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Role of deformation on giant resonances within the quasiparticle random-phase approximation and
the Gogny force
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Fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) calculations
have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-
Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed 26−28Si and 22−24Mg
nuclei as well as in the spherical 30Si and 28Mg isotopes are presented. Theoretical results for isovector-dipole
and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear
deformation is discussed.
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I. INTRODUCTION

A major challenge in theoretical nuclear physics is the
development of a universal approach able to describe the
excited states of all nuclear systems with the same accuracy.
From this perspective, models based on the random-phase
approximation (RPA) [1] are well-suited in rigid nuclei as they
describe on the same footing both individual and collective
excited states. Such approaches have been successfully applied
to different nuclear systems. However, most of these first
calculations were restricted to spherical nuclei with no pairing
correlations. The generalization of these RPA calculations
to all nuclear systems requires to treat explicitly pairing
correlations, the intrinsic nuclear deformation and the con-
tinuum coupling. In practice, it is hard to achieve all these
improvements at once. Choices have been made according
to the physics under study. Pairing correlations have been
included to describe excited states of open-shell nuclei, and
then the quasiparticle RPA (QRPA) formalism has been used
[2,3]. Because of the increase of the number of unstable nuclei
experimentally accessible, some effort has been made also to
treat the continuum coupling in RPA approaches [4–6] as well
as in QRPA ones [7–11]. Progress has also been made in the
development of high order (Q)RPA calculations [12–14]. Since
the work of Gering and Heiss [15], deformed (Q)RPA models
have been developed [16–18]. Let us note that many of these
improvements have also been applied on top of relativistic
mean field calculations [19–21]. It is worth pointing out that all
these developments should be made along a consistent line: it
has been shown that neglecting parts of the residual interaction
in the RPA equations can strongly affect predictions [22–27].
Then, more and more calculations are now performed using
fully self-consistent (Q)RPA approaches [24,28].

In this paper, a fully consistent axially-symmetric-deformed
Hartree-Fock-Bogolyubov (HFB)+QRPA approach using a
unique effective force, namely the D1S Gogny interaction
[29], is presented. This approach can be applied in open or
closed-shell nuclei and in spherical or deformed ones. The
present study is the first application of this method and is
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devoted to giant resonances in the s-d shell nuclei, 22−28Mg
and 26−30Si. Many experimental results are available for light
nuclei [30–40] and a recent reanalysis of experimental data
in 28Si shows that giant resonances in these nuclei are still
of great interest [40]. These Magnesium and Silicon isotopes
display different ground state deformations, then they are good
candidates for studying the impact of intrinsic deformation on
giant resonances. In the past, the shift in energy of isoscalar
response for deformed nuclei was estimated with macroscopic
models, as reviewed in section 4.7 of Ref. [41].

In Sec. II, an outline of the QRPA method is presented.
Practical aspects of our approach are discussed in Sec. III.
Mean field calculations for 22−28Mg and 26−30Si are presented
in Sec. IV, together with results for intrinsic deformations and
pairing energies. Isovector dipole responses are discussed in
Sec. V and isoscalar monopole quadrupole and octupole results
in Sec. VI. Results are compared with experimental data and
systematic laws. Conclusions are drawn in Sec. VII.

II. FORMALISM

Approaches based on the RPA have been found to be
successful in explaining low-lying multipole vibrations and
giant resonances. The QRPA extension, which allows one
to treat on the same footing particle-hole (ph), particle-
particle (pp), and hole-hole (hh) excitations is well suited for
both closed-shell and open-shell nuclei. In particular QRPA
approaches on top of HFB calculations describe collective
vibrations of the nuclear mean field and pairing field together
with induced ground state correlations.

In the QRPA approach, the quasi-boson operators θ+
n

representing nuclear excitations are defined as

θ+
n = 1

2

∑
ij

(
Xij

n η+
i η+

j − Y ij
n ηjηi

)
, (1)

where η+
i and ηi are quasiparticle (qp) creation and annihila-

tion operators, respectively. Xn and Yn are the amplitudes of
the two quasiparticles (2-qp) excitations. The QRPA ground
state |0̃〉 and the QRPA excited states |n〉 satisfy the equations:

θ+
n |0̃〉 = |n〉, θn|0̃〉 = 0. (2)
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QRPA equations are obtained through the second derivative of
the energy functional built with an effective interaction, in the
present work the Gogny force D1S [29]. QRPA equations can
be converted into a matrix equation:(

A B

B A

) (
Xn

Yn

)
= ωn

(
Xn

−Yn

)
, (3)

where ωn are the energies of the QRPA excited states |n〉. In
Eq. (3), the matrices A and B are real and symmetric since the
time reversal symmetry T and the T �2 symmetry, where �2

is the reflection with respect to the (x0z) plane, are assumed.
A and B are built using the same Gogny D1S effective force
in all ph, pp, and hh channels.

