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4He experiments can serve as a database for determining the three-nucleon force
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We report on microscopic calculations for the 4He compound system in the framework of the resonating group
model employing realistic nucleon-nucleon and three-nucleon forces. The resulting scattering phase shifts are
compared with those of a comprehensive R-matrix analysis of all data in this system, which are available in
numerical form. The agreement between calculation and analysis is very good in most cases. Adding three-nucleon
forces yields large effects in many cases. For a few cases, the new agreement is striking. We relate some differences
between calculation and analysis to specific data and discuss experiments necessary to clarify the situation. From
the results, we conclude that the data of the 4He system might be well suited to determining the structure of the
three-nucleon force.
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I. INTRODUCTION

For the nucleon-nucleon system, the Nijmegen group [1]
has developed a database of some 5600 data points for
the proton-proton and neutron-proton scattering. All modern
nucleon-nucleon potentials have to be tested against this data
set and yield a χ2 per degree-of-freedom of the order of
unity before they are generally accepted. For the three-nucleon
forces (TNFs) the natural systems are the three-nucleon
systems 3H and 3He. In these two cases, however, realistic
nucleon-nucleon (NN ) forces allow one to already describe the
deuteron-nucleon scattering data quite well [2], and the TNFs
yield only minor corrections for an almost perfect reproduction
of the data, except for the notorious Ay problem [3]. But
even to cure the Ay problem, only small changes of the
deuteron-nucleon P -wave phase shifts of the order of a degree
are sufficient to reproduce the low-energy data [4]. At higher
energies, which we do not consider here, TNF effects are more
pronounced; see Ref. [5]. Also, three-body breakup reactions
might be a more sensitive test [6–8]. In this situation, another
system can be helpful in determining the TNF, if such a system
were accessible to scattering calculations employing realistic
two- and three-nucleon forces. Furthermore, the available
amount of data must be of the order of that of the NN

system. At the moment, the available computer power limits
the scattering calculations in the many-channel case to a mass
number below 6. For the three systems 4H, 4He, and 4Li,
scattering calculations using realistic NN forces exist [9–12].
Partially also TNFs have been employed. The second criterion
is only met by the 4He system. The two-body scattering
channels triton-proton, 3He-neutron, and deuteron-deuteron
allow for elastic scattering and various reactions, with cross
section measurements and also many existing polarization
observables. Because of well-developed resonances [13], their
energy dependence is sometimes rather strong. About 5000
individual data are the input for the ongoing R-matrix analysis
[14], a number large enough to allow for detailed comparison
with calculations using various forces.

In this paper, we report on microscopic calculations using
realistic nuclear forces, comparing the results for scattering
phase shifts with those of the R-matrix analysis on a partial-
wave-by-partial-wave basis and then with a selected set of
data. This set of data is chosen not only to demonstrate the
agreement to be reached by the analysis and the parameter-free
calculation, but also to indicate the need for new or better
data to improve the R-matrix analysis and to allow a more
detailed comparison with the calculated results. The format
of the paper follows to a large extent that of earlier work
[10] using a rather old version of the Bonn potential [15]
expanded in terms of Gaussians [16]. We first discuss the
essentials of the refined resonating group model (RRGM)
used here. Then we describe briefly the R-matrix analysis,
which is ongoing work from the evaluation [13], and discuss
changes since the last publication. A detailed comparison of
diagonal scattering phase shifts and reaction matrix elements
from the analysis with the calculated ones comprises the next
section. The following section discusses how well data can
be reproduced by the R-matrix analysis and the calculation,
and which conclusions about the underlying interaction are
possible. Finally the quest for new or better data for selected
experiments is discussed, especially regarding the kind of
information that might be drawn from them. We conclude
the paper by a discussion about the suitability of the data set
as a measure for determining the structure of the TNF.

