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Transverse electron scattering response function of 3He
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The transverse response function RT (q, ω) for 3He is calculated using the configuration space BonnA nucleon-
nucleon potential, the Tucson-Melbourne three-body force, and the Coulomb potential. Final states are completely
taken into account via the Lorentz integral transform technique. Nonrelativistic one-body currents plus two-body π

and ρ meson exchange currents (MECs) as well as the Siegert operator are included. The response RT is calculated
for q = 174, 250, 400, and 500 MeV/c and in the threshold region at q = 174, 324, and 487 MeV/c. Strong
MEC effects are found in low- and high-energy tails, but due to MECs there are also moderate enhancements
of the quasielastic peak (6–10%). The calculation is performed both directly and via transformation of electric
multipoles to a form that involves the charge operator. The contribution of the latter operator is suppressed in
and below the quasielastic peak, while at higher energies the charge operator represents almost the whole MEC
contribution at the lowest q value. The effect of the Coulomb force in the final state interaction is investigated
for the threshold region at q = 174 MeV/c. Its neglect enhances RT by more than 10% in the range up to 2 MeV
above threshold. In a comparison with experimental data, one finds relatively good agreement at q = 250 and
400 MeV/c, while at q = 500 MeV/c, presumably due to relativistic effects, the theoretical quasielastic peak
position is shifted to somewhat higher energies. The strong MEC contributions in the threshold region are nicely
confirmed by data at q = 324 and 487 MeV/c.
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I. INTRODUCTION

Electromagnetic interactions in the trinucleon systems play
an important role in testing NN and 3N forces as well as
nucleonic current operators. Among the many reaction observ-
ables available are the response functions which determine the
inclusive electron scattering cross section

d2σ

d�dω

= σMott

[
Q4

q4
RL(q, ω) +

(
Q2

2q2
+ tan2 θ

2

)
RT (q, ω)

]
, (1)

where ω is the electron energy loss, q is the magnitude of the
electron momentum transfer, θ is the electron scattering angle,
and Q ≡ {q, ω},Q2 = q2 − ω2. RL(q, ω) and RT (q, ω) are
called the longitudinal and transverse response functions,
respectively. To calculate either of these response functions,
one needs to be able to take into account all final states (usually
in the continuum) which are connected to the ground state via
the current or charge operators. This can be accomplished
in several ways. For example recent calculations of these
response functions by Golak et al. [1] and Deltuva et al. [2]
base their calculations on Faddeev techniques, whereas we
employ the Lorentz integral transform (LIT) [3,4] method. A
recent review article on the LIT approach is given in Ref. [5].

The longitudinal response is driven by the nuclear charge
density operator and has recently been calculated covering
large parts of the nonrelativistic regime in Refs. [1,2,4]. It is
notable that although some of these groups use considerably

different calculational techniques, they obtain similar results
for RL(q, ω). All these nonrelativistic calculations of RL(q, ω)
show quite good agreement with experiment for modest
momentum transfers, i.e., q < 400 MeV/c. However for larger
q the position of the quasielastic peak is sensitive to relativistic
corrections in the kinetic energy. In Ref. [6] the nonrelativistic
calculation was extended up to q = 700 MeV/c by choosing a
proper reference frame, where relativistic effects on the kinetic
energy are minimized. A subsequent transformation of the
theoretical results to the laboratory frame led, in fact, to a
much better agreement with data. Concerning the realistic NN

interaction model, there appears to be a relative insensitivity
to which model is used. As far as 3N forces are concerned,
there is no unique picture. For 3He their inclusion improves the
agreement with data, whereas for 3H one observes the opposite
effect [4].

In RT (q, ω) it is the nuclear transverse current density that
drives the response. This current density can be expressed
as the sum of various components: the normal one-body
currents with their relativistic corrections, two-body currents
arising from meson exchange NN forces (MECs) and isobar
excitations, three-body currents arising from NNN forces. In
Ref. [1], the AV18 NN potential [7] with the UrbanaIX NNN

potential [8] were used and one-body currents as well as π

and ρ MECs were taken into account to calculate RT (q, ω)
at q = 200, 300, 400, and 500 MeV/c and the low-energy
RT at various q. In Ref. [2], the CD-Bonn potential and
its coupled-channel extension CD-Bonn+� [9] was taken.
The one-body current, π and ρ MECs, and � currents were
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considered. In addition to computing RT at q = 300 and
500 MeV/c, near-threshold responses at various q were also
shown.

Here we present the first fully realistic computation of
RT with the LIT method (in Ref. [10] the LIT method was
applied to the RT of 4He but with approximations for the
MEC and using a semirealistic NN potential only). Our
present calculations are carried out in coordinate space, and
therefore we have to use a configuration space NN potential.
We take the BonnA potential [11] (hereinafter referred to as
BonnRA) together with the Tucson-Melbourne (TM′) [12]
NNN potential to calculate the response at q = 174, 250,
400, and 500 MeV/c and at q = 324 and 487 MeV/c in the
near-threshold region. We would like to point out that the
LIT method allows us to include consistently the Coulomb
interaction in initial and final states, which is not done in
Refs. [1,2]. For the electromagnetic current operator, we
include the nonrelativistic one-body operators plus, as in
Refs. [1,2], the π and ρ two-body MECs.

