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Nonlinear classical model for the decay widths of isoscalar giant monopole resonances
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The decay of the isoscalar giant monopole resonance (ISGMR) in nuclei is studied by means of a nonlinear
classical model consisting of several noninteracting nucleons (particles) moving in a potential well with an
oscillating nuclear surface (wall). The motion of the nuclear surface is described by means of a collective
variable that appears explicitly in the Hamiltonian as an additional degree of freedom. The total energy of the
system is therefore conserved. Although the particles do not directly interact with each other, their motions
are indirectly coupled by means of their interaction with the moving nuclear surface. We consider as free
parameters in this model the degree of collectivity and the fraction of nucleons that participate to the decay of
the collective excitation. Specifically, we have calculated the decay width of the ISGMR in the spherical nuclei
208Pb, 144Sm, 116Sn, and 90Zr. Despite its simplicity and its purely classical nature, the model reproduces the trend
of the experimental data that show that with increasing mass number the decay width decreases. Moreover the
experimental results (with the exception of 90Zr) can be well fitted using appropriate values for the free parameters
mentioned above. It is also found that these values allow for a good description of the experimentally measured
112Sn and 124Sn decay widths. In addition, we give a prediction for the decay width of the exotic isotope 132Sn
for which there is experimental interest. The agreement of our results with the corresponding experimental data
for medium-heavy nuclei is dictated by the underlying classical mechanics, i.e., the behavior of the maximum
Lyapunov exponent as a function of the system size.
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I. INTRODUCTION

The study of the decay of nuclear giant resonances
(GRs) is a subject of extensive theoretical and experimental
investigation [1–3]. GRs having a large degree of collectivity
are offered for the study of dissipation of collective motion
by single-particle motion in a many-body quantum system.
Moreover, it is known that regular and chaotic dynamics
usually coexist in nuclear excitations and chaotic dynamics
is expected to dominate in GRs [4,5]. The latter is due to
the time dependence induced in the nucleons dynamics and
to the correlations among the nucleons originating from the
residual interaction. By studying the decay of GRs we can
get information about the role that chaotic dynamics plays in
dissipation of the collective motion. In the damping of the
collective motion in GRs several mechanisms are at work at
the mean-field level (one-body dissipation), where the decay is
into single-particle motion (p-h excitation), including particle
emission (escape width) and beyond (n-body dissipation-
spreading width), where the decay occurs through coupling
to progressively more complicated states starting from 2p-2h
excitations (collisional damping). The relative contribution of
these damping processes is under investigation. In this work
we consider explicitly one-body dissipation and implicitly part
of the n-body dissipation and investigate the influence of the
underlying classical dynamics on it.

The effects of the chaotic dynamics on the dissipation of
nuclear collective motion and the consequent excitation of
the nucleons were considered in a number of previous works.
We mention for one-body dissipation the application of the

Fermi accelerator model [6,7] and the wall formula [8] and
its generalizations and computer simulations of classical and
quantal systems of noninteracting nucleons colliding with a
moving boundary undergoing periodic adiabatic oscillations
[9]. In these earlier works the coupling of the slowly moving
collective degree of freedom to the fast-moving independent
particle degrees of freedom has been considered disregarding
self-consistency and energy conservation. Subsequently, the
damping of the collective motion coupled self-consistently,
ensuring energy conservation, to the single-particle motion
has been studied using the Vlasov equation [10]. To clarify
the relationship between chaos at the microscopical level
and damping of collective motion, a classical version of
the vibrating potential model [11] for finite nuclei has been
considered and the case of monopole oscillations along with
others has been investigated [12,13]. Several other calculations
of the damping have been carried out later by exploring
the phase space [14], by considering two-body interactions
[15,16], etc.

