nucleon,
we also expect that the slope of the Compton differential cross
section should be much steeper as well. Therefore, to provide
an adequate prediction for the inelastic states’ contribution to
the analyzing power at a nonzero scattering angle, we make a
substitution in the above formula:

gn(0H g0
Fy(Q®»  Fr(Q?y

with gp(Qz) = Exp[—gQZ] and Flp being the proton Dirac
form factor.

There exist data on the Compton scattering off He* target
that give the Compton slope of 32.954 1.91 GeV~2 for
3.3 GeV photons [14]. We confronted our ansatz of Eq. (24)
for the ¢ dependence to this experimental Compton form factor
divided by the He* elastic form factor and found that the two
parametrizations agree within 10-20% in the forward angles
range. We use the parametrization of Eq. (24) throughout this
section for both helium and lead targets. Another comment on
the approximations used is in order here. Our calculation relies
on the Callan-Gross relation between the structure functions
Fy and F,. This relation reflects the fact that the longitudinal
cross section must vanish at the real photon point. However, in
the intermediate range of Q2, this relation is only approximate,

Ainelast ~
~ —
n

(24)
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and we suspect that, for a spin-0 target, such longitudinal (or
Coulomb) corrections might be quite sizable. We leave this
issue to be settled in a future work.

If we assume that the photoabsorption cross section is a
constant in energy (which is roughly the case at energies
above the resonance region, say, w>2.5 GeV, with o,, ~
0.1 mbarn), the integration can be performed analytically, and
we obtain the simple formula

. 2 2] 2

Ai’nelast ~ ASM tan c.m. In Q_ —2]), (25)
Fy(Q?) 2 m?

where A% = _W?ng%%% ~ —4 ppm for lead. This result

is analogous to that of Refs. [11] and [12] obtained for the
spin-% target. Analyzing this formula for a heavy nucleus, we
can deduce the energy dependence at very forward angles,
where the Compton slope is irrelevant:

Ocm 4E}? Oc.m
AnNAStan i'(ln%—2+21nsin ) (26)
m 2

e

Having in mind that A? defined above grows linearly with
energy, we see that at fixed (forward) angle, the analyzing
power behaves as E In E. At high energies, the phenomeno-
logical ¢ dependence tends to partially cancel this growth. On
the other hand, for fixed momentum transfer, the analyzing
power is practically independent on the beam energy, as was
noticed in Ref. [11].

We present the results for the A, for two different spin-0
nuclei. In Fig. 3, we display the analyzing power on 2%Pb in
the kinematics of the PREX experiment, 850 MeV beam and
forward angles. It can be seen that the inelastic contributions
give the main contribution, although the elastic contribution is
also not negligible. The sum of the two leads to approximately
—4 ppm at 6°. The elastic curve in Fig. 3 corresponds not to
the calculation presented in this article, but to the calculation
of Ref. [15] that sums the Coulomb distortion effects to all
orders in Zoten.
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FIG. 3. (Color online) Analyzing power on 2®Pb at the electron
beam energy of 850 MeV as a function of the c.m. scattering angle
in degrees. Contributions from elastic (dash-dotted) and inelastic
(dashed) intermediate states are shown, as well as their sum (solid).
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FIG. 4. Inelastic contribution to analyzing power on 2®Pb at the
electron beam energy of 2.7 GeV as a function of the c.m. scattering
angle in degrees.

In Fig. 4, we display the inelastic contribution to A,, on lead
at forward angles and a higher energy of 2.7 GeV. The elastic
contribution is not shown, because it is very small in those
kinematics.

For the “He target (Fig. 5), the elastic contribution is largely
suppressed, both by a smaller nuclear charge than in the case of
lead and by kinematics. The only sizable contribution comes
from the inelastic intermediate states and accounts for about
—10ppm at 10° c.m. scattering angle. This result closely agrees
with the calculation of Ref. [16]. The exact number has to be
taken with care, because it relies on a model-dependent ¢ slope
that was taken the same as for the proton. This model should
work at very small values of O, but will fail at larger values.
Whether or not the point Q% &~ 0.1 GeV? is inside this reliable
range is definitely worth a future study.