We chose the BonnRA potential because it is a boson
exchange based potential. With such a potential, the form
of the MEC is uniquely determined by explicit knowledge
of the boson-nucleon coupling. For phenomenological NN

potentials such as the AV18, which was used in Ref. [1], one
can construct a consistent current j so that i∇ · j is equal to
the commutator of the Hamiltonian with the nuclear charge
operator (any purely transverse current piece can be added
without having any impact on the gauge condition above)
[13–16]. For consistent π and ρ MECs, one uses the following
model. Potential terms with the same operator structure as
appearing in π and ρ exchange potentials are parametrized in
terms of a π - and ρ-like exchange. This then leads to a π -
and ρ-like MEC which is consistent with such potential terms
but is not equivalent to a genuine π/ρ MEC. For example, it
could happen that a part of the ρ-like exchange is effectively
parametrized in terms of ρ-like mesons with a lower mass than
the physical ρ. We think that the use of such a consistent MEC
is rather safe and should lead to quite realistic descriptions
of MEC contributions. Nonetheless, here we prefer to work
with the unique π and ρ MECs of the BonnRA potential,
since MEC contributions based on such a potential model are
probably even safer. Of course, the BonnRA potential is not
one of the modern high-precision NN potentials; it has to be
considered as a realistic NN model of some lower quality.
On the other hand, one may ask if this fact is relevant to the
RT case considered here. In our previous paper on RL [4],
we made various comparisons between BonnRA plus TM′
3N -force and AV18 plus UIX 3N -force results (in the same
kinematic region as in present paper). Differences are quite
small; in fact, they are much smaller than the present precision
of experimental data. There is no reason that this should be
different for RT if one considers only one-body currents. And
as to the corresponding MEC, the unique BonnRA current is
certainly not worse than the AV18 π - and ρ-like MECs.

Our calculation is performed in two ways depending on
how we treat the electric multipole operators. One method,
which we refer to as the direct method, simply uses the current
operators per se in the electric multipoles. In the second
method, the electric multipole operators are transformed via

the use of the continuity equation into a form which includes
the charge operator. We refer to this latter form of the electric
multipole operator as the Siegert form. If both the continuity
equation were fulfilled exactly and dynamic equations were
solved exactly, then these two ways would lead to the same
results. Since, as in our case, a realistic nuclear force includes
components additional to one-boson exchange potentials, such
as momentum-dependent NN forces and 3N forces, the
continuity equation is only approximately fulfilled when one
employs only the dominant, well-established MECs. Therefore
performing calculations in the two ways allows us, on the
one hand, to find out to what extent the π and ρ exchange
currents we use are compatible with the realistic nuclear force
employed. On the other hand, via use of the charge operator, it
permits us to take into account a part of the additonal MECs,
thus checking their possible relevance. In Refs. [1,2] such
an investigation was not carried out (in Ref. [1] the Siegert
operator is only used for reactions with real photons).

II. NUCLEAR FORCES AND THE CURRENT OPERATOR

The transverse response RT which depends on the trans-
verse nuclear current density operator JT is given by

RT (q, ω) =
∑

M0

∑∫
df 〈�0|J†T (q, ω)|�f 〉

· 〈�f |JT (q, ω)|�0〉 δ[Ef − E0 + q2/(2MT )−ω].

(2)

Here MT is the mass of the target nucleus, �0 and �f denote
the ground and final states, respectively, while E0 and Ef are
their eigenenergies,

(h − E0)�0 = 0, (h − Ef )�f = 0, (3)

where h is the intrinsic nuclear nonrelativistic Hamiltonian.
States of our system are represented by products of normalized
center-of-mass plane waves ϕ(P0,f ) and internal substates
�0,f entering Eq. (2). Correspondingly, the current operator
J in Eq. (2) is related to the primary current operator J̄ as
follows,

J δ(Pf − P0 − q) = 〈ϕ(Pf )|J̄|ϕ(P0)〉, (4)

where the matrix element is defined in the center-of-mass
subspace. The cross section we need corresponds to the
laboratory reference frame, and we set in Eq. (4) P0 = 0. The
quantity JT is that component of J which is orthogonal to q.
The second summation (integration) in Eq. (2) goes over all
final states belonging to the same energy Ef , and M0 is the
projection of the ground state angular momentum J0.

The Hamiltonian h includes the kinetic energy terms, the
2N and 3N force terms, and the proton Coulomb interaction
term. As in Ref. [4], the ground state �0 is calculated via
an expansion in basis functions which are correlated sums of
products of hyperradial functions, hyperspherical harmonics,
and spin-isospin functions. In the present work, the 2N +
3N interactions are taken as the Coulomb+BonnRA+TM′
(� = 2.835 fm−1) as in Ref. [4]. The TM′ cutoff parameter �

properly fixes the 3H binding energy to 8.47 MeV.
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We perform a nonrelativistic calculation. The current J
includes one- and two-body operators. The one-body current
operator as obtained from Eq. (4) is

j(1) =
A∑

k=1

[j(k)spin + j(k)p + j(k)q],

where A is the number of nucleons in the target nucleus and

j(k)spin = eiq·r′
k
i(σk × q)

2M
GM (k),

j(k)p = eiq·r′
k
p′

k

M
GE(k),

j(k)q = eiq·r′
k

q
2M

GE(k).