We focus on the decay of the isoscalar giant monopole
resonances (ISGMR) (breathing mode, where neutrons and
protons oscillate in phase) which are also useful for the
extraction of compression moduli of nuclei KA and from
them the compressibility of nuclear matter K∞ [17]. Recent
and ongoing experimental activity at different facilities,
including the cyclotron at Texas A&M and at RCNP at
Osaka, supplement and extend the previous data clarifying
the relation between the symmetry energy and KA. We will
consider initially the data for the ISGMR of the spherical
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medium-heavy nuclei, 208Pb, 144Sm, 116Sn, and 90Zr [18–20],
and those for the 112Sn and 124Sn isotopes [21]. There has
been a large number of theoretical approaches for the study
of the energy and the decay width of ISGMR [22–24]. From
these studies we mention self-consistent Hartree-Fock plus
random-phase approximation (RPA) with Gogny [25,26] or
Skyrme [23,27–29] or unitary correlation operators [30],
effective interactions and self-consistent relativistic mean-field
plus RPA calculations [31–33], as well as calculations that go
beyond mean-field approximation, i.e., extended RPA [34],
relativistic RPA with particle-phonon coupling [35]. In the
latter reference, by extending the covariant density functional
theory with the consideration of quasiparticles dressed with a
cloud of low-lying collective excitations, the influence of the
phonon coupling terms to the damping of GRs has been studied
and led to noticeable fragmentation and spreading width. The
decay widths extracted from all the above calculations are
smaller (although to a different extent) from the experimental
ones.

In this work we investigate the role that chaoticity plays in
the decay of ISGMR of the above-mentioned spherical nuclei
focusing mainly on one-body processes and using a classical
model that exhibits chaotic behavior and that is based on the
model of Refs. [12,13]. Chaoticity in relation with the decay
of the ISGMR has also been considered in Refs. [31,36] in the
context of the relativistic mean-field model.

The considered model is a simple classical Hamiltonian
system that consists of particles moving in a Woods-Saxon
well with an oscillating surface. This oscillation represents
the ISGMR state in which the nuclear surface is oscillating
radially, i.e., the spherical symmetry of the nucleus is pre-
served. The particles can interact with the surface and can
exchange energy with it. The collective variable that describes
the motion of the nuclear surface appears explicitly in the
Hamiltonian of the system as an additional degree of freedom,
therefore the total energy of the system is conserved. Moreover,
in our study we take into account the escape of nucleons
from the oscillating well. Our model therefore takes explicitly
into account one-body dissipation (Landau damping and
particle decay) and partly many-body dissipation. Chaoticity
is introduced by the time dependence of the potential and
by the indirect coupling of the motion of the nucleons by
means of their interaction with the oscillating nuclear surface,
which gives rise to some of the correlations among nucleons
that are due to the residual interaction. In Refs. [37,38] our
model has been used to elucidate the relationship of relaxation
dynamics with the structure of the phase space of the system.
We calculate the decay width of the ISGMR in the spherical
nuclei 208Pb, 144Sm, 116Sn, and 90Zr. It is found that under the
appropriate assumptions the trend of the experimental data can
be reproduced, i.e., the decay width is a decreasing function
of the mass number A. Moreover, with the proper choice of
the free parameters, a good quantitative agreement with the
experimental results can be obtained. This is attributed to the
dependence of the mean value of the maximum Lyapunov
exponent on the size of the nucleus. With the same choice of
the parameters the decay width of three other isotopes of Sn
(112Sn, 124Sn, and 132Sn) is calculated. Finally, the fraction of
the width due to the escape is deduced for the above nuclei.

In Sec. II we present a brief description of the model and the
method of calculation. In Sec. III our results are presented
and discussed, whereas in Sec. IV the conclusions are drawn
amd some prospects for further study within our model are
mentioned.

II. DESCRIPTION OF THE MODEL AND METHOD OF
CALCULATION

The model we consider consists of a system of N

noninteracting nucleons (particles) of mass m moving in
a Woods-Saxon well. The nucleons exchange energy with
the nuclear surface (wall of the potential well), which is
considered to move in a harmonic oscillator potential with
angular frequency ω [12,13,37,38]. A mass M is assigned
to the nuclear surface and its motion around the equilibrium
position R0 is described by the collective one-dimensional
degree of freedom R. Because the potential well is of finite
depth, nucleons can escape from it yielding a contribution to
the decay width. The Hamiltonian of the system equals

H =
N∑

i=1

[
p2

ri

2m
− V0

1 + exp
(

ri−R

a

) + L2
i

2mr2
i

]

+ p2
R

2M
+ 1

2
Mω2 (R − R0)2 + L2

R

2mR2
. (1)