To obtain the QRPA energies ωn and the amplitudes Xn and
Yn, Eq. (3) is rewritten as

(A − B)(A + B)(Xn + Yn) = ω2
n(Xn + Yn). (4)

Introducing the matrix S which diagonalizes (A − B) with
D = S−1(A − B)S, Eq. (4) can be rewritten

D1/2S−1(A + B)SD1/2D−1/2S−1(Xn + Yn)

= ω2D−1/2S−1(Xn + Yn), (5)

i.e., as the eigenvalue equation:

CVn = ω2
nVn, (6)

where C and Vn are defined as

C = D1/2S−1(A + B)SD1/2, (7)

and

Vn = D−1/2S−1(Xn + Yn). (8)

Let us note that since the matrices A and B are real
and symmetric, S can be chosen orthogonal (S−1 = ST ).
Consequently C is a symmetric matrix.

The QRPA energies ωn are then calculated as the positive
square-root of the eigenvalues ω2

n of C. Using the same
procedure for

(A + B)(A − B)(Xn − Yn) = ω2
n(Xn − Yn),

similar to Eq. (4), and the orthonormalization relation
Xn

T Xn′ − Yn
T Yn′ = δnn′ the QRPA amplitudes Xn and Yn are

then obtained as


Xn = 1

2

[
D1/2

√
ωn

+ D−1/2√ωn

]
Vn

Yn = 1

2

[
D1/2

√
ωn

− D−1/2√ωn

]
Vn.

(9)

Such a procedure, used to solve the QRPA equations [Eq. (3)],
has the advantage of reducing the size of the matrix to be
diagonalized by half. The condition of positive-definiteness of
at least one of the matrices A + B,A − B can be relaxed using
a generalized Cholesky decomposition [42].

In the present approach, the matrix equations are solved
in the finite space of N 2-qp excitations. Then, (A − B) and
C are N × N matrices and are diagonalized using standard
routines giving all eigenvectors and eigenvalues. Let us note
that ω2

n, the solutions of Eq. (6), can be negative and then

lead to imaginary ωn values. Such complex eigenvalues of the
QRPA matrix represent unstable collective modes. However, as
discussed in Ref. [1], it is always possible to find a solution of
the HFB equations which makes these collective modes stable
and consequently ensures that they have real frequencies.

In the present work, axially-symmetric-deformed (ASD)
HFB calculations are performed in even-even nuclei imposing
some symmetries, T , T �2 and also axial and left-right
symmetry. Then the projection K of the angular momentum on
the symmetry axis and the parity π are good quantum numbers.
Consequently ASD-QRPA calculations can be performed
separately in each Kπ block. In the following, the ASD-QRPA
states |n〉 of Eq. (2) will be labeled with the angular momentum
projection K and rewritten as |nK〉. Time-reversed states will
be written |nK〉.

States |JMK〉n of good angular momentum J are obtained
projecting the intrinsic excitations |nK〉 according to

|JMK〉n =
√

2J + 1

4π

∫
d�

(
DJ

MK

∗
(�)R(�)|nK〉

+ (−)J−KDJ
M−K

∗
(�)R(�)|nK〉), (10)

where � are Euler angles, DJ
MK Wigner rotation matrix

elements, and R(�) the three dimensional rotation operator.
In the QRPA approach all quantities are calculated relative

to their values in the ground state. The response of the system to
an external field, such as a multipole operator Q̂λµ, is obtained
from |〈000|Q̂λµ|JMK〉|2, i.e., the square of the transition
matrix elements between projected |JMK〉 states of Eq. (10)
and the projected QRPA ground state |000〉. Using Eq. (10),
one gets

〈000|Q̂λµ|JMK〉n =
∑

ν,|ν|� J


JK〈0̃|Q̂Jν |nK〉δKν, (11)

where |0̃〉 is the ASD-QRPA vacuum of Eq. (2) and the

JK coefficients are obtained from straightforward algebraic
calculations.