Here r′
k = rk − Rc.m., p′

k = pk − Pc.m./A, and σk are the
relative coordinate, momentum, and spin operator of the kth
particle and M denotes the nucleon mass, while Rc.m. and Pc.m.

are the center-of-mass coordinate and momentum variables of
the A-body system. The component jq does not contribute to
JT . However, separate multipoles as defined below depend on
this component.

In the above expressions we use the notation

GE,M (k) = G
p

E,M (Q2)
1 + τzk

2
+ Gn

E,M (Q2)
1 − τzk

2
, (5)

where G
p,n

E,M are the Sachs form factors and τzk denotes the
third component of the isospin operator of the kth nucleon.
With our procedure the computational labor is reduced when
the number of ω-dependent form factors is reduced [5]. To this
end, we use the approximation

Gn
E(Q2) ≈ G

p

E(Q2)γ
(
Q2

av

)
, (6)

where γ (Q2
av) = Gn

E(Q2
av)/G

p

E(Q2
av),Q2

av = q2 − ω2
av and

ωav = q2/(2M). Similarly for the one-body spin current, we
use

G
p

M (Q2) ≈ µ̄p

(
Q2

av

)
G

p

E(Q2), µ̄p

(
Q2

av

) = G
p

M

(
Q2

av

)
G

p

E

(
Q2

av

) , (7)

Gn
M (Q2) ≈ µ̄n

(
Q2

av

)
G

p

E(Q2), µ̄n

(
Q2

av

) = G
p

M

(
Q2

av

)
G

p

E

(
Q2

av

) . (8)

For the usual dipole magnetic form factors, as used in this
work, the above relations are fulfilled exactly, and we have
checked that the approximation provides a very good accuracy
for Gn

E . In a future extension of our work to a high-q region,
q > 500 MeV/c, we will use more sophisticated nucleon
form factor fits. In these cases, the above relations are only
approximately fulfilled, although we have checked that they
still lead to excellent accuracy. The neutron electric form factor
we use here is taken from Ref. [17] as used in Ref. [18].
With Eqs. (6)–(8), the one-body current is replaced by j(1) →
G

p

E(Q2)J(1) where J(1) is now given by

J(1)(q)

=
A∑

k=1

eiq·r′
k

M

{(
p′

k + q
2

) [
1 + τzk

2
+ γ

(
Q2

av

)1 − τzk

2

]

+ i(σk × q)

2

[
µ̄p

(
Q2

av

)1 + τzk

2
+ µ̄n

(
Q2

av

)1 − τzk

2

]}
.

(9)

The dominant contributions to the two-body current J(2)

arise from the π and ρ meson exchange currents. These
currents are usually expressed in terms of “seagull” and “true
exchange” pieces. Thus we write here

J(2) = jπSG + jπex + jρSG + jρex. (10)

We list in Appendix A the coordinate space representations
of these currents with the corresponding values of coupling
constants, etc. Momentum space forms of these meson
exchange currents are related to these coordinate space forms,
apart from the multiplicative isovector electric form factor
Gv

E(Q2) = (Gp

E(Q2) − Gn
E(Q2))/2, via

jba(q)eiq·Rc.m. =
∫

d3x eiq·x jba(x), (11)

where the superscripts and subscripts correspond to those in
the right-hand side of Eq. (10).

Finally we use the current operator J in the form

J = G
p

E(Q2)J(1) + 2Gv
E(Q2)J(2). (12)

III. MULTIPOLE EXPANSION OF
THE TRANSVERSE RESPONSE

The dynamic calculations are performed in separate sub-
spaces belonging to fixed angular momentum J and its projec-
tion M (see also Ref. [5]). One can account for M dependencies
analytically by performing a multipole expansion of RT .
To this end we use a decomposition into multipoles of the
transverse current. This decomposition will also allow us to
employ an alternative expression for the transition operator,
see below. The transverse current is represented as

JT = 4π
∑

λ=el,mag

∑
jm

ij−ε T λ
jm(q)Y(λ)∗

jm (q̂). (13)

Here q̂ = q−1q and Y(λ)
jm are electric and magnetic vector

spherical harmonics [19] and ε = 0 when λ = el, or ε = 1
when λ = mag. This then allows the transverse response to be
written as

RT (q, ω) = 4π

2J0 + 1

∑
λ=el,mag

∑
Jj

(2J + 1)(RT )jλ

J , (14)

where

(RT )jλ

J =
∑∫

df
〈
q

jλ

JM

∣∣�f (J,M)〉〈�f (J,M)
∣∣qjλ

JM

〉
× δ(Ef − E0 − ω), (15)

