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This article is aimed at improving the description of lepton-nucleus interactions in the sub-GeV energy range.
Approximate spectral functions for oxygen, calcium, and argon are constructed and used to obtain the electron
cross sections in a given scattering angle. Comparison with a sample of available experimental data shows
satisfactory agreement. Discrepancy between the presented model and the systematic computations available for
oxygen [O. Benhar et al., Phys. Rev. D 72, 053005 (2005)] is also found to be very small. Analysis of appropriate
kinematical regions leads to the conclusion that the obtained argon spectral function should describe well neutrino
scattering in the 800-MeV energy region. Several approximations used in the model are critically reviewed. All
the details needed to implement the presented approach in Monte Carlo simulations are given.
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I. INTRODUCTION

In the impulse approximation (IA), lepton-nucleus inter-
action is described as a two-step process: in the first step, the
lepton interacts with a single bound nucleon, and in the second
one, the resulting particles propagate inside the nucleus. The
IA formalism is the basic framework in which ∼1-GeV leptons
scattering is described: on one hand, it is the approach applied
to understand electron scattering and, on the other, it is used to
model neutrino interactions [1]. The status of these two cases
is quite different: for electrons a lot of experimental data exist,
whereas for neutrino precise measurements are still missing.
Due to this lack of knowledge, reliable theoretical models are
needed in the next generation of precise neutrino oscillation
experiments [2], possibly with liquid argon target.

To construct a successful model of neutrino-nucleus scat-
tering, the following procedure seems to be well justified:

(i) relevant kinematical region in energy and momentum
transfer has to be identified,

(ii) description of a nucleus for electron scattering should be
formulated in this kinematical region,

(iii) performance of the electron scattering model must be
confronted with the existing data, and, if the agreement
is satisfactory,

(iv) the same treatment of nuclear effects should be applied
to neutrino interactions.

This is the basic logic of this article, in which we propose a
model to describe the ∼1-GeV neutrino scattering off medium-
mass nuclei, such as calcium and argon. The article reports
continuation of the research started in Ref. [3], where a less
sophisticated description was applied to argon, and Ref. [4],
where the model was introduced.

In the IA regime, a nucleus is described by means of the
spectral function (SF). The SF contains information about the
momentum distribution in conjunction with the distribution of
binding energy of nucleons inside the nucleus. Evaluation of
the SF for medium nuclei requires several approximations.
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In our presentation, we try to identify and justify all the
theoretical assumptions, but the most important argument
for the correctness of our model is the agreement of its
predictions with the data for electron scattering. Detailed
verification of the description is performed using two targets,
namely oxygen and calcium. Oxygen was selected because
of an additional opportunity to compare results with a more
systematic theoretical approach to modeling of the SF [5],
whereas the calcium nucleus is most similar to argon’s,
for which precise measurements have been performed. Our
description of 40

20Ca is confronted also with the theoretical
results of Butkevich and Mikheyev [6]. Finally, a comparison
with the few known data for electron scattering off argon [7]
is done as well.

Basic computations of quasielastic inclusive scattering are
standard and can be found elsewhere [8]. The outcome of
numerical calculations depends on several assumptions that
specify the implementation of the SF model. We apply the re-
cent BBBA05 parametrization of the proton and neutron form
factors [9]. The off-shell hadronic current matrix elements are
evaluated with the use of the standard de Forest prescription
[10]. Furthermore, in the electromagnetic case, we adopt a
procedure to impose electromagnetic current conservation.
Such prescription is not unique, and for this reason, in the
case of weak interactions, we avoid analogous manipulations
with the vector part of the current and rely on the de Forest
approach only.

An important ingredient in calculations is the treatment of
final-state interactions (FSI). There are several approaches to
deal with them, e.g., the Wentzel-Kramers-Brillouin method,
relativistic mean-field approach [11], or correlated Glauber
approximation [12]. In the previous article [3], we adopted the
plane-wave impulse approximation (PWIA) and disregarded
FSI beyond the Pauli blocking, arguing that this approach is
sufficient to describe neutrino scattering. In this article, the
presented model is validated by confronting it with a large
sample of electron scattering data and this comparison requires
inclusion of FSI. We consider two FSI effects: Pauli blocking
and reinteractions of the struck nucleon with the spectator
system described by means of the time-independent optical
potential [12–14].
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In the lepton energy range of ∼1 GeV, two dynamical
mechanisms are most important: quasielastic (QE) scattering
(throughout this article we use the terminology of the neu-
trino community) and single pion production through the �

excitation. They clearly manifest themselves as two peaks in
the electron differential cross section in energy transfer for
fixed scattering angle. Our numerical computations include
the QE dynamics only. The reason is that our concern is
to define a systematic procedure to construct SF, and it is
sufficient to test it in the case of the QE process. Thank
to this, we avoid dynamical issues in which the theoretical
situation is not completely clear, namely the nonresonant
background and two-particles–two-holes excitations [15,16].
However, we have to pay the price for the constraint on the
dynamics we adopted; in comparisons of our predictions with
the experimental data, for higher values of the energy transfer
some strength is systematically missing. Strictly speaking, we
verify our model only in the kinematical region of energy
transfers below the QE peak.

This article is organized as follows. In Sec. II, the construc-
tion of our model is described. In Sec. II A, we present basic
formulas for the lepton-nucleus cross section and introduce
notation used throughout the article. Section II B discusses a
relation between kinematical regions in electron and neutrino
scattering. In Sec. II C, a method to approximate SFs is given.
The treatment of FSI effects in our model is covered in
Sec. II D. Section II E provides the parametrization of the SFs
for oxygen, calcium, and argon. The information is detailed
enough for everybody to be able to implement our results in
their own numerical codes.

In Sec. III, our results are compared to large data samples
for electron scattering off oxygen, calcium, and argon, selected
according to the conclusions of Sec. II B. Our predictions are
also confronted with other theoretical approaches. We observe
that the performance of the presented description of nuclei is
satisfactory and arrive at the conclusion that when applied to
neutrino scattering, the model should produce reliable results.

Section IV is devoted to a discussion of the approximations
used in this article. We consider plausible modifications of the
adopted parameters and try to understand how uncertain our
results for the cross section are.

Finally, in Sec. V, we summarize the conclusions of this
article. Because the most important features of the predictions
seem to follow from the very basic assumption of the IA, the
failure of the model in some kinematical situations may be
interpreted as a failure of the IA itself. The presented results
suggest that the IA starts to be unreliable when the typical
value of momentum transfer is smaller than ∼350–400 MeV.