In an axially-symmetric-deformed nuclear system, the
response function of a given Jπ contains different Kπ =
0π ,±1π , . . . ±Jπ components. In spherical nuclei, all these
components are degenerated in energy, then the response
functions associated to any multipolarity can be obtained from
Kπ = 0± results only. This property has been used to check
the newly-built ASD-QRPA computer code.

The collectivity of each QRPA state is obtained through its
contribution to the total energy-weighted sum rule (EWSR)
M1(Qλµ) = ∑N

n=1 ωn|〈000|Q̂λµ|JMK〉n|2. The mean energy
of the QRPA resonances in a given energy interval [Emin, Emax]
is calculated as

〈E〉[Emin,Emax] = M1[Emin, Emax]

M0[Emin, Emax]
, (12)

where the moments Mλ are

Mλ[Emin, Emax] =
∑

n

ωλ
n|〈000|Q̂λµ|JMK〉n|2, (13)

with Emin � ωn � Emax.
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III. CALCULATION ASPECTS

Before presenting the results on magnesium and silicon
isotopes obtained with the above formalism, let us discuss the
practical aspects of the present calculations.

First, in the present study, the HFB equations are solved
in a finite harmonic oscillator (HO) basis. Consequently the
positive energy continuum is discretized.

Second, since, as discussed by Terasaki et al. [26] QRPA
consistency is much affected by inaccurate HFB results, the
HFB equations have been solved with a very high degree of
accuracy and extremely well converged quasiparticle states are
used in QRPA calculations.

Third, all HFB quasiparticle states are used to generate the
2-qp excitation set [Eq. (1)]. This means that no cut in energy
or in occupation probabilities is introduced. Our model space
includes N0 = 9 HO major shells. This is a large enough space
for nuclei studied here. We checked that the calculated EWSR
is altered by less than 2% when going from N0 = 9 to N0 =
11 HO major shells.

Fourth, as already emphasized, the omission in the QRPA
calculations of parts of the two-body force which are included
in the HFB mean field and pairing field may lead to large
errors in strength functions. Such a lack of consistency is often
responsible for a redistribution of the strength [22–27] and a
strong spurious state mixing [24]. In the present calculations,
the same effective Gogny D1S nucleon-nucleon force is used
to solve both the HFB and the QRPA equations in all ph, pp,
and hh channels. However, since the Coulomb exchange field
is not taken into account in HFB, the corresponding QRPA
terms have been set to zero in order to maintain consistency.

Finally, as RPA-type approaches restore broken symme-
tries, violations of conservation laws by the HFB wave function
lead to spurious states. Spurious states are expected to have
zero energy eigenvalues in the (Q)RPA spectrum [1]. In
the present axially-symmetric-deformed QRPA calculations
there are seven spurious states. Except for two of them
related to particle number violation, spurious states differ
from one another since no two of them have the same
Kπ quantum numbers: Kπ = 0−,±1− for translational ones,
Kπ = ±1+ for rotational ones, and Kπ = 0+ for particle
number ones. Since our calculations have been performed
along a consistent line, with (i) the same interaction in HFB and
QRPA calculations, (ii) highly converged HFB calculations,
(iii) no cutoff in single particle excitations, and (iv) a large
enough HO basis, these spurious states are easily identified
with large values of X � −Y and they are found to be
well separated from physical excitations. They are found at
0.001 keV energy for Kπ = 0+, around 500 keV energy for
Kπ = ±1+ and less than 1.8 MeV for Kπ = 0−,±1−. The
spurious modes relative to translational invariance are more
sensitive to the finite size of the HO basis, which prevents us
from fully restoring translational invariance. In order to put all
these spurious modes at zero energy, renormalization factors
could have been introduced. However, as studied in Ref. [17],
renormalization factors associated to different spurious modes
would differ from each other and no universal choice exists. A
corrected dipole operator could also be used but, as mentioned
in Ref. [26] responses for the corrected and uncorrected

operators are indistinguishable in the case of fully consistent
HFB+QRPA calculations. In view of this, the results presented
below have been obtained with uncorrected operators and no
renormalization factors has been included.