J and M are the final state angular momentum and its
projection, and |qjλ

JM〉 is given by∣∣qjλ

JM

〉 = [
T λ

j ⊗ ∣∣�0(J0)〉]
JM

. (16)

In Eq. (15), M is arbitrary.
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In terms of the more standard multipoles and vector
spherical harmonics Yl

jm, we can write

T el
jm =

(
j + 1

2j + 1

)1/2

T
j−1
jm +

(
j

2j + 1

)1/2

T
j+1
jm , (17)

T mag
jm ≡ T

j

jm (18)

where

T l
jm = 1

4πij−ε

∫
d�q

(
Yl

jm(q̂) · J(q, ω)
)
. (19)

Since charge has to be conserved, it is well known that the
above expression for T l

jm can be rewritten as

T el
jm =

(
j + 1

j

)1/2
ω

q
ρjm +

(
2j + 1

j

)1/2

T
j+1
jm , (20)

where ρjm is a charge multipole of the charge density operator
ρ defined by

ρjm(q) = 1

4πij

∫
d�qYjm(q̂)ρ(q). (21)

We shall refer to the form of T el
jm in Eq. (17) as the direct form

and to that in Eq. (20) as the Siegert form. The first term of
Eq. (20) will be called the Siegert operator, while the second
term is the residual term. Appendix B gives the multipole
operators T l

jm for the one-body currents, while Appendix C
lists them for the π and ρ exchange currents.

IV. CALCULATION OF THE RESPONSE

The techniques we use in calculating the response have
been largely set out in Ref. [4]. Here we add some extra
detail which arises in the case of the transverse response. The
Lorentz transform of the partial response (RT )jλ

J of Eq. (15) is
given by

�
jλ,α

J (q, σR, σI )

=
∑

n

(RT )jλ,α

J (q, ωn)

(ωn − σR)2 + σ 2
I

+
∫

dω
(RT )jλ,α

J (q, ω)

(ω − σR)2 + σ 2
I

. (22)

The sum in Eq. (22) corresponds to transitions to discrete
levels with excitation energy ωn. In our A = 3 case, there
exists only one discrete contribution corresponding to M1
elastic scattering. In Eq. (22) the response is supplied with an
additional superscript α. It specifies separate contributions to
the response (RT )jλ

J of Eq. (15), e.g., a given α determines the
isospin of the final state. In addition, it specifies contributions
that correspond to components of the multipole operators with
different nucleon form factor dependencies.

It was pointed out above that one- and two-body currents
have different ω dependencies through their different form
factors. Therefore we need to calculate the responses with
the individual parts of the current, i.e., J(1)J(1), J(1)J(2), and
J(2)J(2). The corresponding partial response functions will
carry the superscripts α = {11, 12, 22} so that the response

(RT )jλ

J would be expressed as

(RT (q, ω))jλ

J = (
G

p

E(Q2)
)2

(RT (q, ω))jλ,11
J

+ 4G
p

E(Q2)Gv
E(Q2)(RT (q, ω))jλ,12

J

+ 4
(
Gv

E(Q2)
)2

(RT (q, ω))jλ,22
J . (23)

Additional ω dependence of the electric multipole operators
arises when they are used in the Siegert form, i.e., in the form
of Eq. (20). Because of the additional ω dependence of the
first term in Eq. (20), we calculate separately the response
originating from this term (∼ω2), the response originating
from the second term in Eq. (20), and the cross-term response
(∼ω). For the same reason as in Eq. (23), each of these
responses is in turn broken into the one-body piece, the
two-body piece, and the cross piece, which are calculated
separately. The superscript α in Eq. (22) enumerates all these
various cases, so that the response (RT )j,el

J is a sum of the
responses (RT )jλ,α

J multiplied by products of nucleon form
factors times ωn, n = 0, 1, 2.

As described in Ref. [3], the transforms are determined
dynamically. In the present case the transforms �

jλ,α

J are
obtained from

�
jλ,α

J (q, σR, σI ) = 〈
ψ̃

jλ,α

JM

∣∣ψ̃jλ,α

JM

〉
,

(24)∣∣ψ̃jλ,α

JM

〉 = [h − σR + iσI ]−1
∣∣qjλ,α

JM

〉
.

The calculation (24) is M independent and is performed in
separate subspaces belonging to given isospin and parity.
Parities are determined by the multipole order j and the choice
of λ = el/mag. For a given λ, parity, and J , only one value of
j is possible in our case.

To pass to responses, one needs to invert the transforms.
This may be done either separately for each transform �

jλ,α

J

using Eq. (22) or for their sums at the same α. One may define
the responses Rα

T = ∑
λ=el,mag R

λ,α
T , where [cf. Eq. (14)]

R
λ,α
T (q, ω) = 4π

2J0 + 1

∑
Jj

(2J + 1)(RT )jλ,α

J (q, ω). (25)

One also defines the corresponding transforms

�λ,α(q, σR, σI ) = 4π

2J0 + 1

∑
Jj

(2J + 1)�jλ,α

J (q, σR, σI ).