II. DESCRIPTION OF THE MODEL

A. General information

We consider quasielastic (QE) electron scattering off
a (Z,N ) nucleus of mass MA, which changes its four-
momentum from k ≡ (Ek, k) to k′ ≡ (Ek′, k′). Associated
with this interaction energy and momentum transfers are
ω ≡ Ek − Ek′ and q ≡ k − k′, respectively. When the impulse
approximation holds, i.e., when only one nucleon is involved in

the primary vertex, nuclear effects can be described by means
of the spectral function.

The proton spectral function (SF) of a given nucleus
P(p)(p, E) is the probability distribution of removing from this
nucleus a proton with momentum p and leaving the residual
nucleus with energy

ER = MA − M + E + TA−1,

which includes recoil energy of the residual nucleus TA−1 =
p2/(2MA−1), compare Refs. [8,17]. The neutron SF is defined
in an analogous way.

Energy balance of QE production of a free nucleon carrying
four-momentum p′ = (Ep′ , p′),

ω + MA = ER + Ep′ ,

may be rewritten in a useful form using removal energy E,
which is an argument of the SF:

ω + M − E = TA−1 + Ep′ .

In Sec. II C, we will justify that the recoil energy can be
neglected, and therefore from now on, the energy balance

ω + M − E = Ep′ (1)

is used.
According to the IA, the inclusive electron-nucleus cross

section is the sum of contributions from protons and neutrons:

dσ

dωd|q| = dσ(p)

dωd|q| + dσ(n)

dωd|q| .

Each term is expressed by the standard formula

dσt

dωd|q| = 2πα2 |q|
E2

k

∫
dE d3p

Pt (p, E)

EpEp′

× δ
(
ω + M − E − Ep′

)
Lem

µνH
µν
em,t , (2)

where the index t denotes the nucleon isospin. The leptonic
tensor is given by

Lem
µν = 2(kµk′

ν + k′
µkν − k · k′ gµν),

due to negligible mass of electron, and the hadronic tensor is

H
µν
em,t = M2H1, t

(
− gµν + qµqν

q2

)
+H2, t

(
pµ − p · q

q2
qµ

)(
pν − p · q

q2
qν

)
,

with the scalar coefficients H1, t and H2, t depending on q2 ≡
ω2 − |q|2 and τ = −q2/(4M2) in the following way:

H1, t = τ (F1, t + F2, t )
2,

H2, t = F 2
1, t + τF 2

2, t .

The form factors Fi, t = Fi, t (q2) are in turn expressed by the
appropriate electric Ge, t and magnetic Gm, t form factors [9].

To handle the problem with the off-shell kinematics, we use
the de Forest prescription [10]: treat interacting nucleon as free
and use free form factors but modify the energy conservation
to take into account that a part of energy transferred by the
probe is absorbed by the spectator system. Comparing Eq. (1)
to the energy balance

ω̃ + Ep = Ep′ ,
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where the part of energy transfer that goes to the on-shell
interacting nucleon with p ≡ (Ep, p) is denoted by ω̃, one can
find momentum-dependent binding energy:

εB = Ep − M + E.

Replacing q ≡ (ω, q) by q̃ ≡ (ω̃, q) = (ω − εB, q) in the
hadronic tensor,

H
µν
em,t → H̃

µν
em,t , (3)

we obtain the standard description of the off-shell kinematics.
However, this procedure violates the conservation of the

electromagnetic current, because qµH̃
µν
em,t �= 0. To restore it,

we have to add a correction to the contraction of the tensors:

Lem
µνH̃

µν
em,t → Lem

µνH̃
µν
em,t + Lem

µνH̃
µν
cor,t , (4)

which is equal to

Lem
µνH̃

µν
cor,t = M2

q̃2
c1H̃1, t + c2H̃2, t . (5)

The coefficients c1 and c2 can be expressed as

c1 = (ω − ω̃)[(Q2 − ω2)(ω + ω̃) − 4(|k||q|Q − ωk · q)],

c2 = c1P2 + 4(ω − ω̃)PQ

(
k · p − p · q

q2
k · q

)
,

with a shorthand notation introduced for

Q = 2k · q
|q| − |q|,

P = 1

2|q| (2Ep + ω).

When we consider QE muon neutrino scattering, its four-
momentum is denoted as k ≡ (Eν, k), four-momentum of the
produced muon as k′ ≡ (Eµ, k), and q ≡ (ω, q) ≡ k − k′. The
cross section

dσ weak

dωd|q| = G2
F cos2 θC

4π

|q|
E2

ν

∫
dE d3p

P(n)(p, E)

EpEp′

× δ(ω + M − E − Ep′)Lweak
µν H

µν

weak (6)

contains contraction of the leptonic and hadronic tensors

Lweak
µν = 2(kµk′

ν + k′
µkν − k · k′ gµν − iεµνρσ kρk′σ ),

H
µν

weak = −gµνM2H1 + pµpνH2 + i
2εµνκλpκqλH3

− qµqνH4 + 1
2 (pµqν + qµpν)H5,

where

H1 = F 2
A(1 + τ ) + τ (F1 + F2)2,

H2 = F 2
A + F 2

1 + τF 2
2 ,

H3 = 2FA(F1 + F2),

H4 = 1
4F 2

2 (1 − τ ) + 1
2F1F2 + FAFP − τF 2

P

H5 = H2.

The tensors differ from the ones for electromagnetic interac-
tion due to the axial contribution (in our calculations axial
mass MA = 1.03 GeV) and to the fact that, thanks to the
conserved-vector-current hypothesis, F1 and F2 are expressed

by differences of the proton and neutron form factors; see
Ref. [9]. Considering neutrino interactions, we apply the de
Forest prescription (3) but do not restore conservation of the
vector current. All the other quantities are defined and denoted
as in the case of electron interaction.

B. Selection of the electron data

According to the plan outlined in Sec. I, first we identify
the region in the (ω, |q|) plane that is most important for QE
neutrino scattering. The energy and momentum transfers are
related to the muon production angle θ by the expression

cos θ = Eν − ω

|k′| + ω2 − q2 − m2
µ

2Eν |k′| , (7)

where |k′| =
√

(Eν − ω)2 − m2
µ. Therefore fixing θ is equiv-

alent to restricting a region in the (ω, |q|) plane. Points in
Fig. 1 show the neutrino differential cross section dσ weak/dθ

for neutrino energy Eν = 0.8 GeV. The peak at ∼33◦ is
rather broad and ∼50% of the cross section comes from
θ ∈ [20◦; 56◦]. For Eν = 1.2 GeV, the maximum moves to
∼22◦ and the peak becomes narrower (not shown in the figure).

