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Analytical solutions of the Bohr Hamiltonian with the Morse potential
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Analytical solutions of the Bohr Hamiltonian are obtained in the γ -unstable case, as well as in an exactly
separable rotational case with γ ≈ 0, called the exactly separable Morse (ES-M) solution. Closed expressions for
the energy eigenvalues are obtained through the asymptotic iteration method (AIM), the effectiveness of which
is demonstrated by solving the relevant Bohr equations for the Davidson and Kratzer potentials. All medium
mass and heavy nuclei with known β1 and γ1 bandheads have been fitted by using the two-parameter γ -unstable
solution for transitional nuclei and the three-parameter ES-M for rotational ones. It is shown that bandheads and
energy spacings within the bands are well reproduced for more than 50 nuclei in each case.
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I. INTRODUCTION

The recent introduction of the critical point symmetries
E(5) [1] and X(5) [2], which describe shape phase transitions
between vibrational and γ -unstable/prolate deformed rota-
tional nuclei, respectively, has stirred much interest in special
solutions of the Bohr Hamiltonian [3], describing collective
nuclear properties in terms of the collective variables β and γ .
Such solutions can describe nuclei in the whole region between
different limiting symmetries, while critical point symmetries
are appropriate for describing nuclei only at or near the critical
point, in good agreement with experiment [4–8].

Shape phase transitions in nuclear structure have been
first discovered [9] in the classical analog [10,11] of the
interacting boson model [12], which describes collective
nuclei in terms of collective bosons of angular momentum
zero (s bosons) and two (d bosons) in the framework of a
U(6) overall symmetry, possessing U(5) (vibrational), SU(3)
(prolate deformed rotational), and O(6) (γ -unstable) limiting
symmetries. To visualize these limiting symmetries and the
transitions between them, it is useful to place them at the
corners of a symmetry triangle [13]. A similar triangle for
the collective model has been introduced [14]. In the IBM
framework, it has been found that a first-order phase transition
occurs between U(5) and SU(3), while a second-order phase
transition occurs between U(5) and O(6) [9]. Within the
collective model, X(5) corresponds to the first case and E(5)
to the second.

It has been known for a long time [15] that simple
special solutions of the Bohr Hamiltonian, resulting from exact
separation of variables in the relevant Schrödinger equation,
can be obtained in the γ -unstable case, in which the potential
depends only on β, as well as in the case in which the potential
can be written in the separable form

u(β, γ ) = u(β) + u(γ )

β2
, (1)

in the special cases of γ ≈ 0 or γ ≈ π/6 [16]. An approximate
separation of variables has also been attempted for potentials
of the form

u(β, γ ) = u(β) + u(γ ), (2)

in the cases of γ ≈ 0 [2] or γ ≈ π/6 [17]. A brief summary
of existing solutions is listed here.

(i) The E(5) critical point symmetry [1] is a γ -unstable
solution, using as u(β) an infinite-well potential starting
from β = 0. Displacing the well from β = 0 leads to
the O(5)-confined beta soft [O(5)-CBS] model [18].
γ -unstable solutions have also been given for the
Coulomb [19] and Kratzer [19] potentials, β2n potentials
(n = 1, 2, 3, 4) [20,21] (labeled as E(5)-β2n), as well as
for the Davidson potential [22–25]

u(β) = β2 + β4
0

β2
, (3)

where β0 is the position of the minimum of the potential.
A solution using a well of finite depth has also been
given [26].

(ii) The X(5) critical point symmetry [2] is an approximate
solution, using a potential of the form of Eq. (2) with
γ ≈ 0 [achieved by using as u(γ ) a harmonic oscillator
potential with minimum at γ = 0] and an infinite-well
potential starting from β = 0 as u(β). Displacing the
well from β = 0 leads to the confined beta soft (CBS)
model [27]. Similar solutions have been obtained for β2n

potentials (n = 1, 2, 3, 4) [labeled as X(5)-β2n] [28], as
well as for the Davidson potential [25].

(iii) Z(5) [17] is an approximate solution, using a potential
of the form of Eq. (2) with γ ≈ π/6.

(iv) Exactly separable (ES) solutions using a potential of the
form of Eq. (1) and γ ≈ 0 have been obtained for the
Coulomb [29] and Kratzer [29] potentials, the infinite-
well potential [labeled as ES-X(5)] [30], the harmonic
oscillator potential (labeled as ES-X(5)-β2) [30], as well
as for the Davidson potential [31] (labeled as ES-D).

(v) Exactly separable solutions using a potential of the form
of Eq. (1) and γ ≈ π/6 have been obtained for the
Coulomb [32,33], Kratzer [32,33], and Davidson [32,33]
potentials.

(vi) In addition to the special analytical solutions men-
tioned above, a powerful method for solving the Bohr
Hamiltonian numerically has been developed recently
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[34], evolving into an algebraic collective model [35].
The relations between the algebraic collective model
and the different limiting symmetries of the interacting
boson model [12] have been studied in Refs. [36,37].
Using this numerical method, the Bohr Hamiltonian has
been solved [38] for the same potentials used in X(5),
but avoiding the approximate separation of variables,
resulting in evidence for strong β-γ mixing.

Chains of models mentioned above cover regions between
different limiting symmetries. For example, the chain E(5)-β2n

(n = 1, 2, 3, 4), E(5), O(5)-CBS spans the region between the
vibrational [U(5)] and γ -unstable [O(6)] limits, while the chain
X(5)-β2n, X(5), CBS spans the region between the vibra-
tional and prolate deformed rotational [SU(3)] limits. Their
predictions can therefore be tested against a large body of
experimental data [39].

The potentials mentioned above (infinite well, harmonic
oscillator, Coulomb, Kratzer, and Davidson) are known to be
exactly soluble for all values of angular momentum L. In the
present work, we introduce special solutions for the Morse
potential [40],

u(β) = e−2a(β−βe) − 2e−a(β−βe), (4)

which is known [41,42] to be exactly soluble only for L = 0.
The overall factor D of the Morse potential is set equal to
unity, without affecting the method of solution, since it can
be scaled out if ratios of energies are used, as in the present
work. Analytical expressions for the spectra for any L are
obtained by solving the relevant differential equation through
the asymptotic iteration method (AIM) [43,44], after applying
the Pekeris approximation [45]. Solutions for the γ -unstable
case and the exactly separable rotational case with γ ≈ 0 (to be
called ES-M) are obtained. To demonstrate the effectiveness of
AIM, we first apply it to the Davidson and Kratzer potentials in
the same cases (γ -unstable, exactly separable rotational with
γ ≈ 0), recovering the above-mentioned solutions which can
be obtained in terms of special functions.

A few advantages of the present approach are listed here.

(i) In X(5) and related models, using potentials of the form
of Eq. (2), the ground state and β bands depend only on
the parameters of the β potential, while the γ bands de-
pend also on an additional parameter introduced by the γ

potential [usually the stiffness of the harmonic oscillator
used as u(γ )]. When exactly separable potentials of the
form of Eq. (1) are used, all bands (ground state, β, γ )
depend on all parameters. Thus, all bands are treated on
an equal footing, as in the case of the ES-D solution [31].

(ii) A well-known problem of X(5) and related solutions is
the overprediction of the energy spacings within the β

band by almost a factor of 2 [6–8]. It is known that this
problem can be avoided by replacing the infinite-well
potential of X(5) by a potential with sloped walls [46].
The present solution avoids this problem, since the right
branch of the Morse potential imitates the sloped wall.