(26)

They are related to the responses in Eq. (25) in the same way
as in Eq. (22). All the various �λ,α are inverted separately
to get R

λ,α
T . Our inversion method and more information

concerning the inversion can be found in Refs. [5,20,21]. We
take σI = 20 MeV and distinguish between the two isospin
cases T = 1/2 and 3/2, since the corresponding responses
have different thresholds and thus the inversion can be carried
out more precisely. After having inverted both cases, we sum
up the two results. For the magnetic part of the response,
we invert the M1 transition to the final state with Jπ = 1

2
+

separately, since, as mentioned above, it contains an elastic
contribution. This elastic contribution can easily be determined
by choosing a very small value for σI , and thereafter its effect
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on the transform can be subtracted leading to a LIT of a purely
inelastic response.

As mentioned earlier, charge conservation leads to the
equality of the Siegert and direct forms of the transverse elec-
tric multipole operator. This provides an important check on
our procedures especially with respect to the implementation
of the MECs. The BonnRA potential contains more than just
π and ρ meson exchange, but we expect that taking account
of MECs from only these two exchanged particles should lead
to the dominant MEC contribution in our kinematic range,
while additional MEC effects are partially taken care of by
the Siegert operator. A good test for the implementation of
the MEC is provided by using a simple π + ρ OBEP (one
boson exchange potential) with their corresponding MECs.
In this case, charge conservation should be exact, and the
transverse response should be independent of whether one
uses the Siegert or the direct form of T el

jm. We have made such
tests at q = 10, 300, and 500 MeV/c and found very good
agreement between the results of the two calculations [22].

V. RESULTS AND DISCUSSION

We have selected the momentum transfers q =
174, 250, 400, and 500 MeV/c for a calculation of RT (q, ω)
in a large ω range. In addition, we have considered the low-ω
part of RT at q = 174, 324, and 487 MeV/c, for which cases
we took a maximal value of J = 7/2. For the other q values,
a different choice for J max was made: 11/2 (q = 250 MeV/c),
15/2(q = 400), and 19/2(q = 500). We have checked that
with these settings, very good convergence of the multipole
expansions of RT are obtained in the requested energy
ranges.

In the discussion, we compare results calculated with the
various current operators of Sec. II (both with direct and
Siegert forms) representing the following contributions: (a)
one-body, (b) one-body and implicit MEC via Siegert operator,
(c) one-body, π and ρ MEC, and (d) one-body, π and ρ

MEC plus additional MEC via Siegert operator. If the exact
charge conservation is satisfied, then the results of the direct
calculation (c) will agree with those of the Siegert form (d).

In Figs. 1 and 2, we show the various current contributions
to RT . It is readily seen that there are rather strong MEC effects:
15–30 MeV above threshold MECs enhance RT by more than
30% for the two higher q values (very close to threshold even
by up to 200%, see Fig. 4); they increase the quasielastic peak
height by 10% (q = 174, 250 MeV/c), 7% (q = 400), and 6%
(q = 500); for lower q they also lead to large effects in the
high-energy tail [e.g., at pion threshold, increases of 180%
(q = 174 MeV/c), 95% (q = 250), 22% (q = 400), and 5%
(q = 500)]. In general, relative contributions of MECs are
determined mainly by distances |ω − ωpeak|. This is natural,
since the peaks correspond to maximum contributions of one-
body operators.

It is also seen that Siegert contributions remain quite small
in and below the quasielastic peak. On the other hand, they
become more important with increasing energy (e.g., at pion
threshold and q = 174 (250) MeV/c, enhancements are of
130% (55%) of the one-body contribution). In addition to
the fact that in general MEC contributions are rather small
in the peak as compared to one-body contributions, Siegert
contributions are strongly suppressed in and below the peak by
the factor ω/q in Eq. (20). The approximate transition operator
we discuss takes account of MEC only via the Siegert operator,
i.e., the charge operator from Eq. (20). As seen in Fig. 2, in
the tail region this approximation provides the response rather
close to the true one at the lowest q value, q = 174 MeV/c.
This agrees with the well-known fact that in moderate energy
photodisintegration processes (ω = q), MEC contributions are
largely included by the Siegert operator.

It is interesting to note that there exist additional Siegert
MEC contributions beyond the π and ρ MECs entering the
direct calculation. This is because the π and ρ exchanges
constitute only the dominating part of a consistent exchange
current with the BonnRA potential. Other two-body currents
are induced by momentum and spin-orbit dependent potential
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FIG. 1. Effects of the various contributions
on RT in the quasielastic region at q = 174,
250, 400, and 500 MeV/c: one-body (dotted),
one-body + implicit MEC via Siegert operator
(dashed), one-body + π and ρ MEC taken into
account directly (dashed-dotted), one-body +
implicit MEC via Siegert operator + additional
π and ρ MEC contributions (solid).
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FIG. 2. Same as Fig. 1, but for the high-
energy region.

terms. In addition, three-body currents, originating from the
TM-3NF, could lead to Siegert contributions. Effects of the
Siegert operator beyond the π and ρ MECs were also found
in the proton-deuteron radiative capture with the BonnCD+�

potential [23]. It is seen from Figs. 1 and 2 that such effects are
small for energies far from the photon point. Indeed, there, the
complete calculation via direct inclusion of MEC operators and
the complete alternative calculation that involves the Siegert
operator have led to results close to each other. However, closer
to the photon point, the additional Siegert contributions can
lead to corrections of the order of 10%.