We want to map the allowed kinematical region for neutrino
scattering, weighted by the cross section, to the corresponding
region for electron scattering. For electron of energy Ee, the
relation analogous to Eq. (7) reads

cos θe = 1 + ω2 − q2

2Ee(Ee − ω)
. (8)

Hence, for a given value of Eν and selected Ee, we can map
the muon production angle to the electron-scattering angle:

θ �→ θe.

To weight the electron scattering angles by the neutrino cross
section, we calculated the quantity

dθ

dθe

dσ weak

dθ
. (9)

16
8O(νµ,µ

−), Eν = 800 MeV

θe for Ee:
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FIG. 1. Analysis of the dependence of the 16O(νµ, µ−) cross
section on energy and momentum transfer. Lines show what electron
scattering angles θe in the process 16O(e, e′) correspond to the same
kinematical region. The standard differential cross section in muon
scattering angle for 16O(νµ, µ−) is represented by points.
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using the oxygen target, described by the Benhar SF. (We
checked that the Fermi gas model and the effective description
[3] lead to the same conclusions.)

From now on, we concentrate on Eν = 0.8 MeV. In
Fig. 1, we show the quantity (9) for three selected values of
electron energy: Ee = 0.88, 1.08, and 1.2 GeV. The conclusion
is that to describe well the 0.8-GeV neutrino scattering,
our model should be verified with 1.2-GeV electron data at
θe ∼ 23◦, 1.08-GeV data at θe ∼ 25◦, or 0.88-GeV data at
θe ∼ 30◦.

Let us go into more detail. We deduce that for Ee =
1.2 GeV, the range of muon scattering angle [20◦; 56◦]
corresponds to θe ∈ [15◦; 36◦] with a maximum at 23◦;
for Ee = 1.08 GeV, to θe ∈ [17◦; 39◦] with a maximum at
25◦; whereas for Ee = 0.88 GeV, to θe ∈ [19◦; 50◦] with
a maximum at 30◦. The general rule is that for higher
electron beam energies, the smaller scattering angles become
significant.

Equation (8) is well defined when Ee � Eν . For lower Ee,
this equation may be applied only for the prize of a loss of
normalization—the form of the denominator excludes some
of the points in the (ω, |q|) plane. For example, when Ee =
0.73 GeV is used, 5% of the strength is lost and θ ∈ [20◦; 56◦]
corresponds to θe ∈ [22◦; 61◦] with a maximum at 35◦.

In the case of electron scattering off oxygen, the measure-
ments were performed for scattering angle 32◦ using beam
energies 700, 880, 1080, 1200, and 1500 MeV [7,18], whereas
537- and 730-MeV beams were used for angle 37.1◦ [19]. As
follows from our analysis, to obtain the model that describes
well QE neutrino-nucleus scattering at energy 800 MeV, the
most significant electron data are those for 880 and 730 MeV.
The relevance of the experimental points for 1080 and
700 MeV is smaller. The energy and momentum transfers that
characterize scattering with electron beams of energies 1200
and 537 MeV are least similar to what is needed but these
energies are still in the region of interest. The set of data for
1500 MeV was collected at too high scattering angle for our
applications.

Among a few articles reporting results of electron-
scattering experiments with a calcium target [20–23], the most
suitable for testing of our model is Ref. [23], containing data
at the lowest scattering angle, namely 45.5◦, in conjunction
with the highest values of beam energy—up to 841 MeV. We
have checked that all the measurements at 45.5◦ correspond to
our region of interest in the (ω, |q|) plane. Obviously, only
the data for Ee = 841 MeV cover the whole region, and
the lower electron energy is, the more normalization is lost.
For example, when one uses Ee = 545 MeV, θ ∈ [20◦; 56◦]
corresponds to θe ∈ [29◦; 75◦] with a maximum at 46◦ and
27.4% of the strength is lost. Therefore, we rely mainly on
comparisons with the experimental data for higher electron
energies.

Finally we want to explain why we decided to study
neutrino energy Eν = 0.8 GeV. The reason is that there is a
lot of relevant electron-scattering data to compare with. For
higher Eν , say 1.2 GeV, the situation would be quite different—
the electron-scattering data at smaller angles would be re-
quired, but they are missing for the targets we are interested
in.

C. How we model spectral function

The spectral function describes distribution of nucleons in
the (p, E) plane. By integrating out the dependence on E, the
momentum distribution nt (p) is obtained:

nt (p) =
∫

Pt (p, E) dE. (10)

Our normalization convention is∫
Pt (p, E) d3p dE = Nt, (11)

where the number of nucleons Nt is Z for protons and N for
neutrons.

Approximately 80–90% of nucleons in a nucleus can be
described as occupying shell-model states and moving freely
in the mean-field (MF) potential. The rest of them take part in
interactions. It is natural to decompose the SF into the sum of
the MF and correlated parts [24–26]:

Pt (p, E) = Nt

[
P MF

t (p, E) + P corr
t (p, E)

]
. (12)

By analogy to Eq. (10), the MF and correlated momentum
distributions are introduced:

nMF
t (p) =

∫
P MF

t (p, E) dE, (13)

ncorr
t (p) =

∫
P corr

t (p, E) dE, (14)

so the momentum distribution can be described as composed
of two subdistributions:

nt (p) = Nt

[
nMF

t (p) + ncorr
t (p)

]
. (15)

1. Treatment of the MF part

The basic assumption underlying the presented approach is
the IA, therefore the MF part of the SF can be written in the
form (compare [5,24,25]):

P MF
t (p, E) =

∑
α

cα

Nt

|φα(p)|2Fα(Eα + TA−1 − E), (16)

with separated contributions from each shell-model state α,

α ranging from 1 to Nt . Denoting spectroscopic factor by cα ,
wave function by φα(p), level energy by Eα , and a function
describing level width by Fα , we have omitted the isospin
index t for clarity of the notation. If interactions between
nucleons disappeared, the MF part would describe the whole
SF (equivalently, all cα’s would become equal to 1) and each
Fα would be the δ function.

In this article we are interested in a description of medium-
sized nuclei, like calcium and argon. Recoil energy of the
residual nucleus TA−1 may then be neglected in the MF part of
the SF because it is typically ∼0.5 MeV (see the average MF
momenta in Table I).

We assume that
∫

Fα(E) dE = 1, what can be physically
interpreted as the momentum independence of level widths.
Than the MF momentum distribution (13) can be expressed as

nMF
t (p) =

∑
α

cα

Nt

|φα(p)|2. (17)
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TABLE I. Parameters of the correlated part [see Eq. (28)] of the momentum distributions
from Ref. [32] and their normalization with respect to the total momentum distribution for
various nuclei. The last row contains resulting values of the average mean-field momentum
defined in Eq. (22).