IV. HFB RESULTS FOR 22−28Mg AND 26−30Si

Constrained ASD-HFB calculations have been performed
in 26−30Si and 22−28Mg nuclei. Potential energy curves for the
seven nuclei are plotted in Fig. 1 as functions of the axial
deformation parameter β:

β =
√

π

5

q20

AR2
, (14)

where q20 is the mean value of the axial quadrupole
operator Q̂20 = ∑A

i=1

√
16π/5r2(i)Y20(i), and R2 =

3/5(1.2A1/3)2 fm2.
We observe that (i) the N = 16 nuclei, 30Si and 28Mg, are

found spherical, (ii) the Z = 12 nuclei, 22Mg and 24Mg, are
strongly prolate with β = 0.47 and 0.52, respectively, and (iii)
Z and/or N = 14 ones, 26Si, 28Si, and 26Mg, present large
oblate deformations with β � −0.3. In all these nuclei, except
spherical ones, the potential energy curves exhibit a secondary
minimum as function of axial deformation. HFB calculations
in triaxial symmetry show that these minima are connected to
the ground state through triaxial deformations. In these light
nuclei, only two protons (or two neutrons) radically change
the deformation of the HFB ground state: this is of course a
consequence of shell effects, which are also responsible for
the vanishing of the pairing energy in specific deformation
ranges. In open shell systems the pairing energy take on a
large value. This value is smaller when there is a significant
single particle gap above the Fermi level. The canceling of the
pairing energy is associated with closed shell systems [43].
Here the pairing energy is defined as Ep = 1

2 Tr(�κ) and is
calculated separately for neutrons and protons, with � the
pairing field and κ the abnormal density [43]. In Fig. 2,
proton and neutron pairing energies are plotted as functions
of β in dashed and solid lines, respectively. These pairing
energies range from 0 to 6 MeV. The most striking feature of
Fig. 2 is that a strong competition is found between the Z,
N = 12 prolate subshells and the Z, N = 14 oblate ones. In
24
12Mg12 and 28

14Si14 nuclei, proton and neutron pairing energies
are canceling at the same deformation: prolate for 24Mg and
oblate for 28Si. On the contrary in 26Si and 26Mg proton and
neutron pairing energies do not vanish at the same deformation.
Corresponding potential energy curves of 26Si and 26Mg
(Fig. 1) present two minima, one for each subshell. These
minima are close in energy, in contrast to those in 28Si and 24Mg
which are separated by more than 2 MeV. In the N = 16 30Si
and 28Mg nuclei, the neutron pairing energy almost vanishes
for β � 0.3, and for β = 0 and spherical shapes are stabilized.
The N = 10 neutron pairing in 22Mg presents a minimum at
very large deformation.

In the following, QRPA calculations are performed using
the quasiparticle states associated with the HFB solutions
with minimum energy in all nuclei. These solutions are
either prolate (22−24Mg) or oblate (26−28Si, 26Mg) or spherical
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FIG. 1. HFB potential energy curves V as functions of the axial deformation parameter β for 26−30Si and 22−28Mg.

(28Mg, 30Si). In 24Mg and 28Si, since the total pairing energy
is zero in the HFB ground state, QRPA calculations reduce to
conventional RPA ones, where elementary excitations are of
particle-hole type. First results for these two nuclei have been
presented previously in a conference proceeding [44]. In the
other nuclei under study, the full QRPA formalism is necessary
as either proton or neutron pairing correlations are present in
the HFB ground state.

V. DIPOLE RESPONSE

As mentioned in [41], the first evidence of giant-resonance
phenomena in nuclei was obtained in 1937 [45], and the
notion of a dipole oscillation of the nucleus was recog-
nized by Migdal in 1944 [46]. The results of many years
of experimental work on the isovector giant dipole reso-
nance (IVGDR) have been summarized and reviewed in
several papers [47–49]: in light nuclei the strength dis-
tribution is fragmented into several components, whereas
it is separated into two major components in deformed
nuclei. QRPA responses to the isovector electric dipole
operator Q̂10 = ∑Z

i=1 riY10(ri) − ∑N
i=1 riY10(ri) are given in

Fig. 3 as fractions of the EWSR. The Kπ = 0−, |K|π = 1−
components are plotted in black and green, respectively.
In the two spherical nuclei 28Mg and 30Si, only the Kπ = 0−
component is drawn as |K|π = 1− states are degenerated