II. RGM AND MODEL SPACE

We use the resonating group model (RGM) [17,18] in its
refined version (RRGM) [19] to compute the scattering in the
4He system using the Kohn-Hulthén variational principle [20].
The main technical problem is the evaluation of the many-
body matrix elements in coordinate space. The restriction
to a Gaussian basis for the radial dependencies of the wave
function allows a fast and efficient calculation of the individual
matrix elements [18,19]. However, to use these techniques, the
potentials must also be given in configuration space in terms of
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Gaussians. In this work, we use suitably parametrized versions
of the Argonne v18 (AV18) [21] NN potential, and the Urbana
IX (UIX) [22] and the V ∗

3 (proposed in Ref. [23] and used in
Ref. [24]) NNN potentials.

In the 4He system, we use a model space with six two-
fragment channels, namely, the p-3H, n-3He, d-2H, d-2H
(S = 0), the d--resonance, d--d-, and (pp)-(nn) channels. The
last three are an approximation to the three- and four-body
breakup channels that cannot in practice be treated within the
RRGM. The 4He is treated as four clusters in the framework
of the RRGM to allow for the required internal orbital angular
momenta of 3H, 3He, or 2H.

For the scattering calculation, we include all S-, P -,
D-, and F -wave contributions to the Jπ = 0+, 1+,

2+, 3+, 4+, 0−, 1−, 2−, 3−, and 4− channels. From the R-
matrix analysis, these channels are known to reproduce the
low-energy experimental data. The full wave function for
these channels contains over 100 different spin and orbital
angular momentum configurations, hence it is too complicated
to be given in detail. The RRGM can be considered as a
kind of variational calculation; hence, increasing the model
space used usually improves the calculation. During the work,
we increased the model spaces several times. Because of the
amount of material to be shown, we present here only results
obtained for the largest model space. Some results obtained
for smaller spaces are given in Refs. [25,26]. Using a genetic
algorithm [27] for AV18 and UIX together, and allowing for
S-, P -, and D waves on all internal coordinates, we found
a triton binding energy of −8.460 MeV for dimension 70.
This practically converged result compares favorably with the
numerically exact one of Nogga [28] of −8.478 MeV. Since
the Gaussian width parameters were optimized for NN and
NNN interaction together, the agreement for the AV18 alone is
only −7.57 MeV, compared with the exact one of −7.62 MeV
[28]. Since isospin is a good approximation in light nuclei,
we use for the 3H and 3He the same internal configurations
and the same width parameters; however, the coefficients are
(slightly) different because of the Coulomb force (and to a
minor extent isospin-breaking terms in the AV18 potential).
Note that all calculations are done for physical channels and
not for channels with good isospin. For the deuteron, we
used five width parameters for the S wave and three for the
D wave, yielding −2.213 MeV, just 10 keV short of the
experimental value of −2.2245 MeV. The binding energies
and relative thresholds for the various potentials are given in
Table I. For NN and NNN together, the experimental binding

TABLE I. Comparison of experimental and calculated total
binding energies and thresholds relative to 3H-p (in MeV) for the
various potential models used.

Potential Ebin Ethres

3H 3He 2H 3He-n d-d

AV18 −7.572 −6.857 −2.213 0.715 3.145
AV18+UIX −8.460 −7.713 −2.213 0.747 4.033
AV18+UIX+V ∗

3 −8.452 −7.705 −2.213 0.747 4.025
Exp. −8.481 −7.718 −2.224 0.763 4.033

energies and thresholds are very well reproduced. The RGM
can only deal with two-body channels. To mock up the breakup
channels, we allowed configurations containing d-, (pp), and
(nn). Since these are unbound, any unrestricted variational
calculation will produce a wave function of infinite extent
and zero energy. To have a finite extent, we use the deuteron
S-wave width parameters, and let only the coefficients vary,
to give the lowest possible (positive) energy. This procedure
yields as binding energies +0.818, +1.203, and +0.805 MeV,
respectively. In the previous calculation [10], these channels
had some visible influence on the calculated phase shifts. In
the present calculations, they could be neglected, because of
the much larger model spaces, except for the binding energy
of the 4He ground state, to which they contribute 100 keV for
AV18 alone or 150 keV for the TNF included.