16
8O 40

20Ca 48
20Ca

Proton Neutron Proton Neutron

F 1.0200 1.0370 1.0370 1.0440 1.0200
C1 2.1280 4.2150 4.2700 4.0040 4.6700
e1 1.4000 1.7700 1.7700 1.7700 1.7700
C2 0.1427 0.1940 0.1855 0.1536 0.1656
e2 0.2260 0.2260 0.2142 0.2018 0.2065
C3 0.1678 0.2282 0.2451 0.2500 0.2960
e3 0.2410 0.2580 0.2648 0.2972 0.2940
Normal. 12.00% 16.20% 16.20% 17.10% 13.64%√

〈p2
MF〉 (MeV) 174.4 189.1 187.1 180.8 196.4

Let us make the crucial assumption: each level contributes
equally to the MF momentum distribution. It means that in Eq.
(16) for each α we can make the substitution

cα|φα(p)|2 → nMF
t (p). (18)

The final form of the MF part of the SF,

P MF
t (p, E) = nMF

t (p)
1

Nt

∑
α

Fα(Eα − E), (19)

have to be further specified by the form of the function which
describes level width. For a given half-width, the Breit-Wigner
distribution has longer tails then the Gaussian one, so we found
the latter more suitable:

Fα(x) =
√

8

πD2
α

exp
(−8x2/D2

α

)
. (20)

Therefore we refer to the proposed model as the Gaussian
spectral function (GSF). The factor 8 in the argument of
exponential function is introduced for further convenience.

Note that the sum in Eq. (19) extends to all occupied states.
This approach differs from the one presented in Ref. [3] and
allows the avoidance of singularities in the argon SF.

To describe a specific nucleus by its Gaussian SF, one needs
to know the appropriate MF momentum distribution, the values
of energy levels, and their widths Dα .

2. Approach to the correlated part

Interacting nucleons are described by the correlated part of
the SF. It is a known fact (see Ref. [27] and references therein)
that the two-nucleon interactions dominate. These short-range
correlations give rise to pairs of nucleons with high relative
momentum. We follow the approach of Kulagin and Petti [25]
and do not include in the considerations interactions of higher
order. Then P corr

t can be expressed analytically in the form:

P corr
t (p, E) = ncorr

t (p)
M

|p|
√

α

π

×[
exp

(−αp2
min

) − exp
( − αp2

max

)]
. (21)

The constant α appearing in the above formula is a shorthand
notation for 3/(4〈p2

MF〉β) with β = (A − 2)/(A − 1) and the
mean square of the MF momentum 〈p2

MF〉 defined as

〈
p2

MF

〉 =
∫

p2nMF
t (p)d3p∫

nMF
t (p)d3p

, (22)

whereas

p2
min = {

β|p| −
√

2Mβ[E − E(2) − TA−1]
}2

,
(23)

p2
max = {

β|p| +
√

2Mβ[E − E(2) − TA−1]
}2

.

The two-nucleon separation energy E(2) is an average excita-
tion of the (A − 2) nucleon system. Because by definition
averaging should be carried out only over the low-lying
states, it can be approximated by the mass difference E(2) =
MA−2 + 2M − MA.

Because an overwhelming contribution to the correlated
part comes from the peak at

E ≈ E(2) + p2

2M

and the recoil energy TA−1 is less than p2/(2M) by the factor
(A − 1), therefore Eq. (23) may be simplified to

p2
min = {

β|p| −
√

2Mβ[E − E(2)]
}2

,
(24)

p2
max = {

β|p| +
√

2Mβ[E − E(2)]
}2

.

For the lightest considered here nucleus, i.e., oxygen this
simplification yields a <∼ 0.2% change of the cross section.

D. How we apply FSI

The struck nucleon moves in nuclear matter and may
interact with surrounding spectators. Such interactions make
the nucleon an open system in the sense that measured Ep′

is not equal to its energy in the interaction vertex. One can
describe this situation in terms of a complex optical potential,
U = V − iW , as proposed originally in Ref. [28]. We assume
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that the potential is time-independent. Then the result is
equivalent to making in Eq. (2) the substitution

δ(· · ·) → W/π

W 2 + [· · · − V ]2
, (25)

see Refs. [12,13]. The imaginary part of the optical potential
may be approximated by

W = h̄c

2
ρnuclσNN

|p′|
Ep′

. (26)

This article’s main interest is a description of medium nuclei,
such as calcium and argon, therefore the nuclear matter density
ρnucl is assumed to be constant and equal to the saturation
density ρsat = 0.16 fm−3. In the kinematical region of our
interest, the typical proton kinetic energy is 100–300 MeV
and the nucleon-nucleon cross section σNN = 1

2 (σpp + σpn) at
ρsat varies between 16.2 and 19.1 mb [29]. We set it to the
value for 200-MeV protons, i.e., to 17.4 mb.

The real part of the potential we use is calculated in the
following way: Reference [30] gives a Dirac optical potential
of 40

20Ca fitted to proton-scattering data in the energy range
161–1040 MeV as a function of kinetic energy of proton and
position in the nucleus. Because what we need is the potential
depending on energy only, averaging over spatial coordinate
should be performed. We do it by evaluating the potential at
the root-mean-square (rms) radii from Ref. [31]. As a result,
we obtain a potential U (p′) related to the scalar and vector part
of the potential in Ref. [30] by

Ep′ + U (p′) =
√

[M + S(Tp′ , r̄S)]2 + p′2 + V (Tp′ , r̄V ). (27)

In the above equation, r̄S denotes two parameters, because
the real and imaginary part of S have different values of the
rms radius. The same holds true for r̄V and V . For |p′| >

3.1 fm−1, the real part of U (p′) is positive, what is inconsistent
with the correlated Glauber theory [26]. Therefore when |p′| >

3.1 fm−1, we set its value to zero, as shown in Fig. 2.
From the few parametrizations of the potential in Ref. [30]

we decided to use the one called case 2. We checked that the
imaginary part of U (p′) is then very close to W obtained from
Eq. (26) (compare the dotted and dashed lines in Fig. 2), so
our approach is self-consistent.
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FIG. 2. Optical potential used in this article. Dashed line repre-
sents its imaginary part obtained from Eq. (26) and solid line the real
one from Eq. (27). For comparison, the imaginary part calculated also
from Eq. (27) is shown by dotted line.
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FIG. 3. Influence of FSI on electron-nucleus cross section. Dotted
line shows the cross section without FSI, dashed line with only
imaginary part applied, and solid line with full FSI.