with Kπ = 0− ones. In all nuclei, the predicted strength is
spread over a wide energy range up to 50 MeV, such a
broad width being consistent with the fact that these nuclei
lie in the middle of the s-d shell. Negligible strength is
found at low energy which is in agreement with the fact
that pygmy states are observed only in very exotic nuclei. In
spherical nuclei 28Mg and 30Si, responses are similar: a highly
collective state is found at 23 MeV and two less collective
components around 20 MeV and 25 MeV. In deformed nuclei,
the strength is found fragmented and splits up into mainly two
components, as expected. In this study, the two components
correspond to two different angular momentum projections
K . More precisely, in the prolate 22−24Mg nuclei the lower
energy peak is associated to K = 0 states whereas the higher
one corresponds to |K| = J = 1 states. The same features
are found in the oblate nuclei 26−30Si and 26Mg, with lower
energy parts composed of |K| = J = 1 states and higher ones
composed of K = 0 states. The energy split between K = 0
and K = ±1 states is related to the intrinsic deformation of the
ground state with an opposite hierarchy for prolate and oblate
shapes. In prolate nuclei the symmetry axis is the long axis and
the |K| = J component corresponds to the alignment of the
angular momentum along this axis, whereas for oblate nuclei
the symmetry axis is the shorter one and the K = 0 component
corresponds to the alignment of the angular momentum along
the long axis. Such a splitting of giant resonance into two
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FIG. 2. Neutron (full lines) and proton (dashed lines) pairing energies Ep as functions of axial deformation parameter β in 26−30Si and
22−28Mg.

groups of transitions, corresponding to vibrations along the
major and minor axis of a deformed spheroid was already
predicted in 1958 by Okamoto [50] and Danos [51] in a long
range correlation model. Such an effect was used in order to
explain part of the broadening of the resonance widths in non
spherical nuclei.

From another theoretical point of view, Bassichis et al.
[52] have explained the GDR splitting in 24Mg as due to
configuration splitting: the high energy region (22–27 MeV)
is formed by 1p → (1d-2s) transitions, whereas the lower one
(13–22 MeV) contains mainly (1d-2s) → (1f -2p) transitions.
Our results are compatible with this analysis: major compo-
nents of the Kπ = 0− QRPA state at 19.35 MeV are 1d5/2 →
1f 7/2 transitions with small contributions of 2p3/2 → 2s1/2
transitions, whereas major components of the |K|π = 1−
QRPA state at 27.44 MeV are 1p3/2 → 2s1/2 transitions
with non-negligible components from 1d5/2 → 2f 5/2 ones.

By comparing our results with experimental data [38], a
relatively good agreement is found in 24−26Mg. In Ref. [39]
the general structure of the 24Mg IVGDR is detailed: a first
group of resonances at 18–21 MeV forms the main peak of the
GDR and a second one is a broad plateau at 21–27 MeV with
structures at 23 MeV and 25 MeV. The width of the GDR is
found to be 9 ± 1 MeV, in fair agreement with our results.

As mentioned in Ref. [41], a systematic law can be used
to estimate the mean energy of the IVGDR, E(IVGDR) =
31.2A− 1

3 + 20.6A− 1
6 MeV. Systematic values are compared

to our results in Table I. Theoretical values of the IVGDR
are obtained by integrating the strength from 15 to 35 MeV.
They are found roughly constant irrespective of the mass
number, contrary to the values obtained from the systematics

TABLE I. Theoretical (present work) and
systematic mean energy values of the IVDGR
(in MeV).

E(GDR) Theor. Syst.

22Mg 23.09 23.4
24Mg 23.18 22.9
26Mg 23.13 22.5
28Mg 23.03 22.1
26Si 22.91 22.5
28Si 22.80 22.1
30Si 23.17 21.7

044313-5
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FIG. 3. (Color online) Fractions of the isovector dipole EWSR in 22−28Mg and 26−30Si. In deformed nuclei, Kπ = 0− and |K|π = 1−

components are indicated in black and green, respectively.

which vary from 21.7 MeV (30Si) to 23.4 MeV (22Mg). In our
calculations, the resonance energy is found almost independent
of the deformation of the nucleus, as already predicted by
Danos [51]. In all seven nuclei the IVGDR is predicted to
exhaust around 85% of the EWSR. In prolate 22−24Mg nuclei,
high energy components dominated by |K|π = 1− states are
found to exhaust 54% of the EWSR. Low energy components,
dominated by K = 0 states, exhaust 29% of the EWSR. In
the three oblate nuclei, high energy components, dominated
by K = 0 states, exhaust around 35% of the EWSR and low
energy ones around 50%. Let us note that in a systematic
study [53] Goriely and Khan have shown that an equally
distributed strength between low energy and high energy
components give optimal agreement with experimental E1
transitions.