To test the applicability of the Morse potential in the
description of nuclear spectra, we have fitted all nuclei with
mass A � 100 and R4/2 = E(4)/E(2) < 2.6 for which at least

the β1 and γ1 bandheads are known [47], using the γ -unstable
solution of the Morse potential, which involves two free
parameters (βe, a). We have also fitted all nuclei with mass
A � 150 and R4/2 = E(4)/E(2) > 2.9 for which at least the β1

and γ1 bandheads are known [47], using the exactly separable
rotational solution of the Morse potential with γ ≈ 0 (ES-M),
which involves three free parameters (the Morse parameters
βe and a, as well as the stiffness c of the γ potential, for which
a harmonic oscillator is used). A comparison of the latter to the
fits provided by the Davidson potential in the exactly separable
γ ≈ 0 case [31] (ES-D), which contains two free parameters
(β0, c) instead of three, shows that the extra parameter extends
the region of applicability of the model in the same nuclei to
higher angular momenta, largely improving the quality of the
fits.

In Sec. II of the present work, the asymptotic iteration
method (AIM) is briefly reviewed. The method is then applied
to the exactly separable rotational γ ≈ 0 case for the Davidson,
Kratzer, and Morse potentials in Sec. III, and to the γ -unstable
case of the same potentials in Sec. IV, with the details of the
calculations given in Appendixes A–F. Fits to experimental
data are presented in Sec. V, while Sec. VI discusses the
present results and plans for further work.

II. OVERVIEW OF THE ASYMPTOTIC ITERATION
METHOD

The asymptotic iteration method (AIM) has been proposed
[43,44] and applied [48–53] to the solution of second-order
differential equations of the form

y ′′ = λ0(x)y ′ + s0(x)y, (5)

where λ0(x) �= 0 and the prime denotes the derivative with
respect to x. The functions s0(x) and λ0(x) must be sufficiently
differentiable. Equation (5) has the general solution [43]

y(x) = exp

(
−

∫ x

α(x1)dx1

) [
C2 + C1

∫ x

× exp

(∫ x1

[λ0(x2) + 2α(x2)]dx2

)
dx1

]
(6)

for sufficiently large k, k > 0, if

sk(x)

λk(x)
= sk−1(x)

λk−1(x)
= α(x), (7)

where

λk(x) = λ′
k−1(x) + sk−1(x) + λ0(x)λk−1(x),

(8)
sk(x) = s ′

k−1(x) + s0(x)λk−1(x), k = 1, 2, 3, . . . .

For a given potential, the radial Schrödinger equation is
converted to the form of Eq. (5). Then, s0(x) and λ0(x) are
determined, and the functions sk(x) and λk(x) are calculated
by the recurrence relations of Eq. (8).

The termination condition of the method, given in Eq. (7),
can be arranged as

�k(x) = λk(x)sk−1(x) − λk−1(x)sk(x) = 0,
(9)

k = 1, 2, 3, . . . .
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Then, the energy eigenvalues are obtained from the roots of
Eq. (9) if the problem is exactly solvable. If not, for a specific
principal quantum number n, we choose a suitable x0 point,
generally determined as the maximum value of the asymptotic
wave function or the minimum value of the potential [43,50],
and the approximate energy eigenvalues are obtained from
the roots of this equation for sufficiently large values of k by
iteration.

The corresponding eigenfunctions can be derived from
the following wave function generator for exactly solvable
potentials:

yn(x) = C2 exp

(
−

∫ x sn(x1)

λn(x1)
dx1

)
, (10)

where n represents the radial quantum number.
Recently, Boztosun and Karakoc [54] further improved the

method for the exactly solvable problems by rewriting the
second-order differential equation of Eq. (5) in the form

y ′′ = − τ (x)

σ (x)
y ′ − 	n

σ (x)
y. (11)

By comparison with Eq. (5), τ (x), σ (x), and 	n can be found
to be

− τ (x)

σ (x)
= λ0(x), − 	n

σ (x)
= s0(x), (12)

where 	n is a constant which comprises the eigenvalue. Then,
the energy eigenvalues are obtained from

	n = −nσ ′(x) − n(n − 1)

2
σ ′′(x). (13)

The applicability of this new solution is demonstrated for the
Morse potential in Appendixes C and F.

III. EXACTLY SEPARABLE SOLUTIONS FOR γ ≈ 0

The original collective Bohr Hamiltonian [3] is

H = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)
]

+ V (β, γ ), (14)

where β and γ are the usual collective coordinates which define
the shape of the nuclear surface. Qk (k = 1, 2, 3) represents the
angular momentum components in the intrinsic frame, and B is
the mass parameter. Reduced energies and reduced potentials
are defined as ε = 2BE/h̄2, v = 2BV/h̄2, respectively [1].
If the potential has a minimum around γ = 0, the angular
momentum term in Eq. (14) can be written [2] as

3∑
k=1

Q2
k

sin2
(
γ − 2π

3 k
) ≈ 4

3

(
Q2

1 + Q2
2 + Q2

3

)

+Q2
3

(
1

sin2 γ
− 4

3

)
. (15)

Exact separation of variables can be achieved [15,31–33]
for potentials of the form u(β, γ ) = u(β) + u(γ )/β2, given in

Eq. (1). We then assume wave functions of the form

ψ(β, γ, θj ) = ξL(β)�K (γ )DL
M,K (θj ), (16)

where θj (j = 1, 2, 3) are the Euler angles, D(θj ) represents
Wigner functions of these angles, L stands for the eigenvalues
of the angular momentum, while M and K are the eigenvalues
of the projections of the angular momentum on the laboratory-
fixed z axis and the body-fixed z′ axis, respectively. The
Schrödinger equation is thus separated, as in Refs. [15,31–33],
into a “radial” part (depending on β) and a γ part.

A. Davidson potential

Solving through AIM, the β equation for the Davidson
potential [22] of Eq. (3), u(β) = β2 + β4

0/β2, where β0 is the
position of the minimum of the potential, we get the energy
eigenvalues

εn,L = 2n + 1 +
[

9

4
+ L(L + 1)

3
+ λ + β4

0

]1/2

, (17)

where λ is a term coming from the exact separation of
variables, determined from the γ equation.

The γ equation has been solved [2,31] for a potential

u(γ ) = (3c)2γ 2, (18)

leading to

λ = εγ − K2

3
, εγ = (3C)(nγ + 1), (19)

where C = 2c. The final result for the energy eigenvalues
coincides with the results of Ref. [31]. The details of the AIM
calculation are given in Appendix A.

Special case 1: If we take β0 = 0, the Davidson potential
becomes the potential of a harmonic oscillator. Then, the
expression for the energy eigenvalues coincides with the one
obtained for the ES-X(5)-β2 model of Ref. [30].

Special case 2: Taking c = 0 and K = 0 (i.e. λ = 0) in
Eq. (17), we obtain for the ground state and β bands energy
eigenvalues of the X(5)-Davidson solution of Ref. [25].

B. Kratzer potential

We again use an exactly separable potential of the form
given in Eq. (1), with a Kratzer potential [19,29]

u(β) = −A

β
+ B

β2
, A > 0, (20)

in β; while in γ , we use a harmonic oscillator potential, u(γ ) =
cγ 2/2, as in Ref. [29]. Solving the “radial” (β) equation by
AIM, we obtain the energy eigenvalues

εn,L = A2/4(
n + 1

2 +
√

9
4 + λ + B + L(L+1)

3

)2
, (21)

which, in comparison with the result of Ref. [29], contain
the additional term λ, coming from the procedure of exact
separation of variables, as shown in detail in Appendix B.
The term λ is determined by solving the γ equation through
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AIM, as exhibited in detail in Appendix B, the final result
being

λ = (2c)1/2 (nγ + 1) − K2/3, (22)

in agreement with the solution of the γ equation given in
Ref. [29], as demonstrated in Appendix B.