Finally, we discuss the quality of the leading order in aep,
approximative result for the analyzing power of Eq. (16) by

Analyzing power (ppm)

S IS S S R S S SO S N S S
0 5 10 15 20

0 (deg)

FIG. 5. (Color online) Analyzing power on “He at the electron
beam energy of 3 GeV as a function of the c.m. scattering angle
in degrees. Contributions from elastic (dash-dotted) and inelastic
(dashed) intermediate states are shown along with the sum of the
two (solid). The data point is from Ref. [9].
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FIG. 6. (Color online) Elastic contribution to the analyzing power
on *He at the electron beam energy of 3 GeV as a function of the c.m.
scattering angle in degrees. The leading order contribution (dashed
curve) is compared to the full result (solid curve) from Ref. [15].

comparing it to the full result of Ref. [15]. This comparison is
shown in Figs. 6 and 8 for “He and 2®Pb targets, respectively.
The expansion is performed in “small” parameter Zw,y,; thus
it is expected to work well for helium, but not for lead where
Zotem = 0.6. Indeed, Figs. 6 and 7 demonstrate that for the
whole interval in the scattering angle, the agreement between
the two calculations is good, apart from the vicinity of the
diffraction minimum in the “*He elastic form factor that enters
the denominator of Eq. (16). The leading order form factor is
exactly zero in the diffraction minimum, while this minimum
is partially filled by including Coulomb distortion effects in
Ref. [15].

For lead, the agreement between the two calculations is
unsatisfactory, and the elastic contribution to the analyzing
power is relatively large, so it is necessary to include the higher
orders as well.

We quote some of our numerical results in the kinematics
of the HAPPEX and PREX experiments in Table I.

TABLE 1. Results for the analyzing power on *He for 3 GeV
beam energy and on 2%Pb for 855 MeV beam energy in forward
kinematics.

BOc.m.(deg) A, (ppm) Ocm.(deg) A, (ppm)
4He 208Pb 4He 208Pb

0.5° —0.09

1.0° —0.72 —0.33 11.0° —10.13 —8.12
2.0° —1.68 —0.91 12.0° —10.68 —8.85
3.0° —2.71 —1.57 13.0° —11.11 —-9.75
4.0° —-3.77 —2.31 14.0° —11.41 —10.98
5.0° —4.83 —-3.10 15.0° —11.58 —12.43
6.0° —5.87 —-3.97 16.0° —11.61 —12.94
7.0° —6.88 —4.93 17.0° —11.50 —13.05
8.0° —7.82 —5.94 18.0° —11.28 —13.39
9.0° —8.69 —6.82 19.0° —11.06 —13.98
10.0° —9.46 —7.48 20.0° —10.73 —14.97
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FIG. 7. (Color online) Zoomed version of Fig. 6.

In summary, we considered elastic scattering of electrons
off the spin-0 nuclear target. The analyzing power for this
scattering process is related to the imaginary part of the
scattering amplitude, and thus requires an exchange of at
least two photons. On one hand, the elastic intermediate state
contribution is due to Coulomb distortion and can be calculated
to all orders in the electromagnetic coupling constant [15].
Another approach capitalizes on the fact that the imaginary
part of the forward Compton amplitude is related by the
optical theorem to the total photoabsorption cross section.
Photoabsorption was measured on many nuclear targets, and
we use it as input along with the ¢ dependence of the differential
Compton cross section which is needed to depart from the exact
forward limit. We applied this approach to “He and 2**Pb nuclei
in the kinematics of present parity-violation experiments and
found that the analyzing power is negative in both cases and is
about —10 and —4 ppm, respectively. The analyzing power is
relatively large. Experimentalists should take care to ensure
that it does not contribute a large systematic error to the
extraction of parity-violating observables.

We showed that the account of Coulomb distortions to all
orders in Za., modifies significantly the elastic contribution
to the analyzing power for 2°®Pb. At the moment, only the
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FIG. 8. (Color online) The same as in Fig. 6 for the case of 2%*Pb.
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leading order inelastic contribution was calculated; however,
it is plausible to assume that also this can be substantially
modified, although not at the order-of-magnitude level, by the
inclusion of the higher orders effects. This issue should be
addressed in the future.
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