VI. ISOSCALAR MULTIPOLE RESPONSES

A. Monopole response

Figure 4 displays monopole responses of 22−28Mg, and
26−30Si as fractions of the EWSR.

The most striking feature is that the seven nuclei under
study present features that can be separated in three classes
depending on the deformation of their ground states.

First, the responses of the three oblate nuclei 26Mg and
26−28Si display a prominent peak around 20 MeV and a
broad component at a higher energy exhausting less than
30% of the EWSR. The low energy part of the resonance
exhausts 65%, 62%, and 66% of the EWSR in 26Mg, 26Si, and
28Si, respectively. The experimental response of the oblate
28Si [36] displaying a sharp peak close to 18 MeV and a large
fragmentation up to 35 MeV, is qualitatively reproduced by
our results.

Second, the responses of the two prolate nuclei, namely
22Mg and 24Mg, display a two-peaked structure around
18 MeV and 25 MeV, the high energy one being very
fragmented. The low energy component is found to exhaust
40% (22Mg) and 35% (24Mg) of the EWSR, and the high
energy broad component 44% (22Mg) and 48% (24Mg).

Third, only a few discrete levels emerge in spherical 28Mg
and 30Si nuclei: the low energy strength is concentrated into
two major peaks around 18 MeV and 22 MeV and a non
negligible high energy component is found at 30 MeV.

In Table II, theoretical predictions of resonance
mean energies are compared with available data [36,
37]. Theoretical values are calculated in the energy
range (9–41 MeV) as was done for experimental
data [36,37]. Values obtained from the systematic law
E(GMR) = 80A− 1

3 MeV are given in the same Table II.
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FIG. 4. Fractions of the monopole EWSR in 22−28Mg and 26−30Si.

Comparing our predictions with systematics and experimental
data we find that: (i) the mean energy is here predicted
almost constant, irrespective of the mass of the nucleus,
contrary to the A−1/3 dependence of the systematic law,
but (ii) theoretical energies are smaller than systematics,
QRPA results being close to experimental data in 24Mg and
28Si.

The splitting of monopole responses for ASD nuclei
is related to the coupling with K = 0 component of the
quadrupole responses [41].

TABLE II. Theoretical (present work), systematic, and exper-
imental mean energy values of the GMR (in MeV).

E(GMR) Theor. Syst. Exp.

22Mg 21.23 28.5
24Mg 21.06 27.7 21.0 ± 0.6
26Mg 21.99 27.0
28Mg 21.33 26.3
26Si 21.62 27.0
28Si 21.76 26.3 21.25 ± 0.38
30Si 21.85 25.7

B. Quadrupole response

Since the strength in light nuclei is found to be highly
fragmented, the experimental identification of various giant
resonances is difficult. As mentioned in Refs. [30–32], this
led in the 1970’s to substantial disagreements between various
studies [33–35]. QRPA results for quadrupole responses in
the seven nuclei under study are displayed in Fig. 5, where
Kπ = 0+,±1+,±2+ components are in black, green, and
purple, respectively. Discrete spectra have been folded with
a Lorentzian distribution, L(x) = 
/2π (x2 + 
2/4) with a

 = 2 MeV width, and the result plotted as blue lines.