The angular momentum LR of the collective degree of freedom
R is taken equal to zero, i.e., the nuclear surface is not rotating.
The angular momenta Li of the particles are constants of the
motion because the oscillating potential retains its spherical
symmetry. The values of the parameters we use equal a =
0.67 fm, V0 = 45 MeV, and R0 = 1.2A1/3 fm. The above
values of a and V0 correspond to the nucleus 208Pb. There
is a slight variation of a and V0 with the mass number A but
for the present study it is neglected. For the angular frequency
ω we use the frequency of the ISGMR obtained from the
experimentally measured centroid energy Ex . The values of
the frequency we use for the nuclei 208Pb, 144Sm, 116Sn, and
90Zr equal 13.96, 15.40, 15.85 MeV, and 17.81 MeVh̄−1,
respectively (see Table I [18,19]). The parameters M/m and
N will be considered as free parameters and their optimal
values will be determined by comparing our results to the
experimental data. More precisely, free parameters are the
quantities M/mA × 100% and N/A × 100% [see Eqs. (12)
and (13)]. The equations of motion are

ṙi = pri

m
(i = 1, . . . , N ) (2)

ṗri = −V0

a

exp
(

ri−R

a

)
[
1 + exp

(
ri−R

a

)]2 + L2
i

mr3
i

(i = 1, . . . , N ) (3)

Ṙ = pR

M
(4)

ṗR = V0

a

N∑
i=1

exp
(

ri−R

a

)
[
1 + exp

(
ri−R

a

)]2 − Mω2 (R − R0) (5)
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TABLE I. Experimental results for the excitation energy Ex , the decay width �exp and the fraction
µesc of the width due to nucleon escape for the ISGMR in the nuclei 208Pb, 144Sm, 116Sn, 90Zr, 112Sn,
and 124Sn (results for 116Sn coincide with those reported recently [40]).

Nucleus Ex (MeV) �exp (MeV) µesc

208Pb 13.96 ± 0.20 [18] 2.88 ± 0.20 [18] 0.11 ± 0.042 [41]
144Sm 15.40 ± 0.30 [18] 3.40 ± 0.20 [18] –
116Sn 15.85 ± 0.20 [18] 5.27 ± 0.25 [18] –
90Zr 17.81 + 0.20, −0.32 [19] 7.86 + 0.89, −1.41 [19] �0.08 [42]
112Sn 15.67 ± 0.11 [21] 5.18 + 0.40, −0.04 [21] –
124Sn 15.34 ± 0.13 [21] 5.00 + 0.53, −0.03 [21] –

and have been solved using a leapfrog algorithm [39]. With a
simple rescaling of the equations of motion we find that the
relevant parameters are N,M/m,R0/a, and V0/(ma2ω2).

For each nucleus we consider a microcanonical ensemble
of 5000 initial conditions selected according to the following
prescription:

(i) The initial energy ER associated with the collective
variable R

ER = p2
R

2M
+ 1

2
Mω2 (R − R0)2 (6)

is taken equal to the experimentally measured centroid
energy Ex of the ISGMR. The corresponding initial
momentum pR is taken equal to zero, i.e., the harmonic
oscillator describing the collective motion is initially at
one of its extremal points:

R = R0 +
√

2Ex

Mω2
. (7)

(ii) The initial position ri of the nucleon is uniformly
distributed in the interval [0, R]. The nucleon is a
proton with a probability P = Z/A and a neutron with
a probability 1 − P .

(iii) The initial relative energy �Ei of the nucleon with
respect to the bottom of the potential well is selected
using the density of energy of a Fermi gas, namely

n(Ei) = 3

2E

3
2
F

�E

1
2
i , (8)

where EF is the Fermi energy, which for protons is
given by

EF (p) = h̄2

2m

(
3π2 Z

V

) 2
3

(9)

and for neutrons by

EF (n) = h̄2

2m

(
3π2 A − Z

V

) 2
3

. (10)

The volume V of the system is taken equal to that of a
sphere of radius R0. The initial kinetic energy Ti of the

nucleon is therefore given by

Ti = −V0 + �Ei + V0

1 + exp
(

ri−R

a

) . (11)

and its partition in radial and angular part is determined
by the angle θi , which is uniformly distributed in the
interval [0, π ] (θi is the angle between the vectors of the
initial position and initial velocity), obtaining the radial
component of the momentum pri and the angular mo-
mentum Li from the equations pri = √

2mTi cos θi and
Li = √

2mTiri sin θi , respectively. We should note that
we have also tried other initial momentum distributions
(i.e., uniform or Boltzmann) and it has been found that
the results are not sensitive to the particular choice of the
initial momentum distribution.