Special case: Taking B = 0 in Eq. (20), the Coulomb
potential is obtained. The energy eigenvalues are still given
by Eq. (21) with B = 0. Again, the result differs from the one
reported in Ref. [29] by the presence of the λ term, due to the
exact separation of variables, as already remarked.

C. Morse potential

We use the exactly separable form of the potential given in
Eq. (1) again. The Morse potential [40] is defined as

u(β) = e−2a(β−βe) − 2e−a(β−βe). (23)

Using the Pekeris approximation [45] and solving the β

equation through AIM (the details are given in Appendix C),
we obtain the energy eigenvalues

εn,L = µc0

β2
e

−
[

γ 2
1

2βeγ2
−

(
n + 1

2

)
α

βe

]2

, (24)

where

c0 = 1 − 3

α
+ 3

α2
, c1 = 4

α
− 6

α2
,

(25)

c2 = − 1

α
+ 3

α2
, α = aβe,

γ 2
1 = 2β2

e − µc1, γ 2
2 = β2

e + µc2, (26)

µ = L(L + 1)

3
+ 2 + λ. (27)

λ in the last equation comes from the exact separation of
variables and is determined from the γ equation. We use the
same γ potential u(γ ) = (3c)2γ 2 [Eq. (18)] as in the Davidson
case (Sec. III A), leading to

λ = εγ − K2

3
, εγ = (3C)(nγ + 1), (28)

where C = 2c, as given in Eq. (19).

IV. γ -UNSTABLE SOLUTIONS

In this case, the reduced potential is assumed to be
γ independent, v(β, γ ) = u(β). Then the wave function is
assumed to be of the form [15]

ψ(β, γ, θj ) = R(β)�(γ, θj ). (29)

The equation which includes the Euler angles and γ has been
solved by Bès [55]. In this equation, the eigenvalues of the
second-order Casimir operator of SO(5) occur, having the
form � = τ (τ + 3), where τ is the seniority quantum number,
characterizing the irreducible representations of SO(5) and
taking the values τ = 0, 1, 2, 3, . . . [56].

The values of the angular momentum L are given by the
algorithm

τ = 3ν� + λ, ν� = 0, 1, 2, . . . , (30)

L = λ, λ + 1, . . . , 2λ − 2, 2λ (31)

(with 2λ − 1 missing), where ν� is the missing quantum
number in the reduction SO(5)⊃ SO(3) [56]. The ground state
band levels are determined by L = 2τ and n = 0.

A. Davidson potential

The radial equation, when solved through the AIM, leads
to the energy eigenvalues

εn,τ = 2n + 1 + [
9
4 + τ (τ + 3) + β4

0

]1/2
, (32)

the details of the calculation are given in Appendix D. This
result coincides with those of Ref. [25].

Special case: Taking β0 = 0 in Eq. (32), one gets the
simplified expression

εn,τ = 2n + τ + 5
2 , (33)

which is the five-dimensional harmonic oscillator solution of
Bohr [3].

B. Kratzer potential

Solving the radial equation by AIM (see Appendix E for
details), we obtain the energy eigenvalues

εn,τ = A2/4(
n + 1

2 +
√

9
4 + τ (τ + 3) + B

)2
, (34)

which coincide with the results of Ref. [19].
Special case: For B = 0, the γ -unstable solution for the

Coulomb potential is obtained, i.e.,

εn,τ = A2/4

(n + τ + 2)2
, (35)

which coincides with the result of Ref. [19].

C. Morse potential

Using the Pekeris approximation [45] and AIM (see
Appendix F for the details), we obtain the energy eigenvalues

εn,τ = νc0

β2
e

−
[

γ 2
1

2βeγ2
−

(
n + 1

2

)
α

βe

]2

, (36)

where

γ 2
1 = 2β2

e − νc1, γ 2
2 = β2

e + νc2, (37)

ν = τ (τ + 3) + 2, (38)

with the rest of the quantities given again by Eq. (25).

V. NUMERICAL RESULTS

To test the applicability of the Morse potential in the
description of nuclear spectra, we have fitted all nuclei with
mass A � 100 and R4/2 = E(4)/E(2) < 2.6, for which at least
the β1 and γ1 bandheads are known, using the γ -unstable
solution of the Morse potential, which involves two free
parameters (βe, a), as described in Sec. IV C. Results for 54
nuclei are shown in Table I. The quality measure

σ =
√∑n

i=1(Ei(exp) − Ei(th))2

(n − 1)E(2+
1 )

, (39)

used in the rms fits, remains below 1 in most cases.
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TABLE I. Comparison of theoretical predictions of the γ -unstable Bohr Hamiltonian with Morse potential (described
in Sec. IV C) and experimental data [47] of nuclei with A� 100, R4/2 � 2.6, and known 0+

2 and 2+
γ states. The R4/2 =

E(4+
1 )/E(2+

1 ) ratios, as well as the β and γ bandheads normalized to the 2+
1 state and labeled as R0/2 = E(0+

β )/E(2+
1 ) and

R2/2 = E(2+
γ )/E(2+

1 ), respectively, are shown. The angular momenta of the highest levels of the ground state, β, and γ bands
included in the rms fit are labeled as Lg,Lβ , and Lγ , respectively; n indicates the total number of levels involved in the fit
and σ is the quality measure of Eq. (39). See Sec. V for further discussion.