In Fig. 3, we show our RT results in comparison with
experimental data. For q = 250 and 400 MeV/c, one finds
good agreement. However, data are not precise enough to
allow a definite conclusion about the MEC contribution. As
opposed to the lower q cases, we find at q = 500 MeV/c
a difference between the theoretical and experimental peak
positions. The shift amounts to about 5–10 MeV. Relativistic
effects, in particular those arising from corrections to the
kinetic energy, might be responsible for this difference. In
fact, in Ref. [6] it was shown for the longitudinal response
function RL(q, ω) that such effects lead at q = 500 MeV/c to
a shift of the peak position by 6 MeV.

In Fig. 4, we depict various RT theoretical and experimental
low-energy results at q = 0.882, 1.64, and 2.47 fm−1 corre-
sponding to about 174, 324, and 487 MeV/c, respectively. We
do not show the contribution of the Siegert operator, since,
as shown in Fig. 1, its effect is very small at low energies.
One sees that the MEC contribution can be very important,
e.g., at q = 487 MeV/c one finds an increase of about 200%
close to threshold. Contrary to the cases shown in Fig. 3,
here one can make a definite conclusion about the MEC
contributions. It is evident that they lead to a considerably
improved agreement between theory and experiment. For the
two higher q values, theoretical and experimental results agree
very well, whereas for q = 174 MeV/c the theoretical result
underestimates experimental data somewhat below 10 MeV.
A better theoretical description of the q = 174 MeV/c data

is found in Ref. [1], where the AV18 NN potential and
the UrbanaIX 3N force is used as the nuclear interaction.
However, the Coulomb force was not included in the final
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FIG. 3. Comparison of theoretical and experimental RT at q =
250, 400, and 500 MeV/c. Theoretical RT with contributions:
one-body (dotted) and one-body + π -MEC + ρ-MEC + additional
MEC via Siegert operator (solid). Experimental data from Refs. [24]
(triangles), [25] (circles), and [26] (squares).
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same as in Fig. 3, but an additional curve in the upper panel
shows the total result when the Coulomb force is neglected in the
final state interaction (dash-dotted). Experimental data are from
Ref. [27].

state interaction. The effect of such neglect is illustrated in
Fig. 4 for the case in discussion. Within 2 MeV above threshold
it leads to an increase of more than 10%, while at 5 MeV
above threshold the effect still amounts to 4%. In this way the
theoretical results are shifted closer to the experimental data,
but the effect is too small to reach a good agreement at low
energies.

We summarize our results as follows. We have calculated
the transverse form factor RT (q, ω) considering besides one-
and two-body currents also the so-called Siegert operator. As
the nuclear interaction, we took the BonnRA NN potential
and the Tucson-Melbourne TM′ 3N force. Since we are
particularly interested in the MEC effects and the role of
the Siegert operator, we chose the BonnRA potential, for
which the important π and ρ exchange currents are directly
determined by the potential model. It is true that also for more
phenomenological NN potentials, e.g., AV18, consistent π

and ρ MECs can be constructed [13–15], but to this end one
has to interpret the isovector part of the phenomenological
potential as an effective π and ρ exchange.

We find that MECs provide very strong contributions
both at lower energies and in the high-energy tail while
giving a moderate increase to the height of the quasielastic
peak. Siegert contributions are unimportant in and below the
quasielastic peak. They become considerably more sizable at
higher energies, but additional MEC contributions have also to
be taken into account; thus a calculation in which, in addition
to the one-body current, MEC currents are taken into account
via only the Siegert operator is not sufficient. On the other
hand, a calculation with only one-body currents plus π and ρ

MECs may also not be sufficient at higher energies, since, as
we have shown, effects due to additional two- and three-body
currents can become important. To include at least a part of
these additional exchange effects, it is better to work also in this
case with the operator in Siegert form. The appropriate place
to study the structure of MECs is the energy region below
the quasielastic peak. Indeed, the contributions of MECs are
large in this region, whereas they are rather small in the peak,
and beyond the peak they are partly represented by the Siegert
operator, i.e., the charge operator.

Relatively good agreement with experimental data is
obtained at q = 250 and 400 MeV/c, while at q = 500 MeV/c,
presumably because of relativistic effects, the position of the
theoretical quasielastic peak is located somewhat above the
experimental one. Close to threshold, one finds very strong
MEC contributions. They are necessary in order to achieve
a good description of the experimental data at q = 324 and
487 MeV/c. Also at q = 174 MeV/c, they lead to an improved
agreement with experiment; but in the range from threshold
to 5 MeV above, the theoretical result underestimates the data
somewhat.