The assumption that the optical potential is time-
independent leads to folding of the cross section with the
Lorentzian function [Eq. (25)]. To cure the resulting problem
with nonzero cross section for ω < 0 (compare Fig. 4 in
Ref. [13]), we impose an additional constraint on the upper
limit of the integration over E,

E < ω.

When FSI effects are not included, this restriction comes
automatically from the energy-conserving δ function.

As can be seen in Fig. 3, the essential effect of the imaginary
part of the potential is to broaden the QE peak, whereas the
real part mainly moves the strength to lower ω’s. Thanks
to these two effects, the agreement of the calculated cross
sections with the experimental data is significantly better.
However, the time-independent imaginary part of the optical
potential overestimates the FSI, namely too much strength is
redistributed from the QE peak to its tails. We postpone the
discussion of this point to Sec. IV.

E. Details of implementation

In this subsection, we want to cover all the details of
description of three nuclei—oxygen, calcium, and argon—
by their Gaussian SFs. A procedure to divide momentum
distributions given in Ref. [32] into the MF and correlated
parts is presented and justified. We concentrate on ncorr

t (p)
and obtain the MF part from Eq. (15). Then, we show the
parametrization of the energy levels and comment on the way
their widths are obtained.

1. Momentum distributions

In Ref. [32,33], the total momentum distributions for
many nuclei are calculated. However, the model described
in this article requires a separation of the MF and correlated
contributions [see Eqs. (19) and (21)]. References [34,35]
contain plots with momentum distributions divided in the way
we need. The conclusion from these articles is that above
|p| = 2 fm−1, the correlated part dominates overwhelmingly.

044311-6



CONSTRUCTION OF SPECTRAL FUNCTIONS FOR . . . PHYSICAL REVIEW C 77, 044311 (2008)

We assume that above 2 fm−1 this contribution is equal to
the total distribution, and that ncorr

t (p) may be expressed as
the correlated distributions given there, i.e., as a sum of two
exponential functions. Moreover, smooth transition at 2 fm−1

is imposed.

Distributions from Refs. [32,33], denoted here by n(t, p),
are calculated up to |p| = 3.585 fm−1. We extrapolated them
smoothly to 5 fm−1, but it turned out to have very little
influence on the cross sections.

The correlated part of the momentum distribution is
assumed to be of the following functional form:

ncorr
t (p) =


F

(2π)3
A
Nt

[C1 exp(−e1p2) + C2 exp(−e2p2)] for 0 � |p| � 2.025 fm−1,

F
(2π)3

A
Nt

n(t, p) for 2.025 fm−1 < |p| � 3.585 fm−1,

F
(2π)3

A
Nt

C3 exp(−e3p2) for 3.585 fm−1 < |p| � 5.0 fm−1.

(28)

In the above equation, A stands for the number of nucleons.
We normalize the momentum distributions introducing the
factor F :

F
(2π )3

A

Nt

∫ 5 fm−1

0
4πp2n(t, p) d|p| = 1.

To find the values of the parameters in Eq. (28), we assume
that e1 � e2, so that only the e2-containing term is responsible
for the behavior of ncorr

t (p) at large momenta. By demanding
the continuity and smoothness of ncorr

t , one can determine C2

and e2 at |p| = 2.025 fm−1 and C3 and e3 at |p| = 3.585 fm−1.
The values of e1 are taken from Ref. [35]; in Sec. IV we will
show that e1’s do not affect the cross sections. The values
of C1 are fixed by the overall normalization of ncorr

t , which
follows from Ref. [32]: the data contained in Tables II and III
allow the calculation of what fraction of nucleons cannot be
assigned to any shell-model state and, as a consequence, must
be described by the correlated part of SF. The normalization
of ncorr

t with respect to nt is the same as the normalization of
the the correlated SF with respect to the total SF.

Sample outcome of the described procedure is presented
in Fig. 4. One can see that at the sewing points, |p| =
2.025 fm−1 and 3.585 fm−1, the correlated contribution is
smooth. The total momentum distributions and the normal-
ization of the correlated parts alike are taken from Ref. [32].
Therefore the set of parameters collected in Table I can be
considered as self-consistent.

TABLE II. Energy levels Eα [36,37] and widths Dα for 40
20Ca.

Subshell Protons Neutrons

Eα Dα Eα Dα

1s1/2 57.38 25a 66.12 25a

1p3/2 36.52 15a 43.80 15a

1p1/2 31.62 15a 39.12 15a

1d5/2 14.95 4a 22.48 6a

2s1/2 10.67 2b 17.53 4b

1d3/2 8.88 2b 15.79 4b

αF 4.71 12.0

aFit to the plots from Refs. [36,37].
bOur estimate, details in text.

To handle the lack of knowledge of the momentum
distributions for protons and neutrons in the argon nucleus,
we apply in the SFs the appropriate distributions calculated
for 40

20Ca.

2. Description of the energy levels

In our approach, each shell-model state α is fully character-
ized by two parameters: energy level Eα and width Dα , defined
by means of Eq. (20).

The energy levels of calcium shown in Table II result from
theoretical calculations in Refs. [36] (for neutrons) and [37]
(for protons). A few available neutron levels of argon [38]
form a pattern very similar to the one of the neutron levels of
calcium: the distance between 1d3/2 and 2s1/2 is 1.7 MeV for
Ar and 1.74 MeV for Ca, whereas the distances between 1d3/2

and the Fermi level αF are 3.5 MeV for Ar and 3.8 MeV for
Ca. To reconstruct the missing data, we assume that all the
neutron levels follow the same pattern; see Table III. Due to
the lack of knowledge about the proton levels of argon, we use
the modified values from calcium. The data for oxygen [39,40]
are collected in Table IV.

The widths for most of the calcium levels can be determined
by fitting to the plots of energy distribution in Refs. [36,37].
We estimate the remaining ones using the fact that Dα should
be, approximately, a function of a distance from the Fermi

TABLE III. Same as Table II but for 40
18Ar. Details in text.

Subshell Protons Neutrons

Eα Dα Eα Dα

1s1/2 52b 25 62 25
1p3/2 32b 15 40 15
1p1/2 28b 15 35 15
1d5/2 11b 4 18 5
2s1/2 8b 2 13.15a 4
1d3/2 6b 2 11.45a 3
1f7/2 5.56a 3
αF 8.0a

aTheoretical calculations in Ref. [38].
bModified theoretical values for 40

20Ca from Ref. [37].
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TABLE IV. Same as Table II but for 16
8O. The values of Dα are

obtained differently; see details in text.