Nucleus R4/2 R4/2 R0/2 R0/2 R2/2 R2/2 β0 a Lg Lβ Lγ n σ

exp th exp th exp th

98Ru 2.14 2.25 2.0 2.4 2.2 2.3 3.84 0.44 18 0 4 12 0.659
100Ru 2.27 2.29 2.1 2.8 2.5 2.3 4.43 0.36 28 0 4 17 0.291
102Ru 2.33 2.25 2.0 2.3 2.3 2.2 3.78 0.42 16 0 5 12 0.341
104Ru 2.48 2.33 2.8 2.9 2.5 2.3 7.57 0.10 8 2 8 12 0.433
102Pd 2.29 2.28 2.9 2.6 2.8 2.3 4.30 0.34 26 4 4 18 0.219
104Pd 2.38 2.28 2.4 2.6 2.4 2.3 4.15 0.41 18 2 4 13 0.300
106Pd 2.40 2.26 2.2 2.4 2.2 2.3 3.93 0.43 16 4 5 14 0.343
108Pd 2.42 2.28 2.4 2.5 2.1 2.3 4.36 0.30 14 4 4 12 0.313
110Pd 2.46 2.29 2.5 2.0 2.2 2.3 4.01 0.26 12 10 4 14 0.338
112Pd 2.53 2.33 2.6 2.5 2.1 2.3 4.11 0.60 6 0 3 5 0.485
114Pd 2.56 2.31 2.6 2.9 2.1 2.3 5.12 0.24 16 0 11 18 0.727
116Pd 2.58 2.34 3.3 3.5 2.2 2.3 7.44 0.13 16 0 9 16 0.626
106Cd 2.36 2.37 2.8 2.9 2.7 2.4 4.45 0.62 12 0 2 7 0.196
108Cd 2.38 2.26 2.7 2.5 2.5 2.3 3.97 0.43 18 0 5 13 0.688
110Cd 2.35 2.24 2.2 2.2 2.2 2.2 3.66 0.47 16 6 5 15 0.269
112Cd 2.29 2.23 2.0 2.1 2.1 2.2 3.55 0.50 12 8 11 20 0.542
114Cd 2.30 2.21 2.0 2.0 2.2 2.2 3.43 0.51 14 4 3 11 0.359
116Cd 2.38 2.29 2.5 2.7 2.4 2.3 4.10 0.47 14 2 3 10 0.408
118Cd 2.39 2.29 2.6 2.7 2.6 2.3 4.11 0.47 14 0 3 9 0.313
120Cd 2.38 2.28 2.7 2.6 2.6 2.3 4.09 0.44 16 0 2 9 0.379
118Xe 2.40 2.31 2.5 2.7 2.8 2.3 5.40 0.19 16 4 10 19 0.343
120Xe 2.47 2.35 2.8 3.8 2.7 2.4 7.05 0.16 26 4 9 23 0.652
122Xe 2.50 2.43 3.5 3.5 2.5 2.4 5.03 0.66 10 0 9 13 0.501
124Xe 2.48 2.35 3.6 3.8 2.4 2.4 6.88 0.17 20 2 11 21 0.562
126Xe 2.42 2.33 3.4 3.2 2.3 2.3 6.12 0.18 12 4 9 16 0.576
128Xe 2.33 2.33 3.6 3.3 2.2 2.3 4.74 0.39 10 2 7 12 0.522
130Xe 2.25 2.27 3.3 2.6 2.1 2.3 4.05 0.44 14 0 5 11 0.476
132Xe 2.16 2.17 2.8 1.4 1.9 2.2 3.16 0.66 6 0 5 7 0.731
134Xe 2.04 2.11 1.9 1.0 1.9 2.1 2.91 0.74 6 0 5 7 0.753
130Ba 2.52 2.46 3.3 3.3 2.5 2.5 5.58 0.77 12 0 6 11 0.416
132Ba 2.43 2.29 3.2 2.7 2.2 2.3 4.63 0.29 14 0 8 14 0.609
134Ba 2.32 2.26 2.9 2.4 1.9 2.3 3.82 0.50 8 0 4 7 0.483
136Ba 2.28 2.18 1.9 1.7 1.9 2.2 3.24 0.60 6 0 2 4 0.454
142Ba 2.32 2.44 4.3 4.3 4.0 2.4 5.45 0.60 14 0 2 8 0.605
134Ce 2.56 2.37 3.7 4.1 2.4 2.4 6.00 0.27 34 2 8 25 0.502
136Ce 2.38 2.24 1.9 2.2 2.0 2.2 3.66 0.47 16 0 3 10 0.618
138Ce 2.32 2.23 1.9 2.1 1.9 2.2 3.55 0.50 14 0 2 8 1.308
140Nd 2.33 2.19 1.8 1.7 1.9 2.2 3.27 0.60 6 0 2 4 0.265
148Nd 2.49 2.32 3.0 2.9 4.1 2.3 6.40 0.14 12 8 4 13 0.810
140Sm 2.35 2.38 1.9 1.9 2.7 2.4 4.20 0.77 8 0 2 5 0.153
142Sm 2.33 2.20 1.9 1.7 2.2 2.2 3.33 0.61 8 0 2 5 0.173
142Gd 2.35 2.28 2.7 2.7 1.9 2.3 4.17 0.42 16 0 2 9 0.188
144Gd 2.35 2.36 2.5 2.5 2.5 2.4 4.24 0.65 6 0 2 4 0.102
152Gd 2.19 2.26 1.8 2.4 3.2 2.3 3.93 0.40 16 10 7 19 0.436
154Dy 2.23 2.28 2.0 2.7 3.1 2.3 4.22 0.38 26 10 7 24 0.371
156Er 2.32 2.31 2.7 3.1 2.7 2.3 4.75 0.34 20 4 5 16 0.374
186Pt 2.56 2.34 2.5 1.7 3.2 2.3 6.18 0.07 26 6 10 25 1.070
188Pt 2.53 2.45 3.0 3.3 2.3 2.5 5.45 0.75 16 2 4 12 0.356
190Pt 2.49 2.34 3.1 3.6 2.0 2.3 5.08 0.35 18 2 6 15 0.566
192Pt 2.48 2.35 3.8 3.7 1.9 2.3 6.42 0.19 10 0 8 12 0.681
194Pt 2.47 2.35 3.9 3.6 1.9 2.3 7.28 0.14 10 4 5 11 0.657
196Pt 2.47 2.32 3.2 2.9 1.9 2.3 6.26 0.15 10 2 6 11 0.627
198Pt 2.42 2.25 2.2 2.3 1.9 2.3 3.87 0.39 6 2 4 7 0.374
200Pt 2.35 2.20 2.4 1.7 1.8 2.2 3.31 0.59 4 0 4 5 0.676
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FIG. 1. Evolution of Morse potential shapes for the 54Xe isotopes,
with the parameters given in Table I. See Sec. V for further discussion.

The Morse potentials obtained for the 54Xe isotopes are
shown in Fig. 1. The evolution of the parameters and the
shapes of the potentials are clear. As one moves from 134Xe80,
which is just below the N = 82 magic number, to the midshell
nucleus 120Xe66, the βe parameter (which is the position of the
minimum of the potential) increases, while the parameter a,
which corresponds to the steepness of the potential, decreases.
As a result, one gradually obtains less steep potentials with a
minimum farther away from the origin. The trends start to be
reversed at 118Xe64, which is just below midshell.

We have also fitted all nuclei with mass A � 150 and R4/2 =
E(4)/E(2) > 2.9 for which at least the β1 and γ1 bandheads
are known, using the exactly separable rotational solution of
the Morse potential with γ ≈ 0 (ES-M), which involves three
free parameters (the Morse parameters βe and a, as well as
the stiffness C of the γ potential), as described in Sec. III C.
All bands are treated on an equal footing, depending on all
three parameters. Results for 45 rare earths and 13 actinides
are shown in Table II. The quality measure σ of Eq. (39), used
in the rms fits, remains below 1 in most cases.

The Morse potentials obtained for the 70Yb isotopes are
shown in Fig. 2. The evolution of the parameters and the shapes
of the potentials are again clear. As one moves from 164Yb94 to
the midshell nucleus 174Yb104, the βe parameter (which is the
position of the minimum of the β potential) again increases,
while the parameter a, which corresponds to the steepness of
the β potential, again decreases. The C parameter, which is
related to the stiffness of the γ potential, increases. As a result,
one gradually obtains less steep β potentials with a minimum
farther away from the origin, while the γ potentials get stiffer
at the same time.

A notable exception occurs in the N = 90 isotones 150Nd,
152Sm, 154Gd, which are known [6,7,58] to be good examples
of the X(5) critical point symmetry, along with 178Os [59]. The
relative failure of the Morse potential to describe critical nuclei
is expected. The potential at the critical point is expected to
be flat, as the infinite-well potential used in X(5), or to have a
little bump in the middle [8,39]. Microscopic relativistic mean
field calculations [60–62] of potential energy surfaces support
these assumptions. Since the Morse potential cannot imitate
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FIG. 2. Evolution of Morse potential shapes for the 70Yb isotopes,
with the parameters given in Table II. See Sec. V for further
discussion.

a flat potential, with or without a bump in the middle, it is
expected that it cannot describe these nuclei satisfactorily.

A comparison of the fits of Table II to the results provided by
the Davidson potential in the exactly separable γ ≈ 0 case [31]
(ES-D), which contains two free parameters (β0, c) instead of
three (see Table I of Ref. [31]), shows that the extra parameter
extends the region of applicability of the model in most nuclei
to higher angular momenta, largely improving the quality of
the fits.

As an example, the spectra of 154Dy (γ -unstable case)
and 232Th (exactly separable rotational case with γ ≈ 0) are
shown in Table III. The overall agreement between theory
and experiment is very good in both cases. In the theoretical
predictions for the γ band of 154Dy, the O(5) degeneracies
are present, limiting the flexibility of the model to agree to
experiment. Spacings within all bands of 232Th, including the
β band (in which spacings in X(5) are overpredicted by almost
a factor of 2 [6–8]), are reproduced very accurately.