In our study we neglect the Coulomb barrier. However,
we have carried out calculations with the Coulomb barrier
for the nucleus 208Pb and our results for the decay width did
not change appreciably. For each nucleus, we consider as free
parameter the quantity

� = M

mA
× 100%, (12)

which is the percentage of the mass assigned to the collective
degree of freedom and consequently can be thought of as a
measure of the degree of collectivity of the motion. Apart
from �, we also consider as a free parameter the quantity

� = N

A
× 100%, (13)

which measures the percentage of nucleons that participate
into the damping of the collective motion. For each nucleus
and for a grid of values of � and �, we calculate the mean value
〈R(t)〉 of the collective variable R over the selected ensemble
of Ntot = 5000 orbits. We also calculate the mean value of
the maximum Lyapunov exponent 〈λ1〉, which is the most
commonly used measure of the intensity of chaotic dynamics,
using the same initial conditions and integration time as the
ones we used in the calculation of 〈R(t)〉. 〈λ1〉 quantifies how
fast initially closed trajectories deviate in phase space and it
is related to the decay width � (or the relaxation time). The
comparison of 〈λ1〉 and � reveals the microscopic origins of
relaxation dynamics as well as the relative importance of the
regular regions in phase space [37,38]. To estimate the decay
width, we take the Fourier transform of 〈R(t)〉 and calculate the
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(a) (b)

(c) (d)

FIG. 1. Decay width � of the ISGMR as a function of the parameters � and � for the nuclei (a) 208Pb, (b) 144Sm, (c) 116Sn, and (d) 90Zr.
In (a), (b), and (c) the lines on which our results coincide with the experimental ones are also shown (solid line). The line on which the value
of the decay width is maximum is shown as a dashed line.

standard deviation σ of the corresponding power spectrum in
a frequency region around ω where the power spectrum has a
maximum. To obtain the width �, which corresponds to the full
width at half maximum (FWHM) of an equivalent Gaussian
fit to the power spectrum, we multiply σ by 2

√
ln 4 � 2.355.

It seems that the use of a classical model is quite satisfactory
and the violations of Fermi statistics are not so important. In
particular, the effect of the spin on the momentum and energy
distribution is not expected to be significant. Results are not
sensitive to the type of the initial momentum distribution. In
fact, the small influence of the Fermi statistics can be drawn
by the small deviation of our results from the experimental
data (see Sec. III). Blocki and coworkers [9] have come to
the same conclusion by performing computer simulations and
have shown that results were similar for the excitation of
a classical or quantal gas of particles by a time-dependent
potential well. The model used in the present work differs from
the one of Baldo et al. [12,13] mainly in the consideration of
diabatic motion for the nuclear surface and realistic geometry
for the nuclear potential. Moreover, in the present model the
number of particles that collide with the wall as well as the
mass attributed to the oscillating surface have been treated as
free parameters.

III. RESULTS AND DISCUSSION

For the nuclei 208Pb, 144Sm, 116Sn, and 90Zr, and for a 9 × 9
grid of values for � and �, we calculate the decay width �

and the mean value of the largest Lyapunov exponent 〈λ1〉. Our
results for � and 〈λ1〉 are shown in Figs. 1 and 3, respectively.
In Figs. 1 and 2, the lines on the �-� plane on which our
results coincide with the experimental ones are also shown for
the case of the nuclei 208Pb, 144Sm, and 116Sn.

FIG. 2. The lines on the �-� plane on which our results for the
decay width coincide with the experimental ones for the nuclei 208Pb
(solid line, slope 0.63), 144Sm (dashed line, slope 0.75), and 116Sn
(dotted lines, slopes 0.51 and 0.46).
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(a) (b)

(c) (d)

FIG. 3. The mean value 〈λ1〉 of the maximum Lyapunov exponent corresponding to the calculations of Fig. 1 for the nuclei (a) 208Pb,
(b) 144Sm, (c) 116Sn, and (d) 90Zr.