Subshell Protons Neutrons

Eα Dα Eα Dα

1s1/2 45.00 70 47.00 70
1p3/2 18.44 4 21.80 4
1p1/2 12.11 4 15.65 4

level [36–38,41]:

Dα ∝ (Eα − EF )2

(Eα − EF )2 + a2
.

To get Dα’s for argon, we assume that their values lie on
roughly the same curve as for Ca.

We did not find the energy distribution for oxygen,
calculated in the same way as for calcium in Refs. [36,37].
Because oxygen nucleus plays only the role of a testing ground
for our model, we decided to obtain the proton Dα’s directly
from the energy distribution in the Benhar SF and use the same
values for neutrons. Thus we avoided additional discrepancies
between the two descriptions.

III. RESULTS

A. Electron scattering

The goal of this subsection is to confront the model
presented in Sec. II with the existing electron-scattering data.
Because description of the dip region and the � excitation is
ambiguous [5,42,43], our considerations include QE interac-
tions only and we test predictions of the obtained SFs in energy
transfers below the QE peak. Figures 5–7 show comparison
with a wide spectrum of experimental points. The missing
cross section for energy transfer above the QE peak may
be attributed to the two-nucleon interactions, � production,
and nonresonant background. In the captions, we give the
momentum transfer at the QE peak calculated according to the
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n
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rr
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(p
)

(f
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3
)

543210
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FIG. 4. Proton momentum distribution in 40
20Ca from Ref. [32]

(dots) divided into the MF (dashed line) and correlated part (dotted
and solid line). Solid line shows extrapolation according to Eq. (28)
with parameters given in Table I.

formula

|q| =
√

ω2 + 2Ek(Ek − ω)(1 − cos θe).

This value depends rather weakly on ω and therefore it
provides quite good characteristics of the whole peak.

1. Oxygen

We start with the oxygen target. Figure 5 presents the
predictions of three models and the data from Refs. [7,18,19].
The dotted line corresponds to the Fermi gas (FG) model
(Fermi momentum pF = 225 MeV, binding energy εB =
25 MeV, no FSI), the solid line shows the cross sections of
the oxygen GSF with FSI as in Sec. II D, and the dashed
line depicts results for the Benhar SF with the same FSI.
Differences between our model and the more systematic
SF are of the size of the error bars. The main source of
these differences is another momentum distribution; see the
discussion in Sec. IV. Both SFs reproduce the shape and
height of the QE peak quite well but underestimate the
cross section at low ω’s. This discrepancy may be attributed
to the unsatisfactory treatment of FSI effects, because they
tend to increase the cross section in this region. The best
agreement with the data is obtained for the 880-MeV electron
beam, whereas the worst one corresponds to Ek = 537 MeV.
Fortunately, the latter set of data is least relevant in our analysis
(see Sec. II B).

2. Calcium

For calcium, we compare in Fig. 6 the cross sections
obtained using the FG model (pF = 249 MeV, εB = 33 MeV
[20]; represented by the dotted line), the GSF (solid line), and
the calculations of Butkevich and Mikheyev [6] (dashed line)
to the sample of electron-scattering data collected at scattering
angle 45.5◦ and various beam energies [23]. Only our model
includes FSI effects.

The FG model describes very well the position and size of
the QE peak for the highest values of beam energy. When the
energy is lower than 700 MeV, it obviously fails.

Despite the fact that the approach of Butkevich and
Mikheyev [6] is based on the SF, it yields results very similar to
these for the FG model when ω is near the value corresponding
to the QE peak or higher. The reason of this behavior lies in
too simple treatment of the MF part in their SF: the energy
distribution was limited to a single δ function.

For energies 628–841 MeV, the accuracy of the GSF is
very good. The occurring discrepancies can be explained as a
contribution from the � production. At small values of energy
transfer, the cross section is slightly overestimated. It means
also that the QE peak is slightly underestimated, because FSIs
based on a folding function do not change the total cross
section. Note that the agreement with the data in our region
of interest (see Sec. II B) is better than in the case of oxygen.
It may be attributed to the way FSI is introduced: Density of
nucleus is assumed to be constant and equal to the saturation
density of nuclear matter; this approximation should work
better for heavier nuclei. The real part of the optical potential
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FIG. 5. Cross sections of the process
16O(e, e′) at miscellaneous values of beam
energy for scattering angles 32◦ [7,18]
and 37.1◦ [19]. Results for the GSF (solid
line) are compared to the Benhar SF [5]
with the same FSI (dashed line) and the
Fermi gas model without FSI (dotted
line). The values of |q| at the peaks are
637 MeV (for beam energy 1200 MeV),
573 MeV (for 1080 MeV), 466 MeV (for
880 MeV), 371 MeV (for 700 MeV),
441 MeV (for 730 MeV), and 325 MeV
(for 537 MeV).

used in our computations was obtained for calcium and should
work better for this target than for oxygen.

For Ek � 545 MeV, our model fails to describe the position
and shape of the QE peak. However, the inaccuracy of the FG
and the approach of Ref. [6] is visibly more severe. Similar
problems for oxygen occur when Ek � 700 MeV. At the first
glance, there is no connection between these two cases. But
when we have a closer look at the values of the momentum
transfer at the QE peak, we will discover that our model
starts to lose accuracy when momentum transfer is lower than
∼350–400 MeV. It could be related to simplifying assumptions
of our approach, treatment of FSI effects or the very basic
assumption—the IA. The models [5,28] based on different
from our approximations apart from the IA and with more
systematical treatment of FSI suffer a similar drawback. It
suggests that it is the loss of reliability of the IA, what is
responsible for the problem.

3. Argon

Before applying our model to neutrino interactions, we
perform the final test by confronting it with the data for electron
scattering off argon. We have found only one such experiment
[7], which measured the cross section of 700-MeV electrons
scattered at 32◦.

In the left panel of Fig. 7, predictions of the argon GSF
and the FG model (pF = 251 MeV and εB = 28 MeV) are
presented. The accuracy of the GSF is clearly better than
that of the FG model. The result for our model, shown by
the solid line, does not describe properly only the cross
section at very low values of energy transfer. We have faced
the same problems for oxygen and calcium and interpreted
it as a breakdown of the IA at |q| <∼ 350–400 MeV. In
the considered case of scattering off argon, the momentum
transfer at the QE peak is equal to 371 MeV. When we

compare the result for argon with the one for oxygen in
exactly the same kinematical conditions (see right panel of
Fig. 7), we can see that the level of accuracy is comparable.
The same holds true also for comparison with scattering
off calcium for electron-beam energy 471 or 545 MeV.
Therefore, we expect that if the typical |q| was higher, the
agreement with the data for argon would be better.