For the construction of complete level schemes, the calcu-
lation of B(E2) transition rates is required, for which the wave
functions are needed. Work in this direction is in progress.

VI. DISCUSSION

The Bohr Hamiltonian has been solved with the Morse
potential for any angular momentum, both in the γ -unstable
case and in the exactly separable rotational case with γ ≈ 0
(in which a harmonic oscillator is used for the γ potential),
labeled as ES-M. The solution has been achieved through
the asymptotic iteration method (AIM) and has involved the
Pekeris approximation. The effectiveness of AIM has been
demonstrated by applying it to the γ -unstable case and to the
exactly separable rotational case with γ ≈ 0 for the Davidson
and Kratzer potentials.

Numerical results have been presented for both solutions,
including all relevant medium mass and heavy nuclei for which
at least the β1 and γ1 bandheads are known. The success
of the present solutions in reproducing quite well both the
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TABLE II. Comparison of theoretical predictions of the exactly separable Morse model (ES-M) (described in Sec. III C) and
experimental data [47] of rare earth and actinides with A� 150, R4/2 > 2.9, and known 0+

2 and 2+
γ states. Data for 228Ra come from

Ref. [57]. The labels are the same as in Table I.

Nucleus R4/2 R4/2 R0/2 R0/2 R2/2 R2/2 β0 C a Lg Lβ Lγ n σ

exp th exp th exp th

150Nd 2.93 3.21 5.2 6.2 8.2 8.2 5.2 6.0 0.41 14 6 4 13 1.129
152Sm 3.01 3.22 5.6 6.9 8.9 9.5 5.3 7.0 0.34 16 14 9 23 1.007
154Sm 3.25 3.28 13.4 13.5 17.6 18.6 8.4 13.7 0.20 16 6 7 17 0.484
154Gd 3.02 3.20 5.5 7.4 8.1 5.1 5.4 3.4 0.31 26 26 7 32 1.849
156Gd 3.24 3.27 11.8 11.6 13.0 14.4 7.5 10.5 0.22 26 12 16 34 0.605
158Gd 3.29 3.30 15.0 15.4 14.9 15.1 8.3 10.6 0.36 12 6 6 14 0.224
160Gd 3.30 3.31 17.6 17.8 13.1 13.1 8.6 8.8 0.44 16 4 8 17 0.169
162Gd 3.29 3.31 19.8 19.8 12.0 12.0 9.5 8.1 0.30 14 0 4 10 0.082
158Dy 3.21 3.25 10.0 10.1 9.6 10.0 6.7 7.1 0.25 28 8 8 25 0.495
160Dy 3.27 3.28 14.7 14.5 11.1 11.8 9.2 8.2 0.18 28 4 23 38 0.522
162Dy 3.29 3.31 17.3 17.1 11.0 10.8 8.3 7.2 0.44 18 14 14 29 0.312
164Dy 3.30 3.31 22.6 22.2 10.4 10.2 13.1 6.8 0.14 20 0 10 19 0.188
166Dy 3.31 3.31 15.0 15.1 11.2 11.2 7.9 7.5 0.52 6 2 5 8 0.037
160Er 3.10 3.20 7.1 7.9 6.8 3.9 5.6 2.5 0.30 26 2 5 18 1.790
162Er 3.23 3.26 10.7 11.1 8.8 9.9 7.1 7.0 0.26 20 4 12 23 0.588
164Er 3.28 3.27 13.6 12.9 9.4 9.6 9.3 6.6 0.14 22 10 18 33 0.827
166Er 3.29 3.30 18.1 17.8 9.8 9.6 9.7 6.5 0.23 16 10 14 26 0.306
168Er 3.31 3.32 15.3 15.5 10.3 10.2 8.1 6.7 0.59 18 6 8 19 0.176
170Er 3.31 3.29 11.3 9.9 11.9 13.1 6.5 9.0 0.17 24 10 19 35 0.864
164Yb 3.13 3.21 7.9 7.4 7.0 7.3 5.4 5.2 0.32 18 0 5 13 0.471
166Yb 3.23 3.25 10.2 10.1 9.1 9.5 6.8 6.7 0.23 24 10 13 29 0.688
168Yb 3.27 3.27 13.2 11.9 11.2 11.4 7.9 8.0 0.19 34 4 7 25 0.768
170Yb 3.29 3.31 12.7 13.8 13.6 13.5 7.8 9.2 0.49 20 10 17 31 0.509
172Yb 3.31 3.29 13.2 12.4 18.6 19.1 7.8 13.7 0.17 16 12 5 18 0.851
174Yb 3.31 3.31 19.4 19.3 21.4 21.5 17.2 15.1 0.05 20 4 5 16 0.170
176Yb 3.31 3.32 13.9 14.0 15.4 15.3 8.1 10.4 0.57 20 2 5 15 0.254
178Yb 3.31 3.29 15.7 15.6 14.5 14.5 10.2 10.3 0.15 6 4 2 6 0.045
168Hf 3.11 3.22 7.6 7.5 7.1 7.4 5.4 5.3 0.32 22 4 4 16 0.438
170Hf 3.19 3.23 8.7 8.6 9.5 8.1 6.0 5.7 0.27 34 4 4 22 0.964
172Hf 3.25 3.26 9.2 10.1 11.3 11.7 6.7 8.5 0.24 38 4 6 26 0.444
174Hf 3.27 3.26 9.1 9.0 13.5 14.1 6.1 10.4 0.26 26 26 5 30 0.484
176Hf 3.28 3.28 13.0 12.3 15.2 16.1 7.9 11.7 0.18 18 10 8 21 0.622
178Hf 3.29 3.28 12.9 12.7 12.6 12.9 8.5 9.2 0.16 18 6 6 17 0.298
180Hf 3.31 3.31 11.8 12.2 12.9 12.9 7.7 8.7 0.61 12 4 5 12 0.199
176W 3.22 3.24 7.8 8.2 9.6 10.2 5.8 7.4 0.29 22 12 5 21 0.578
178W 3.24 3.25 9.4 9.5 10.5 10.5 6.4 7.6 0.26 18 10 2 15 0.177
180W 3.26 3.27 14.6 12.7 10.8 11.4 7.9 8.0 0.24 24 0 7 18 0.838
182W 3.29 3.28 11.3 11.6 12.2 12.4 8.3 8.6 0.13 18 4 6 16 0.282
184W 3.27 3.27 9.0 8.9 8.1 8.1 6.6 5.5 0.15 10 4 6 12 0.094
186W 3.23 3.24 7.2 7.2 6.0 6.2 5.3 4.2 0.22 14 4 6 14 0.133
178Os 3.02 3.19 4.9 5.8 6.6 7.1 4.8 5.1 0.39 16 6 5 15 0.724
180Os 3.09 3.23 5.6 7.1 6.6 7.0 5.1 4.9 0.27 10 6 7 14 1.122
184Os 3.20 3.24 8.7 9.4 7.9 8.5 6.3 6.0 0.28 22 0 6 16 0.600
186Os 3.17 3.22 7.7 7.7 5.6 6.1 5.6 4.2 0.27 14 10 13 24 0.200
188Os 3.08 3.20 7.0 7.3 4.1 4.3 5.3 2.8 0.34 12 2 7 13 0.213
228Ra 3.21 3.27 11.3 11.3 13.3 13.0 7.3 9.5 0.24 22 4 3 15 0.387
228Th 3.24 3.28 14.4 13.9 16.8 17.0 8.4 12.4 0.25 18 2 5 14 0.514
230Th 3.27 3.28 11.9 11.7 14.7 14.8 7.6 10.7 0.19 24 4 4 17 0.276
232Th 3.28 3.29 14.8 14.7 15.9 16.5 9.6 11.8 0.15 30 20 12 36 0.321
232U 3.29 3.29 14.5 14.4 18.2 18.3 9.5 13.1 0.14 20 10 4 18 0.158
234U 3.30 3.30 18.6 18.7 21.3 21.7 12.1 15.5 0.12 28 8 7 24 0.219
236U 3.30 3.30 20.3 20.4 21.2 21.2 13.8 15.0 0.10 30 4 5 21 0.266
238U 3.30 3.31 20.6 20.9 23.6 24.7 13.9 17.6 0.10 30 4 27 43 0.716
238Pu 3.31 3.32 21.4 21.7 23.3 23.4 9.8 15.9 0.50 26 2 4 17 0.857
240Pu 3.31 3.31 20.1 19.1 26.6 27.1 13.0 19.4 0.09 26 4 4 18 0.539
242Pu 3.31 3.32 21.5 21.6 24.7 24.8 9.9 17.0 0.46 26 2 2 15 0.926
248Cm 3.31 3.31 25.0 25.1 24.2 24.2 16.4 17.0 0.09 28 4 2 17 0.105
250Cf 3.32 3.32 27.0 27.0 24.2 24.2 12.8 16.7 0.20 8 2 4 8 0.018
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TABLE III. Theoretical predictions of the γ -unstable Morse potential (described in Sec. IV C) with β0 = 4.22 and a = 0.38 compared
with experimental data for 154Dy [47], and theoretical predictions of the exactly separable Morse (ES-M) (described in Sec. III C) with
β0 = 9.6, C = 11.8, a = 0.15 compared with experimental data for 232Th [47]. All states are normalized to the 2+