We first observe that the relationship between 〈λ1〉 and � is
in most cases what we would expect for a completely chaotic
system. More specifically, for all values of � and �, both �

and 〈λ1〉 decrease as A increases. Moreover, for each of the
four nuclei studied, as � and � vary, 〈λ1〉 and � vary with the
same monotonicity except from a region with � > 50% and
� < 30%. Different monotonicities of 〈λ1〉 and � have been
reported in Ref. [37] and can be attributed to the existence of
regular regions in the phase space. In all cases, the decay width
� seems to have its maximum value on a line with slope ≈1/2
on the �-� plane (see Fig. 1, dashed lines).

Comparing our results for the decay width with the
corresponding experimental values, which are shown in
Table I, we observe that the trend of the experimental results
is reproduced, i.e., the amplitude � decreases with increasing
A for all values of � and �. At a quantitative level, in the case
of the nuclei 208Pb and 144Sm, our results coincide with the
experimental ones on a curve that is close to a straight line [see
Figs. 1(a), 1(b), and 2]. The corresponding slopes determined
by a least squares fit equal 0.63 and 0.75, respectively. Above
(below) these lines, our results underestimate (oveserstimate)
the experimental data. In the case of the nucleus 116Sn, our
results coincide with the corresponding experimental ones
on two lines with slopes 0.51 and 0.46 [see Fig. 1(c) and
Fig. 2]. For (�,�) points between these lines our results
overestimate the experimental ones, whereas for points outside

this region the experimental data are underestimated. In the
case of the nucleus 90Zr, our results for � are smaller than the
corresponding experimental ones for all values of � and �.
It seems that our model is more successful in the description
of the decay width of medium-heavy nuclei. This may be
due to the decreased collectivity of the ISGMR in lighter
nuclei (A < 100) as well as to the increasing importance of
higher-body processes in these nuclei. In the considered model,
as it has already been mentioned, although the nucleons do not
interact with each other, their motions are indirectly coupled
by means of their interaction with the moving nuclear surface
and therefore part and not the whole effect of the higher-body
processes is taken into account.

We must mention that we have also considered the case of
one particle moving inside the potential well, as in Ref. [37].
In that case, although the trend of the experimental data is
reproduced (� decreases with increasing A), the results for �

are very small compared to the experimental ones. Therefore,
the consideration of many particles turned out necessary for
the quantitative description of the decay widths.

To determine a region in the �-� plane where there is an
optimal agreement between our results and the corresponding
experimental values, we assume that all four nuclei can be
described using the same values of � and �, i.e., all the nuclei
considered exhibit the same degree of collectivity and the same
fraction of nucleons that take part in the damping. We calculate
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FIG. 4. The sum ξ 2 of the squares of the relative differences
between our results and the experimental data for the nuclei
208Pb, 144Sm, 116Sn, and 90Zr [see Eq. (14)].

the sum ξ 2 of the squares of the relative differences between
our results and the experimental data

ξ 2 =
[
�Pb − �Pb(exp)

�Pb(exp)

]2

+
[
�Sm − �Sm(exp)

�Sm(exp)

]2

+
[
�Sn − �Sn(exp)

�Sn(exp)

]2

+
[
�Zr − �Zr(exp)

�Zr(exp)

]2

, (14)

as a function of the parameters � and � (Sn ≡116Sn). The
results are shown in Fig. 4. From this figure we observe that
we have a good agreement with the experimental results in
a region on the �-� plane that is around a line with a slope
approximately equal to 0.69. The optimal agreement with the
experimental results is obtained where ξ 2 has its minimum
value, i.e., for � � 69% and � � 62%. We should note that
by assuming a uniform sphere oscillating with linear radial
displacement and velocity field, an oscillating mass M equal
to 3/5(0.6) of the total mass of the nucleus is deduced (scaling
model) [43,44]. For the above mentioned values of � and �,
the calculated decay widths for the nuclei 208Pb, 144Sm, 116Sn,
and 90Zr equal 3.08, 3.94, 4.64, and 5.05 MeV, respectively.