In all seven nuclei, quadrupole responses are predicted to lie
between a few MeV and 30 MeV without any strength above,
contrary to dipole and monopole responses which extend up
to 50 MeV (see Secs. V and VI A). Discrete low-lying states
are found up to 18 MeV and a giant quadrupole resonance
(GQR) is predicted around 20 MeV. Let us note that the first
low-lying state is found to be |K|π = 2+ in all deformed nuclei
except 28Si. The occurrence of |K|π = 2+ states at a very low
energy is an indication of the softness of these s-d shell nuclei
with respect to the triaxial degree of freedom as mentioned in
Sec. IV. As to monopole and dipole modes, in the oblate nuclei
(26−28Si and 26Mg) |K| = J = 2 components of the GQR have
lower energies than K = 0 ones, while opposite behaviors
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FIG. 5. (Color online) Fractions of the quadrupole EWSR in 22−28Mg and in 26−30Si. In the deformed nuclei, Kπ = 0+, |K|π = 1+, and
|K|π = 2+ components are indicated in black, green, and purple, respectively. Blue curves are obtained from folding of QRPA spectra with a
Lorentzian distribution.

are observed in prolate nuclei (22−24Mg). The energies of the
Kπ = 1+ components are around 20 MeV in the two prolate
magnesium isotopes and close to 22 MeV in the oblate nuclei,
that is in between the energies of the Kπ = 0+ and of the
|K|π = 2+ components, in all deformed nuclei. The same
hierarchy was found by Hagino [17] et al. in 24Mg and in
38Mg. As the splitting of the quadrupole resonance due to the
deformation is not very large, only one broad peak is found in
the GQR. The width of the GQR is found to be smaller than the
ones of the giant dipole and monopole resonances. However
the energy splitting between K = 0 and |K| = 2 components
is arround 5 MeV in agreement with the 12–14 A−1/3 MeV
splitting obtained from macroscopic models (see section 4.7
of Ref. [41]). The quadrupole responses of the two spherical
nuclei are not much fragmented and are found to be more
collective than dipole and monopole responses.

Table III gives the theoretical mean energies of the
GQR compared with values from the systematics E(GQR)=
63A− 1

3 MeV and available measurements [36,37]. The same
energy range (9–41 MeV) is considered to calculate the
mean theoretical and experimental values [36,37]. Contrary
to monopole results, theoretical GQR energies are close to
systematic values but larger than experimental ones. In the
24Mg nucleus, the theoretical energy of the GQR (exhausting

90% of the EWSR) is 3.64 MeV larger than the experimental
one (exhausting only 72 ± 10% of the EWSR) [37]. In the 28Si
nucleus, the theoretical energy of the GQR (exhausting 91% of
the EWSR) is 1.87 MeV larger than the the experimental one
(exhausting only 68 ± 9% of the EWSR) [36]. The mismatch
of 10% in 28Si and 20% in 24Mg with experimental values
is probabely the consequence of the value of effective mass
(m∗/m = 0.7) of the D1S interaction which is the one giving
correct single-particle properties in mean-field calculations.
Let us note that a reanalysis of the experimental data in 28Si

TABLE III. Theoretical (present work), systematic, and exper-
imental mean energy values of the GQR (in MeV).

E(GQR) Theor. Syst. Exp.

22Mg 20.62 22.5
24Mg 20.54 21.8 16.9 ± 0.6
26Mg 20.97 21.3
28Mg 21.41 20.7
26Si 20.63 21.3
28Si 20.41 20.7 18.54 ± 0.25
30Si 21.44 20.3
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FIG. 6. (Color online) Fractions of the octupole EWSR in 22−28Mg and 26−30Si. In the deformed nuclei, Kπ = 0−, |K|π = 1−, |K|π = 2−,
and |K|π = 3− components are indicated in black, green, purple, and red, respectively. Blue curves are obtained from folding of QRPA spectra
with a Lorentzian distribution.

nucleus has given a higher value of the centroid energy 18.77 ±
0.35 MeV corresponding to 102 ± 11 % of the E2 EWSR in the
region (9–35 MeV) [40]. Keeping in mind that our theoretical
description does not include any adjustable parameters, the
agreement with experimental data can be considered quite
satisfactory.

C. Octupole response

Figure 6 shows the octupole responses in 22−28Mg and
26−30Si. In this figure, Kπ = 0−,Kπ = ±1−,Kπ = ±2−, and
Kπ = ±3− components are indicated in black, green, purple,
and red, respectively. As for the quadrupole response, a
folding of the QRPA spectra with a 2 MeV width Lorentzian
distribution has been performed. As known for a long time
[41], the octupole response is split into two energy compo-
nents, the low energy octupole resonance (LEOR) generally
collective and little fragmented, and the high energy octupole
resonance (HEOR). In all nuclei studied here, these two
energy components are well identified, the LEOR ranging from
5 MeV to 25 MeV and the HEOR from 25 MeV to 45 MeV.
In the oblate 26−28Si and 26Mg, the LEOR is typically made
of a highly collective |K|π = 3− state around 8 MeV and