1 state. See Sec. V for further
discussion.

L 154Dy 154Dy 232Th 232Th 154Dy 154Dy 232Th 232Th L 154Dy 154Dy 232Th 232Th
gsb gsb gsb gsb β1 β1 β1 β1 γ1 γ1 γ1 γ1

exp th exp th exp th exp th exp th exp th

0 0.00 0.00 0.00 0.00 1.98 2.66 14.79 14.72 2 3.07 2.28 15.91 16.48
2 1.00 1.00 1.00 1.00 2.71 3.35 15.68 15.63 3 3.99 3.71 16.80 17.32
4 2.23 2.28 3.28 3.29 3.74 4.24 17.68 17.72 4 4.31 3.71 18.03 18.42
6 3.66 3.71 6.75 6.76 4.96 5.25 20.72 20.90 5 5.20 5.25 19.45 19.79
8 5.22 5.25 11.28 11.29 6.47 6.37 24.75 25.06 6 5.64 5.25 21.27 21.40

10 6.89 6.86 16.75 16.73 8.24 7.58 29.76 30.08 7 6.53 6.86 23.21 23.26
12 8.65 8.56 23.03 22.97 35.55 35.86 8 25.50 25.35
14 10.49 10.37 30.04 29.89 42.14 42.32 9 27.75 27.65
16 12.47 12.30 37.65 37.43 49.44 49.38 10 30.62 30.17
18 14.55 14.36 45.84 45.52 57.36 57.03 11 33.22 32.88
20 16.71 16.58 54.52 54.16 65.81 65.23 12 36.48 35.78
22 18.98 18.95 63.69 63.31
24 21.40 21.48 73.32 72.99
26 23.99 24.19 83.38 83.20
28 93.82 93.94
30 104.56 105.24

bandheads of and the spacings within the ground, β1, and γ1

bands indicates that a detailed study of γ2 and β2 bands within
this framework might be fruitful, although the difficulties in
singling out the experimental β2 band [63] should be kept
in mind. The influence of the finite depth of the potential is
also worth considering in more detail. From the findings of
Ref. [26], where the E(5) case was solved for a finite well,
the influence of the finite depth of the potential is expected to
show up more clearly in the higher excited states. Work on the
calculation of wave functions and B(E2) transition rates is in
progress.
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APPENDIX A: EXACTLY SEPARABLE γ ≈ 0 SOLUTION
FOR THE DAVIDSON POTENTIAL

Assuming the reduced potential to be of the form of
Eq. (1), u(β, γ ) = u(β) + u(γ )/β2, and plugging it into the
Bohr Hamiltonian of Eq. (14), we obtain the “radial” and
γ equations [31][

− 1

β4

∂

∂β
β4 ∂

∂β
+ L(L + 1)

3β2
+ λ

β2
+ u(β)

]
× ξL(β) = εξL(β), (A1)

[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ K2

4

(
1

sin2(γ )
− 4

3

)
+ u(γ )

]
×�K (γ ) = λ�K (γ ). (A2)

Assuming u(γ ) = (3c)2γ 2 and expanding Eq. (A2) in powers
of γ for γ � 0, we get [31][

− 1

γ

∂

∂γ
γ

∂

∂γ
+ K2

4γ 2
+ (3c2)γ 2

]
�K (γ ) = εγ �K (γ ), (A3)

where εγ = λ + K2/3. The solution of this equation is given
[31] in terms of Laguerre polynomials with

εγ = (3C)(nγ + 1), C = 2c, nγ = 0, 1, 2, 3, . . . . (A4)

We now solve the radial equation by using AIM. Plugging
the Davidson potential of Eq. (3), u(β) = β2 + β4

0/β2, into
Eq. (A1), we get[
− 1

β4

∂

∂β
β4 ∂

∂β
+

L(L+1)
3 + λ + β4

0

β2
+ β2

]
ξL(β) = εξL(β).

(A5)

Transforming ξL into χL by the relation

ξL(β) = β−2χL(β), (A6)

and plugging it into Eq. (A5), we obtain

χ ′′
L(β) +

[
ε −

L(L+1)
3 + β4

0 + λ + 2

β2
− β2

]
χL(β) = 0. (A7)

To simplify this equation, we define

L(L + 1)

3
+ λ + β4

0 + 2 = µ(µ + 1), (A8)

044302-8



ANALYTICAL SOLUTIONS OF THE BOHR HAMILTONIAN . . . PHYSICAL REVIEW C 77, 044302 (2008)

obtaining

χ ′′
L(β) +

[
ε − µ(µ + 1)

β2
− β2

]
χL(β) = 0. (A9)

This second-order differential equation must have a solution
of the form

χL(β) = βµ+1e− β2

2 fn,L(β). (A10)

Using this function in Eq. (A9), one can get

f ′′
n,L(β) =

(
2β − 2µ + 2

β

)
f ′

n,L(β) + (2µ + 3 − ε)fn,L(β).

(A11)

From Eq. (5), one can define λ0(β) and s0(β) as

λ0(β) = 2β − 2µ + 2

β
, s0(β) = 2µ + 3 − ε. (A12)

Then, sk(x) and λk(x) are calculated by the recurrence relations
of Eq. (8) as

λ1(β) = 4β4 − (6µ + ε + 3)β2 + 4µ2 + 10µ + 6

β2
, (A13)

s1(β) = 2(2µ + 3 − ε)(β2 − µ − 1)

β
, (A14)

λ2(β) = −4[(6 + 13µ + 9µ2 + 2µ3) − β2(3 + ε + 7µ + µε + 4µ2) + β4(4µ + ε) − 2β6]

β3
, (A15)

s2(β) = (24 + 52µ − 8ε + 36µ2 − 12εµ − 4εµ2 + 8µ3)

β2
+ β2(12 + 8µ − 4ε)

− (3 + 2ε + 20µ − 4µε + 12µ2 − ε2), (A16)
...