The above results along with the corresponding experimental
ones are shown in Fig. 5(a). We observe that the discrepancy
between our results and the experimental data increases as
A decreases. This is possibly due to our assumption that all
nuclei exhibit the same degree of collectivity, which should
be modified when considering lighter nuclei. We should also
mention the role of the n-body processes and the gradual
change of the shape of the ISGMR response that is observed for
A � 100, whereby its symmetric single peaked Gaussian-like
character is lost. As for the dependence of � on A in
our model, it is dictated by the classical mechanics of the
system because the mean maximum Lyapunov exponent 〈λ1〉
of the system has the same dependence on A, as can be
seen from Fig. 5(b). Comparing our results for the width �

of ISGMR with those from other approaches mentioned in
the Introduction, we realize that they are generally smaller
(although to a different extent) than ours. For example, recent
results obtained with self-consistent Hartree-Fock plus RPA
approach with SkM∗ effective interaction and fully taking
into account the continuum [46] yield the following results
for the width: �(208Pb) = 2.5 MeV and �(90Zr) = 3.0 MeV
[47], whereas the values of the width � obtained with the
relativistic quasiparticle RPA along the lines of Ref. [48]
using the effective interaction DDME2 derived from an
effective Lagrangian with density-dependent meson-nucleon
vertex function are �(208Pb) = 1.54 MeV and �(90Zr) =
2.18 MeV [49]. We realize that both sets of values of the
width are in qualitative agreement with the experimental ones
but they are smaller from the latter and from the values derived
with our classical model. This is expected because only 1p-1h
space has been considered in RPA. Recently, as mentioned in
the Introduction, the influence of phonon coupling terms to
the damping of giant resonances has been studied and led to
a noticeable fragmentation and increase of the width [35] (for
instance for 208Pb, � equals 2 and 3 MeV with relativistic
RPA and relativistic RPA plus particle-vibration coupling,
respectively).

For the above values of � and � (� = 69% and � = 62%),
we have also calculated the decay widths of the ISGMR of two
other Sn isotopes, namely 112Sn and 124Sn. Our calculation

(a)
(b)

FIG. 5. (a) The calculated values of the total decay width � for the nuclei 208Pb, 144Sm, 116Sn, and 90Zr (circles) for the values of � and �

(� � 69%, � � 62%) that minimize the quantity ξ 2 [see Eq. (14)]. The corresponding experimental results (squares) with their errors are also
shown [18,19]. (b) The corresponding values of the mean maximum Lyapunov exponent 〈λ1〉.
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(a) (b)

(c) (d)

FIG. 6. The fraction µesc of the total decay width due to the escape of nucleons as a function of the parameters � and � for the nuclei
(a) 208Pb, (b) 144Sm, (c) 116Sn, and (d) 90Zr.

yields for the widths 4.68 and 4.05 MeV, respectively, whereas
the experimentally obtained values equal 5.18 and 5.00 MeV,
respectively [21]. (Recently new results for the centroid energy
Ex and width were reported [40]. The discrepancy with the
values of Ex and � for 112Sn in Table I has been restored;
see also Sec. IV.) In addition, for the same values of �

and �, we made a prediction for the decay width of the
exotic nucleus 132Sn for which there is increased experimental
interest. Our calculation yields � equal to 3.87 MeV. In our
calculation, we have used as centroid energy Ex the value
15.29 MeV, which is calculated theoretically in Ref. [26] by
performing Hartree-Fock plus random-phase approximation
calculation using the D1S parametrization of the Gogny
two-body effective interaction. We should mention that results
for the decay width � of the isotopes 112Sn, 124Sn, and 132Sn
have been derived from other theoretical approaches (see, i.e.,
Refs. [26,35,48,50,51]). The values for the decay width of
132Sn derived by means of the two approaches reported above
equal 3.21 and 2.13 MeV, respectively [47,49]. Recently, a
decay width of 132Sn equal to 3.09 MeV was reported in
Ref. [35] by fitting the theoretical strength distribution with
a Lorentzian. These results are smaller than the value found in
our calculations.