K-mixed fragments around 15 MeV. In the prolate 22−24Mg
isotopes the LEOR is even more fragmented without major
contribution from any given angular momentum projection
K . In deformed nuclei, all K-components contribute to the
HEOR, which is found to be highly fragmented. However, the
ordering of the different K-components is still found inverted
between prolate and oblate nuclei: between 30 MeV and
35 MeV |K|π = 1− states are those contributing the most to the
strength in prolate nuclei, whereas in oblate nuclei, the strength
is due mainly by |K|π = 3− states. Octupole responses in the
spherical nuclei 30Si and 28Mg also show LEOR and HEOR
components.

Table IV gives the theoretical mean energies of LEOR and
HEOR. They are calculated in the two intervals (5–25 MeV)
and (25–45 MeV), respectively. Values calculated from the
energy systematic law of the LEOR (E = 30A−1/3 MeV)
are also given. The theoretical values of LEOR are larger
than those from systematics. They rather follow a “cor-
rected” systematics E = 35A−1/3 MeV. No systematics
exists for HEOR in light nuclei. Nonetheless our re-
sults are compatible with the systematic law E(HEOR)=
110A1/3 MeV, obtained from experimental data in heavier
nuclei [41].
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TABLE IV. QRPA LEOR and HEOR mean energy values
(in MeV) obtained integrating from 5 to 25 MeV and 25 to 45 MeV,
respectively. Values from the systematics of the LEOR are also
given.

LEOR LEOR HEOR
Theor. Syst. Theor.

22Mg 12.37 10.70 34.48
24Mg 13.49 10.40 34.83
26Mg 12.13 10.12 35.72
28Mg 11.18 9.87 35.23
26Si 11.88 10.12 34.97
28Si 11.54 9.87 34.97
30Si 11.67 9.65 35.63

VII. CONCLUSION

A fully consistent microscopic axially-symmetric-
deformed QRPA approach has been developed and applied to
light even-even s-d shell nuclei. In these calculations, the same
Gogny D1S effective force is used in both HFB and QRPA
approaches in all ph, pp, and hh channels. Results on giant
resonances have been obtained in 22−28Mg and 26−30Si isotopes
and the influence of the ground state intrinsic deformation on
strength distributions has been discussed.

In deformed nuclei, theoretical isovector dipole responses
are found split into two major components, as expected. The
splitting is found to be correlated with specific families of
ph transitions. The strength is predicted to be almost equally
distributed between the two energy components. The two

groups of transitions correspond to dipole vibrations along the
major and the minor axes of the deformed nuclear systems.
K = 0 components are found in the low energy part of the
spectra in the prolate nuclei, and |K| = 1 components in the
oblate ones.

Isoscalar monopole resonances also display a splitting
in deformed nuclei. Such a splitting is not found when a
spherical HFB state is used to construct QRPA solutions.
Isoscalar quadrupole and octupole resonances are found to
be well fragmented in particular in well-deformed nuclei.
Such a fragmentation masks the deformation splitting and
the different K broad components are overlapping. However,
LEOR and HEOR components are predicted to be well
separated, and the ordering of the K components as a function
of energy is found to be related to the sign of the quadrupole
moment. Results obtained in 24Mg and in 28Si show that the
Gogny interaction qualitatively reproduces known resonances
without resorting to any readjustment of parameters.

These results show that a fully microscopic QRPA approach
of deformed nuclei is able to provide a wealth of structure
information and a satisfactory agreement with available data.
Extensions of the present work to other nuclei, in particular
exotics ones and to phenomena such as pygmy states are under
study.
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[25] S. Péru, J.-F. Berger, and P.-F. Bortignon, Eur. Phys. J. A 26, 25

(2005).
[26] J. Terasaki, J. Engel, M. Bender, J. Dobaczewski,

W. Nazarewicz, and M. Stoitsov, Phys. Rev. C 71, 034310
(2005).

[27] T. Sil, S. Shlomo, B. K. Agrawal, and P.-G. Reinhard, Phys. Rev.
C 73, 034316 (2006).

[28] J. Terasaki and J. Engel, Phys. Rev. C 74, 044301
(2006).
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