By applying the termination condition of AIM, Eq. (9), we
obtain the energy eigenvalues from the roots of �k as

ε0 = µ + 3
2 , ε1 = µ + 7

2 , ε2 = µ + 11
2 , . . . , (A17)

while the general expression is

εn,µ = µ + 3
2 + 2n. (A18)

Then, substituting the value of µ from Eq. (A8) yields the
energy eigenvalues

εn,L = 2n + 1 +
[

9

4
+ L(L + 1) − K2

3

+ 3C(nγ + 1) + β4
0

]1/2

, (A19)

which are identical to the ones found in Ref. [31].

APPENDIX B: EXACTLY SEPARABLE γ ≈ 0 SOLUTION
FOR THE KRATZER POTENTIAL

Separation of variables proceeds as in Appendix A. The
radial equation is

χ ′′
L(β) +

[
ε −

L(L+1)
3 + 2 + λ

β2
+ A

β
− B

β2

]
χL(β) = 0, (B1)

where we have used the wave function of Eq. (16) and the
transformation ξL(β) = β−2χL(β). This equation differs from
the corresponding one of Ref. [29] by the term λ, which comes

from the exact separation of variables and will be determined
below from the γ equation. Defining a new parameter set

L(L + 1)

3
+ 2 + λ + B = p(p + 1), (B2)

ε = −ε, 2β
√

ε = x,
A

2
√

ε
= k, (B3)

Eq. (B1) becomes

χ ′′
L(x) +

[
−1

4
− p(p + 1)

x2
+ k

x

]
χL(x) = 0. (B4)

This second-order differential equation must have a solution
of the form

χL(x) = xp+1e
−x2

2 Rn,L(x), (B5)

which leads to

R′′
n,L(x) =

(
x − 2p − 2

x

)
R′

n,L(x) +
(

p + 1 − k

x

)
Rn,L(x).

(B6)

According to Eq. (5) of AIM, one then has

λ0(x) = x − 2p − 2

x
, s0(x) = p + 1 − k

x
. (B7)

Using the recurrence relations of Eq. (8), one can then
determine λk(x) and sk(x) as

λ1(x) = 10p + 6 − 3xp − 3x − kx + x2 + 4p2

x2
, (B8)
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s1(x) = −5p − 3 + 3k + xp − 2p2 + x − kx + 2kp

x2
, (B9)

λ2(x) = (− 24 − 52p + 12x − 4x2 − 36p2 + 6kx + 20xp

+ x3 + 8p2x − 4px2 + 4pkx − 8p3 − 2kx2)/x3,

(B10)

s2(x) = [
(1 + p − k)x2 + (3k − 4 − 7p − 3p2 + k2 + 2pk)x

+2(6 + 13p − 6k + 9p2 − 7kp + 2p3 − 2kp2)
]/

x3.

... (B11)

After determining �k(x) by using the termination condition
in Eq. (9), the energy eigenvalues are found from the roots of
�k(x) as

k0 = p + 1, k1 = p + 2, k2 = p + 3, . . . , (B12)

generalized into

kn = p + 1 + n. (B13)

From Eqs. (B2) and (B3), one then obtains

εn,L = A2/4(
n + 1

2 +
√

9
4 + λ + B + L(L+1)

3

)2
. (B14)

To find λ, we have to solve the γ equation of Eq. (A2),
using [29] u(γ ) = cγ 2/2. Expanding around γ = 0 and taking
εγ = λ + K2/3, one obtains[

− 1

γ

∂

∂γ
γ

∂

∂γ
+ K2

4γ 2
+ cγ 2

2

]
�K (γ ) = εγ �K (γ ), (B15)

which, through the transformation �K (γ ) = γ −1/2ξK (γ ),
leads to

ξ ′′
K (γ ) +

[
εγ + (1 − K2)/4

γ 2
− cγ 2

2

]
ξK (γ ) = 0. (B16)

Defining ( c

2

)1/4
γ = y, µ(µ + 1) = (K2 − 1)/4,

(B17)

εγ =
( c

2

)−1/2
εγ ,

this equation is brought into the form

ξ ′′
K (y) +

[
εγ − µ(µ + 1)

y2
− y2

]
ξK (y) = 0, (B18)

which is suitable for solving through AIM, by considering a
solution of the form

ξK (y) = yµ+1e− y2

2 Gm,K (y). (B19)

Following the same procedure as above, we obtain the
differential equation in the form

G′′
m,K (y) =

(
2y2 − 2µ − 2

y

)
G′

m,K (y)

+
(

2yµ + 3y − yεγ

y

)
Gm,K (y). (B20)

Comparison with Eq. (5) leads to

λ0(y) = 2y2 − 2µ − 2

y
, s0(y) = 2µ + 3 − εγ . (B21)

By using the recurrence relations of Eq. (8) and the termination
condition of Eq. (9), one can find the energy eigenvalues to be

(εγ )0 = 2µ + 3, (εγ )1 = 2µ + 7, (εγ )2 = 2µ + 11, . . . ,

(B22)

and the generalized form is

(εγ )µ,m = 2µ + 3 + 4m. (B23)

Using µ from Eq. (B17), this becomes

(εγ )K,m =
( c

2

)1/2
[4m + 2 + K] , (B24)

leading to

λ =
( c

2

)1/2
[4m + 2 + K] − K2/3. (B25)

This result agrees with Ref. [29], with K = 2nγ − 4m,m =
0, 1, . . . , nγ , as stated there. It is also in full agreement with
the results of Ref. [31], taking into account the different
coefficients of γ 2 in u(γ ).

APPENDIX C: EXACTLY SEPARABLE γ ≈ 0 SOLUTION
FOR THE MORSE POTENTIAL

Separation of variables again proceeds as in Appendix A.
Using the transformation ξL(β) = β−2χL(β), the radial equa-
tion becomes

χ ′′
L(β) +

[
ε −

L(L+1)
3 + λ + 2

β2
− e−2a(β−βe) + 2e−a(β−βe)

]

×χL(β) = 0. (C1)

Defining

x = β − βe

βe

, α = aβe,

(C2)

β2
e ε = ε,

L(L + 1)

3
+ 2 + λ = µ,

the radial equation becomes

χ ′′
L(x) +

[
ε − µ

(1 + x)2
− β2

e e
−2αx + 2β2

e e
−αx

]
χL(x) = 0.

(C3)

We now apply the Pekeris approximation [45]. Renaming
µ

(1+x)2 as uL(x) and expanding in a series around x = 0, we
obtain

uL(x) = µ(1 − 2x + 3x2 − 4x3 + · · ·). (C4)

In the exponential form, uL(x) can be written as

ũL(x) = µ(c0 + c1e
−αx + c2e

−2αx + · · ·). (C5)
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Expanding also this equation in a series around x = 0 produces

ũL(x) = µ

(
c0 + c1 + c2 − [c1 + 2c2]αx

+
[c1

2
+ 2c2

]
α2x2 + · · ·

)
. (C6)

Comparing Eqs. (C4) and (C6), one can now determine the ci

coefficients

c0 = 1 − 3

α
+ 3

α2
, c1 = 4

α
− 6

α2
, c2 = − 1

α
+ 3

α2
.