In the future, we plan to investigate the momentum range
500 MeV/c � q � 1 GeV/c considering relativistic corrections
for the one-body current operator and performing the calcula-
tion in a reference frame where relativistic effects in the kinetic
energy are minimized [6]. We also plan to study isobar current
contributions including �(1232) degrees of freedom.
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APPENDIX A: CONFIGURATION SPACE π AND ρ MECS

For convenience, we list below the well-known π and ρ

configuration space exchange currents.

jπSG(x) = f 2
0

m2
π

∑
i<j

(τi × τj )z

× [(σi · ∇i)σj δ(x − rj ) − (σj · ∇j )σiδ(x − ri)]

×
3∑

k=1

hπ
k Y

(
µπ

k , |ri − rj |
)
, (A1)
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jπex(x) = 1

4π

f 2
0

m2
π

∑
i<j

(τi × τj )z(σi · ∇i)(σj · ∇j )

×
3∑

k=1

hπ
k

[
Y

(
µπ

k , |x − rj |
)∇xY

(
µπ

k , |x − ri |
)

−Y
(
µπ

k , |x − ri |
)∇xY

(
µπ

k , |x − rj |
)]

, (A2)

jρSG(x) = 1

4π

( gρ

2M

)2
(

1 + fρ

gρ

)2 ∑
i<j

(τi × τj )z

× [
(σi × ∇i) × σj δ(x − rj ) − (σj × ∇j )

× σiδ(x − ri)
] 3∑

k=1

h
ρ

k Y
(
µ

ρ

k , |ri − rj )|). (A3)

jρex(x) = 1

(4π )2

( gρ

2M

)2
(

1 + fρ

gρ

)2

×
∑
i<j

(τi × τj )z (σi × ∇i) · (σj × ∇j )

×
3∑

k=1

h
ρ

k

[
Y

(
µ

ρ

k , |x − rj |
)∇xY

(
µ

ρ

k , |x − ri |
)

−Y
(
µ

ρ

k , |x − ri |
)∇xY

(
µ

ρ

k , |x − rj |
)]

. (A4)

Here Y (m, r) = e−mr/r . We list the coupling constants, the
masses µα

k , and the regularization constants hα
k , where α = π

or ρ, taken from Ref. [11]:

f 2
0 = 1

4π
f 2

πNN = 0.0805,
g2

ρ

4π
= 1.2,

fρ

gρ

= 6.1,

(A5)
µα

1 = mα, µα
2 = �α + 10 MeV, µα

3 = �α − 10 MeV,

�π = 1.3 GeV, �ρ = 1.2 GeV, (A6)

hα
1 = 1, hα

2 = −
(
µα

3

)2 − (
µα

1

)2(
µα

3

)2 − (µα
2

)2 , hα
3 =

(
µα

2

)2 − (
µα

1

)2(
µα

3

)2 − (
µα

2

)2 .

(A7)

APPENDIX B: T l
j m MULTIPOLES OF ONE-BODY

CURRENTS

In the following, the nonrelativistic expressions of the
electric and magnetic multipoles for the one-body currents
are written. Each of them is decomposed in a convection and
a spin current. For the magnetic multipoles one has

T
j

jm =
∑

i

[
T

j, spin
jm (i) + T

j, conv
jm (i)

]
, (B1)

with

T
j,spin
jm (i) = 1

M

q

2

(
µp + µn

2
+ µp − µn

2
τzi

)

×
{√

j

2j + 1
jj+1(qr ′

i )[Yj+1(r̂′
i) ⊗ σi]jm

−
√

j + 1

2j + 1
jj−1(qr ′

i )[Yj−1(r̂′
i) ⊗ σi]jm

}
,

(B2)

T
j,conv
jm (i) = 1

M

(
1 + γ

2
+ 1 − γ

2
τzi

)
× jj (qr ′

i )[Yj (r̂′
i) ⊗ ∂ ′

i ]jm. (B3)

The quantity ∂ ′
µ is defined by the relationship −i∂ ′

µ = p′
µ. If

the last Jacobi vector is defined as �ξA−1 = √
(A − 1)/A [rA −

(A − 1)−1 ∑A−1
i=1 ri], then

∂ ′(A)
µ =

[
A − 1

A

]1/2
∂

∂ξA−1,µ

.

Similarly, we write the one-body multipoles contributing to
T el

jm as

T l
jm =

∑
i

[
T

l,spin
jm (i) + T

l,conv
jm (i)

]
, (B4)

where l = j ± 1. One obtains

T
j±1, spin
jm (i) = − 1

M

q

2

(
µp + µn

2
+ µp − µn

2
τzi

)

×
√

j + (1 ∓ 1)/2

2j + 1
jj (qr ′

i )[Yj (r̂′
i) ⊗ σi]jm

(B5)

and

T
j±1,conv
jm (i) = ± 1

M

(
1 + γ

2
+ 1 − γ

2
τzi

)

×
{

jj±1(qr ′
i )[Yj±1(r̂′

i) ⊗ ∂ ′
i ]jm

− q

2

√
j + (1 ± 1)/2

2j + 1
jj (qr ′

i )Yjm(r̂′
i)

}
. (B6)

The term proportional to jj (qr ′
i ) in Eq. (B6) above cancels

when one forms the electric multipole from Eq. (17).