We have also calculated the fraction µesc of the total decay
width which is due to the escape of nucleons. It is defined as

µesc = � − �′

�
, (15)

where � is the total decay width and �′ is the decay width
without taking into account the escape of particles. The latter
is extracted from the mean value 〈R(t)〉 of the collective
variable over the ensemble of orbits that do not lead to
nucleon escape, i.e., 〈R(t)〉 = ∑

j Rj (t)/Ntot, where Rj (t)
is the time series of the collective variable in the j th orbit
and the summation is performed only over the orbits in which
all the nucleons remain confined in the potential well at time t .
In the orbits where a nucleon escapes from the potential
well, the motion of the escaping nucleon is followed until
its distance from the nucleus reaches a cutoff value, which
has been taken much larger than the radius of the nucleus.
Then, the two degrees of freedom describing the motion of
the escaping nucleon are considered to be decoupled from
the motion of the nucleons confined in the potential well,
i.e., the escaping nucleon moves away from the nucleus with
constant energy and it is therefore excluded from the sum
of Eq. (5). Once the nucleon escapes and travels at constant
energy away from the nucleus, it carries energy away from the
system, thus contributing to the dissipation of the collective
degree of freedom. The results are shown in Fig. 6. From
this figure, it can be seen that in the region of � and �

values in which agreement of our results for � with the
experimental data is optimal, µesc is between 0.20 and 0.28
for all nuclei under consideration. These values are larger than
the corresponding experimental ones that are available only for
the nuclei 208Pb and 90Zr (see Table I; Refs. [41,42,45,52,53].
Inclusion of a Coulomb barrier leads to a decrease of µesc

044305-7



P. K. PAPACHRISTOU et al. PHYSICAL REVIEW C 77, 044305 (2008)

by a fraction ranging from ≈21% (for 90Zr) to ≈35% (for
208Pb). However, as our calculation is purely classical it does
not account for the quantum tunneling of particles through
the potential barrier. One should add that the experimental
values for µesc reported above refer to the direct escape width,
whereas our model probably includes part of the statistical
decay width. The partial widths for direct neutron escape of
the ISGMR of 90Zr, 124Sn, and 208Pb have also been calculated
recently [42] within a continuum extended RPA approach
with the use of a phenomenological mean field, the Landau-
Migdal p-h interaction, and some partial self-consistent
conditions.

IV. CONCLUSIONS AND PROSPECTS

In conclusion, in this work we studied the decay of the
ISGMR for several spherical nuclei using a classical model, in
which a number of noninteracting nucleons (particles) move
in an oscillating potential well and can exchange energy
with the nuclear surface (wall of the potential well). The
motion of the nuclear surface is described by a collective
variable that appears explicitly in the Hamiltonian of the
system as an additional degree of freedom. The total energy
of the system is therefore conserved. Because there is no
interaction between the particles, the model takes explicitly
into account only one-body processes. Nevertheless, the
particles interact indirectly with each other by means of the
coupling of their motion to the motion of the oscillating well
and therefore dissipation beyond the one body is expected to be
taken into account. Moreover, for medium-heavy nuclei, with
the proper choice of the free parameters of the system (the
degree of collectivity and the fraction of nucleons that partic-

ipate to the decay), our results show a good agreement with
the experimental data, at least comparable to the agreement
of more sophisticated quantum models. The dependence of
the decay width of the ISGMR on the size of the nucleus has
been found to be related to the characteristics of the underlying
classical dynamics, i.e., to the maximum Lyapunov exponent.
Its value is determined by the presence of chaotic regions in
the phase space. Chaoticity is included in the dynamics of GRs
due to the time dependence and to the residual interaction. We
expect that at least qualitatively, our results should hold in
the quantum systems. Recently, there have been experimental
results for the ISGMR of several isotopes of Sn from RCNP
in Osaka [40]. The theoretical calculations of the energy give
values that are larger than the experimental ones. These imply
larger values of the compression moduli. Work is in progress
to investigate with our model in more detail the underlying
classical dynamics of ISGMR in these isotopes that differ in
the symmetry energy and predict their decay widths. We should
add that our model properly adjusted can be used for the study
of the decay of ISGMR of other nuclei, including those far
from stability as well as for the study of the isovector giant
monopole resonances.
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