(C7)

Returning to the radial equation,

χ ′′
L(x) + [

ε − µ(c0 + c1e
−αx + c2e

−2αx)

−β2
e e

−2αx + 2β2
e e

−αx
]
χL(x) = 0, (C8)

and by using the ansatz

ε − µc0 = −ρ2, 2β2
e − µc1 = γ 2

1 , β2
e + µc2 = γ 2

2 ,

(C9)

we get

χ ′′
L(x) + [ − ρ2 + γ 2

1 e−αx − γ 2
2 e−2αx

]
χL(x) = 0. (C10)

Rewriting this equation by using the new variable y = e−αx ,
we obtain

χ ′′
L(y) + 1

y
χ ′

L(y) +
[
− ρ2

α2y2
+ γ 2

1

α2y
− γ 2

2

α2

]
χL(y) = 0. (C11)

Inserting a wave function of the form

χL(y) = y
ρ

α e− γ2
α

yRn,L(y), (C12)

the second-order differential equation becomes

R′′
n,L(y) =

(
2γ2αy − 2αρ − α2

α2y

)
R′

n,L(y)

+
(

2ργ2 + αγ2 − γ 2
1

α2y

)
Rn,L(y). (C13)

Comparison with Eq. (11) leads to the identifications

τ (y) = 2γ2αy − 2ρ − α,

σ (y) = α2y, (C14)

	n = 2γ2ρ + αγ2 − γ 2
1 .

From Eq. (13), we get

2γ2ρ + αγ2 − γ 2
1 = −n(2γ2α), (C15)

while the generalized form is written as

ρn,L = γ 2
1

2γ2
−

(
n + 1

2

)
α. (C16)

Using Eq. (C9), one then obtains

εn,L = µc0

β2
e

−
[

γ 2
1

2βeγ2
−

(
n + 1

2

)
α

βe

]2

. (C17)

APPENDIX D: γ -UNSTABLE SOLUTION FOR THE
DAVIDSON POTENTIAL

In this case, the reduced potential depends only on β. Using
the wave function of Eq. (29), the relevant radial equation
becomes

χ ′′
τ (β) +

[
ε − β2 − p(p + 1))

β2

]
χτ (β) = 0, (D1)

where χτ (β) = β−2Rτ (β) and

p(p + 1) = τ (τ + 3) + β4
0 + 2. (D2)

For this differential equation, one looks for a solution of the
form

χτ (β) = βpe
−β2

2 fn,τ (β). (D3)

Using this function in Eq. (D1), we obtain a differential
equation that is similar to Eq. (5), i.e.,

f ′′
n,τ (β) =

(
2β3 − 2pβ

β2

)
f ′

n,τ (β)

+
(

β2 + 2p + 2pβ2 − εβ2

β2

)
fn,τ (β). (D4)

Comparing to Eq. (5), we identify

λ0(β) = 2β3 − 2pβ

β2
, s0(β) = β2 + 2p + 2pβ2 − εβ2

β2
.

(D5)

Then the recurrence relations of Eq. (8) give λk(β) and sk(β),
while by using the termination relations of Eq. (9), we can
obtain the energy eigenvalues

ε0 = p + 3
2 , ε1 = p + 7

2 , ε2 = p + 11
2 , . . . , (D6)

which give the generalized form

εn,p = 2n + p + 3
2 . (D7)

Substituting in this expression the value of p from Eq. (D2),
one gets

εn,τ = 2n + 1 + [
9
4 + τ (τ + 3) + β4

0

]1/2
, (D8)

in agreement with the result obtained in Ref. [25].

APPENDIX E: γ -UNSTABLE SOLUTION FOR THE
KRATZER POTENTIAL

Using wave functions of the form �(β, γ, θi) =
χ (β)�(γ, θi), the radial equation becomes[

− 1

β4

∂

∂β
β4 ∂

∂β
+ τ (τ + 3)

β2
− A

β
+ B

β2

]
χ (β) = εχ (β),

(E1)

in agreement with Ref. [19]. Substituting χ (β) = β−2ξ (β),
this becomes

ξ ′′(β) +
[
ε − τ (τ + 3) + B + 2

β2
+ A

β

]
ξ (β) = 0. (E2)
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Using the parameter set

ε = −ε, 2β
√

ε = y,
(E3)

A

2
√

ε
= k, τ (τ + 3) + B + 2 = ν(ν + 1),

the differential equation becomes

ξ ′′
τ (y) +

[
−1

4
+ k

y
− ν(ν + 1)

y2

]
ξτ (y) = 0. (E4)

Assuming that this equation has a solution of the form

ξτ (y) = yν+1e− y

2 Rn,τ (y), (E5)

we bring it into the form

R′′
n,τ (y) =

(
y − 2ν − 2

y

)
R′

n,τ (y) +
(

ν + 1 − k

y

)
Rn,τ (y).

(E6)

Comparison with Eq. (5) then provides

λ0(y) = y − 2ν − 2

y
, s0(y) = ν + 1 − k

y
. (E7)

By using the recurrence relations of Eq. (8) and the termination
conditions of Eq. (9), one then obtains the following energy
eigenvalues from the roots of �i(y):

k0 = ν + 1, k1 = ν + 2, k2 = ν + 3, . . . . (E8)

These are generalized into

kn = ν + 1 + n. (E9)

From Eq. (E3), one then obtains the energy eigenvalues

εn,τ = A2/4(
n + 1

2 +
√

9
4 + τ (τ + 3) + B

)2
, (E10)

in agreement with Ref. [19].

APPENDIX F: γ -UNSTABLE SOLUTION FOR THE MORSE
POTENTIAL

Using a wave function of the form of Eq. (29), the radial
equation is[

− 1

β4

∂

∂β
β4 ∂

∂β
+ τ (τ + 3)

β2
+ u(β)

]
ξ (β) = εξ (β). (F1)

Taking ξ (β) = β−2χ (β) and

τ (τ + 3) + 2 = ν, (F2)

this equation becomes

χ ′′(β) +
[
ε − ν

β2
− u(β)

]
χ (β) = 0. (F3)

Using the parametrization

x = β − βe

βe

, α = aβe, ε = β2
e ε, (F4)

one obtains

χ ′′(x) +
[
ε − ν

(1 + x)2
− β2

e e
−2αx + 2β2

e e
−αx

]
χ (x) = 0.

(F5)

Applying now the Pekeris approximation [45] as in
Appendix C, we replace 1/(1 + x)2 by its approximate
expression, obtaining

χ ′′(x) + [
ε − ν(c0 + c1e

−αx + c2e
−2αx)

−β2
e e

−αx + 2β2
e e

−αx
]
χ (x) = 0. (F6)

Using the parametrization

ε − νc0 = −K2, 2β2
e − νc1 = γ 2

1 , β2
e + νc2 = γ 2

2 , (F7)

the differential equation is brought into the form

χ ′′(x) + [ − K2 + γ 2
1 e−αx − γ 2

2 e−2αx
]
χ (x) = 0. (F8)

Introducing a new variable y = e−αx , one has

χ ′′
τ (y) + 1

y
χ ′

τ (y) +
[
− K2

α2y2
+ γ 2

1

α2y
− γ 2

2

α2

]
χτ (y) = 0. (F9)

Inserting a wave function of the form

χτ (y) = y
K
α e− γ2

α
yfn,τ (y), (F10)

the differential equation becomes

f ′′
n,τ (y) =

(
2γ2αy − 2αK − α2

α2y

)
f ′

n,τ (y)

+
(

2Kγ2 + αγ2 − γ 2
1

α2y

)
fn,τ (y). (F11)

Comparison with Eq. (11) leads to

τ (y) = 2γ2y − 2Kn − α, σ (y) = α2y,
(F12)

	n = 2γ2Kn + αγ2 − γ 2
1 .

Using Eq. (13), one then has

Kn,τ = γ 2
1

2γ2
−

(
n + 1

2

)
α. (F13)

From Eq. (F7), we obtain the energy eigenvalues

εn,τ = νc0

β2
e

−
[

γ 2
1

2βeγ2
−

(
n + 1

2

)
α

βe

]2

. (F14)
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