APPENDIX C: T L
J M MULTIPOLES OF π AND ρ MECS

Here the T L
JM multipoles are given for the “12” pair. The

total result should be multiplied by 3 to account for three pairs
of identical particles in the trinucleons.

(i) π seagull

T L
JM =

√
4π

iJ−ε

(
f0

mπ

)2 ∑
�ρσ

∑
σ ′L

iσ
′−�(−1)σ+L+J

× [1 + (−1)�+ρ]�̂2ρ̂L̂σ̂ σ̂ ′L̂
(

� 1 σ

0 0 0

)

×
(

σ ′ � L

0 0 0

) {
L � σ ′
σ L 1

} {
L 1 L
ρ J 1

}

×jσ ′(qz)j�

(qr

2

)
(Hπ (r))′

[
[Yσ ′(ẑ) ⊗ Yσ (r̂)]L

⊗ �
[ρ]
12

]J

M
(τ1 × τ2)z. (C1)
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Here r = r2 − r1, z = −[(r1 + r2)/2 − Rc.m.], r̂ = r/r ,
ẑ = z/z,

(
Hπ (r)

)′ = dHπ (r)/dr , and Hπ (r) =∑3
k=1 hπ

k Y (µπ
k , r), where the constants are given by

Eqs. (A5) and (A7). We denote the spin-coupling
[σ1 ⊗ σ2]ρ,m by �

ρ,m

12 .
(ii) π exchange current. The multipole for the true π

exchange is the sum

T L
JM = T

L,X1
JM + T

L,X2
JM + T

L,X3
JM ,

where

T
L,X1
JM = −

√
4π

iJ−ε

4

π

(
f0

mπ

)2

×
∑
�ρσσ ′

∑
L′L

iσ+σ ′+1(−1)σ (�̂)2ρ̂L̂(L̂′)2σ̂ σ̂ ′L̂

×
(

1 1 ρ

0 0 0

) (
σ ′ � L

0 0 0

)(
1 � L′
0 0 0

)

×
(

L′ ρ σ

0 0 0

) {
L′ ρ σ

L σ ′ J

} {
1 � L′
σ ′ J L

}

× jσ ′(qz)�(3)
σ,�(q, r)

[
[Yσ ′(ẑ)

⊗ Yσ (r̂)]L ⊗ �
[ρ]
12

]J

M
(τ1 × τ2)z, (C2)

T
L,X2
JM =

√
4π

iJ−ε

q2

π

(
f0

mπ

)2

×
∑
�ρσσ ′

∑
L′L

iσ+σ ′+1(−1)σ
′
(�̂)2ρ̂L̂(L̂′)2σ̂ σ̂ ′L̂

×
(

1 1 ρ

0 0 0

) (
σ ′ � L′
0 0 0

) (
1 � σ

0 0 0

)

×
(

L′ ρ L

0 0 0

) {
L ρ L′
L 1 J

}{
1 � σ

σ ′ L L′

}

×jσ ′(qz)�(1)
σ,�(q, r)

[
[Yσ ′(ẑ)

⊗ Yσ (r̂)]L ⊗ �
[ρ]
12

]J

M
(τ1 × τ2)z, (C3)

T
L,X3
JM = −

√
4π

iJ−ε

4
√

3q

π

(
f0

mπ

)2 ∑
�f σσ ′

∑
L′J ′L

× iσ+σ ′+1(−1)L+1(�̂)2L̂(L̂′)2σ̂ σ̂ ′L̂(Ĵ ′)2(f̂ )2

×
(

1 � J ′
0 0 0

)(
1 J ′ σ

0 0 0

) (
L 1 L′
0 0 0

)

×
(

L′ � σ ′
0 0 0

) {
L′ � σ ′
σ L f

} {
1 � J ′
σ 1 f

}

×



L′ f L
1 1 1
L 1 J


 jσ ′(qz)�(2)

σ,�(q, r)
[
[Yσ ′(ẑ)

⊗ Yσ (r̂)]L ⊗ �
[1]
12

]J

M
(τ1 × τ2)z. (C4)

Here �
(n)
σ,�(q, r) = ∑3

k=1 hπ
k φ

(n)
σ,�(q, r, µπ

k ), where the

functions φ
(n)
σ,�(q, r,m) are defined in Ref. [28]. The

multipoles (C1)–(C4) are real.
(iii) ρ exchange currents. The multipoles of the ρ exchange

currents can be obtained from the above π exchange
currents by means of the following replacements: µπ

k →
µ

ρ

k , h
π
k → h

ρ

k ,(
f0

mπ

)2

→ 1

4π

( gρ

2M

)2
(

1 + fρ

gρ

)2

, (C5)

and by inserting into each equation above the factor

− 6(−1)ρ
{

1 1 1

1 ρ 1

}
. (C6)
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