We have observed that even for argon, the neutron SF may
be approximated by the corresponding proton SF, as far as
electron scattering is concerned. It can be explained by the
fact that the contribution of neutrons to the inclusive cross
section is small, what suppresses the differences between the
SFs. This contribution is equal to 13% for 700-MeV electrons
scattered at 32◦ and rises to 23% when the beam energy is
increased to 1200 MeV.

B. Neutrino scattering

In the case of neutrino scattering, quantities of interest are
the total cross section and the differential cross section in
Q2 = −q2 or in energy transfer (equivalently: in energy of
produced muon).

Figure 8 depicts differences between dσ weak/dEµ for the
argon GSF (solid line), the SF we described in Ref. [3] (dashed
line), and the FG model (dotted line). One can see that the SFs
introduce significant reduction of the cross section, mainly
in the region of low energy transfers. The line representing
the predictions of the GSF model is slightly wiggly, because
when ω increases, lower-lying energy levels consecutively
start contributing to the cross section. There are no singularities
in the cross section, and in this sense, the GSF is more realistic
than the SF from Ref. [3]. Effects of FSI are not taken into
account except those from Pauli blocking, but their influence
on the cross section dσ weak/dEµ is rather small (see Fig. 14
in Ref. [5] showing the impact of introducing FSI on
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FIG. 6. Cross sections of 40Ca(e, e′) scatter-
ing at angle 45.5◦ and miscellaneous values of
electron beam energy [23]. Calculations for the
GSF (solid line) are compared to the results of
Butkevich and Mikheyev [6] (dashed line) and
the Fermi gas model (dotted line). The corre-
sponding values of |q| at the peaks are 602 MeV
(for beam energy 841 MeV), 561 MeV (for
782 MeV), 531 MeV (for 739 MeV), 490 MeV
(for 681 MeV), 453 MeV (for 628 MeV),
395 MeV (for 545 MeV), 342 MeV (for
471 MeV), 297 MeV (for 408 MeV), and
254 MeV (for 350 MeV).

dσ weak/dQ2). The purpose of Fig. 8 is to show discrepancy of
our description of argon nucleus and the FG model, commonly
used in Monte Carlo simulations.

The results for neutrinos cannot be directly confronted with
experimental data. Therefore, we first identified, in Sec. II B,
the region in the (ω, |q|) plane that is most important for the
800-MeV neutrino scattering. Than we substantiated accuracy
of our approach: we showed in Sec. III A that it describes well
kinematical aspects of nuclear effects. This whole analysis

allows us to expect that using the presented approximation of
the SF, we model neutrino interactions at a similar level of
accuracy as achieved in the case of electron scattering.

IV. DISCUSSION OF PRECISION

Our approach is based on many approximations and in this
section, we would like to understand how uncertain our final
predictions are.
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FIG. 7. (Left panel) Comparison of the cross section of GSF (solid line) and the FG model (dotted line) with experimental points for
Ar(e, e′) at beam energy 700 MeV and scattering angle 32◦ [7]. (Right panel) Same but for oxygen. Note that in both cases the similar accuracy
is obtained. The value of momentum transfer at the peaks is 371 MeV.
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FIG. 8. Quasielastic differential cross section dσ weak/dEµ of
40
18Ar as a function of produced muon energy Eµ for the GSF (solid
line), approach of Ref. [3] (dashed line), and the FG model (dotted
line).

1. General remarks

a. Form factors. Different choices of parametrization of the
electromagnetic form factors may change the results by a few
percentages. As shown in Fig. 9, the dipole parametrization
yields the cross sections higher than the BBBA05 one [9] used
in this article. The discrepancy at the QE peak is ∼3.2% for
beam energy 350 MeV and ∼3.5% for 841 MeV.

b. Current conservation. Describing both electron and
neutrino interactions, we applied the de Forest prescription
to describe the off-shell kinematics. However, this leads to a
loss of conservation of the electromagnetic current in electron
scattering and of the vector current in neutrino interactions.
The procedure (4), by which we restore it in the electron case,
modifies the cross section mainly above the QE peak; see
Fig. 10. For beam energy 628 MeV, the effect is as small as
1.5% at the peak and it decreases when the energy becomes
larger.

c. Simplifications in the mean-field SF. In the derivation
of Eq. (19), we made two simplifying assumptions: level
widths do not depend on momentum and the contribution
to the momentum distribution of each level is the same [see
Eq. (18)]. Figure 11 illustrates the loss of accuracy due to
these simplifications. To depict their influence, we use the
momentum distribution calculated from the Benhar SF instead
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FIG. 9. Dependence of the cross section on the form factors. The
dipole parametrization (dashed line) produces ∼3% higher result than
the BBBA05 one [9].
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FIG. 10. Influence of the procedure restoring current conserva-
tion [Eq. (4)] on the cross section. The result obtained without it is
represented by the dashed line.

of the one from Ref. [32]. Because the level widths of oxygen
are obtained by fitting to the energy distribution of the Benhar
SF, a slightly different shape of the predicted QE peak is the
result of the simplifying assumptions only. We checked that
for other values of beam energy discrepancy does not increase.
Therefore, we conclude that the GSF can be considered as quite
good approximation of the more systematic approach.

d. Parameterization of the momentum distributions. Ap-
plication of the momentum distributions from Ref. [32] in
our model requires dividing each of them into the MF and
correlated parts. It involved introduction of a few param-
eters. To find out how much choice of these parameters
influences the cross sections, we calculated first ncorr

t for the
oxygen normalized as in Table I but with e1 = 1.770 (instead
of 1.400):

ncorr
t (p) = 1.02

(2π )3

16

8
[2.670 exp(−1.770 p2)

+ 0.2128 exp(−0.303 p2)]

for 0 � |p| � 2.025 fm−1. When it is applied, the cross sections
change less than 0.1% in the considered energy range. Thus,
we do not need to pay much attention to parameter e1, as
far as the same normalization is kept. Second, we found the
distribution with e1 = 1.400 but with the normalization 16.2%
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FIG. 11. Intrinsic inaccuracy of our model arising from the
treatment of the MF part of the SF. Calculation for the Benhar’s
exact SF of oxygen (dashed line) are compared with result for the
GSF with the same momentum distribution.
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FIG. 12. Uncertainty of the the cross section with respect to
used momentum distribution. Solid line shows result for momentum
distribution from Ref. [32] (used throughout this article) and the
dashed one from Ref. [35].

(instead of 12.0%):

ncorr
t (p) = 1.02

(2π )3

16

8
[3.9228 exp(−1.400 p2)

+ 0.0736 exp(−0.091 p2)]

at the interval 0 � |p| � 2.025 fm−1. The above distribution
leads to the cross sections changed by up to 2.2%. We have
analyzed a few such modifications and in each case we have
found that the influence of the normalization is greater than
that of e1. It is because variation of the parameter e1 only
redistributes the strength within given part of the momentum
distribution [and as a consequence modifies the parameter α

in Eq. (21)], whereas variation of the normalization changes
the way some part of the strength is treated.

e. Momentum distributions. Both for oxygen and calcium,
the momentum distributions are given by analytical formulas
in Ref. [35]. In Fig. 12, we show that even though they predict
slightly higher QE peak, the yielded cross section is lower.
Because the calcium momentum distributions are used for
argon, its description “inherits” the same uncertainties; see
Fig. 13. Throughout this article, we rely on the distributions
from Ref. [32], because they are obtained in more systematic
calculations.
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FIG. 13. Same as Fig. 12 but for νµ scattering off argon.
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FIG. 14. Estimation of the uncertainty due to unknown momen-
tum distribution of argon. The cross section calculated using the SF
of 40

18Ar with momentum distribution of 40
20Ca (solid line) and 48

20Ca
(dashed line).

2. Case of argon

In addition to the already described sources of uncertainty,
the description of argon nucleus suffers from the lack of the
available momentum distributions and knowledge of energy
levels. We estimate them using the information for 40

20Ca. For
this reason, a few words of comment on the accuracy for this
specific nucleus are needed.

a. Momentum distributions. The surplus neutrons modify
both the proton and neutron momentum distributions. A
similar situation appears for 48

20Ca, where the distributions are
available [32]. We have used the 48

20Ca momentum distributions
to estimate how these modifications can affect the argon cross
sections; see Fig. 14. The proton cross section was increased
by 4% and the neutron one was decreased by 3.8%. The overall
increase is equal to 2.9%. The number of surplus neutrons in
40
18Ar is smaller than in 48

20Ca, therefore we expect this effect to
be smaller too.

b. Level widths. Due to the lack of any knowledge about the
level widths of argon, we use the values for calcium. Figure 15
presents that Dα’s three times larger than those given in
Table III change the cross sections only up to 2% (decrease at
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FIG. 15. Influence of the level width on the cross section. (Solid
line) Calculation with the values from Table III. (Dashed line) Values
multiplied by 3.
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FIG. 16. Comparison of the cross sections obtained with the
energy levels from Table III (solid line), levels shifted by +5 MeV
(dotted line) and by −5 MeV (dashed line).

the peak). Narrower levels gives barely noticeable difference:
0.23% for the widths divided by 3 and 0.53% for divided by
100 (increase at the peak). For dσ weak/dEµ, the more the levels
overlap, the less wiggly the cross section is.

c. Energy levels. The argon energy levels may differ from
the used ones. We may expect that the discrepancies in
Table III are distributed randomly, and so a part of their
influence on the cross section is diminished. Figure 16 shows
that even if every level is shifted by the same value, chosen to
be 5 MeV, the cross section does not change dramatically—the
QE peak only moves a little bit. We conclude that the way to
increase the accuracy of the presented argon SF is to apply the
actual values of the energy levels; the degree in which they are
smeared has minor influence on the cross section, especially
in the case of electrons.

3. Final-state interactions

a. Real potential. To find out if one can approximate the
real part of the potential by a constant, we have applied the
value 10 MeV. In the case of oxygen, it slightly improved
agreement with the experimental data. However, the same
value employed to calcium decreased the level of accuracy of
the model. It might suggest that the real potential for oxygen
is deeper than the potential shown in Fig. 2.

b. Imaginary potential. The use of the imaginary part of the
potential U (p′) defined in Eq. (27) instead of approximation
(26) has minor influence on the obtained cross sections. Typical
change is a ∼1% increase. We conclude that for practical
purposes these two approaches are equivalent.

c. Cross section. When evaluating imaginary potential
(26), we have fixed the nucleon-nucleon cross section to
17.4 mb, which corresponds to nucleon kinetic energy
200 MeV. In principle, one should take into account the cross
section’s dependence on energy. Therefore, to check validity of
our approximation, we have used the exact nucleon-nucleon
cross section [29] in the energy range 100–300 MeV, most
important for the discussed kinematical region. For 545-MeV
electron scattering off calcium, the result decreases by 1.1%.
When beam energy is higher, the effect is even smaller.

d. Density of nucleus. We have assumed that the density of
nucleus is equal to the saturation density, despite the fact that
in reality its average value is smaller. However, the quantity
of interest is not the density itself but rather ρnuclσNN . This
product decreases by 7% (15.4%) when ρnucl changes to
0.14 fm−3 (0.12 fm−3), i.e., by 12.5% (25%). Because the
corresponding increase of the electron cross section is only
1% (2.4%) at the QE peak, our approach seems to be well
justified.

e. Folding function. Employing Lorentzian folding func-
tion, i.e., neglecting correlations between nucleons in nucleus
is a crude approximation [12,44,45]. Comparison to the results
presented in Ref. [5] suggests that an accurate approach could
yield the cross sections higher at the peak by up to ∼15% and
with lower tails. Precise comparison is difficult because in our
computations contribution of the � resonance is missing.

V. SUMMARY

The main goal of the article is to improve description of
neutrino scattering off argon in the 1-GeV energy region. We
have presented the way to calculate approximate spectral func-
tions of medium nuclei and applied it to electron scattering off
oxygen, calcium, and argon targets. For neutrino interactions
precise experimental data are missing. Therefore, we have
identified the region of the (ω, |q|) plane that is most important
for neutrino quasielastic interaction. The presented model to
describe nuclear effects have been tested using the electron
scattering data that lie in this region. The obtained agreement
is good in the case of oxygen and very good for calcium.
Moreover, our approximation reproduces results of the Benhar
SF for oxygen with a satisfactory degree of accuracy. Detailed
discussion of uncertainties due to many simplifications of our
model have lead us to the conclusion that all of them are of the
order of a few percentages.

In addition, we have observed that when the typical value of
the momentum transfer is less than ∼350–400 MeV, systematic
discrepancies between the presented model and the electron
data occur: the shape of the calculated cross section dσ/dωd�

is not suitable to fit the data and also increasing amount of
strength is missing at low energy transfers. A similar problem is
present in other models [5,28], which suggests that the source
of the problem may be the loss of reliability of the impulse
approximation.

In this article, we tried to give all the ingredients used in
our numerical computations to allow implementation of our
spectral functions in neutrino Monte Carlo generators.
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