This representation of the 3H/3He, deuteron, and unbound
NN systems form the model space of the 4He scattering
system. We get for the different Jπ values up to ten physical
channels, insufficient to find reasonable scattering results.
So-called distortion or pseudoinelastic channels [18] without
an asymptotic part have to be added to improve the description
of the wave function within the interaction region. For this
purpose, all the configurations calculated for the physical
channels except one per channel can in principle be reused,
keeping only those width parameters which describe the
internal region. In practice, however, this works only for
a bound state calculation. In scattering calculations, the
numerical accuracy in manipulating large matrices introduces
some small amount of noise into the calculated results, e.g.,
phase shifts. Therefore we omit from each physical channel
two to five components, to avoid the noise completely. This
procedure reduces the binding energy of the ground state
of 4He by typically 20 keV, relative to the full bound state
calculation. In the following we will always give the energies
from the scattering calculation.

Recently Fonseca [29] pointed out that states having a
negative parity J−

3 in the three-nucleon fragments increase
the n-3H cross section notably. Contrary to the neutron-triton
system, we found in the 4He system that the inclusion of
such distortion states in the preliminary small model space
calculations gave minor effects compared to adding UIX.
Therefore in the converged calculation, we did not allow for
such states in order to save on computational resources, as we
had anyways to deal with sometimes more than 1000 channels.

III. R-MATRIX ANALYSIS

The Coulomb-corrected, charge-independent R-matrix
analysis of the 4He system from which the various “experi-
mental” phase shifts are obtained in this paper is similar to the
one described in Sec. III of our previous publication [10]. It
uses the approximate charge independence of nuclear forces
to relate the parameters in charge-conjugate channels, while
allowing simple corrections for the internal Coulomb effects.

The isospin T = 1 parameters were taken from an analysis
of p-3He scattering data [14], which gives a good description
of all data at proton energies below 20 MeV. The T = 1
eigenenergies ET =1

λ are, however, shifted by the internal
Coulomb energy difference �EC = −0.64 MeV, and the p-3H
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and n-3He reduced-width amplitudes γ T =1
cλ are reduced by

the isospin Clebsch-Gordan coefficient 1/
√

2. The isospin
T = 0 parameters are then varied to fit the experimental
data for reactions among the two-fragment channels p-3H,
n-3He, and d-2H, at energies corresponding to excitations in
4He below 29 MeV. In this fit, the T = 0 nucleon-trinucleon
reduced-width amplitudes are constrained by the isospin
relation γ T =0

n3He = −γ T =0
p3H , and a small amount of internal

Coulomb isospin mixing is introduced by allowing γ T =1
dd �= 0,

which is necessary to reproduce the differences between the
two branches of the d-d reaction. The charge-independent
constraints imposed on the parameters of this model might
be too simple, and although the R-matrix results given here
are not yet final, they represent the most comprehensive and
detailed attempt to date to give a unified phenomenological
description of the reactions in the 4He system. Note that the
R and S matrices are always represented in physical channels,
and the isospin arguments are only used to reduce the number
of parameters in the R matrix.

A summary of the channel configuration and data included
for each reaction is given in Table II. New data have been
added in most of the reactions, including the neutron total
cross sections of Refs. [30–33], the elastic scattering cross
sections of Ref. [34], and the 3H(p, n) reaction cross section
measurements of Refs. [35,36].

When the S matrix is continued onto the complex energy
surface, near one of its poles it has the form

S = i
ρ0ρ

T
0

E0 − E
, (1)

where E0 = ER − i�/2 is the complex pole energy and ρ0 is
the complex residue amplitude. A procedure for obtaining E0

and ρ0 from R-matrix parameters is given in Ref. [37]. The
expectation of the Breit-Wigner approximation is that the sum
of the partial widths is related to the imaginary part of the pole
energy by

ρ
†
0ρ0 = �. (2)

For the resonances in light systems such as 4He, this is often
not the case [37,38]. As explained in Ref. [37], a parameter

TABLE II. Channel configuration (top) and data summary (bot-
tom) for each reaction in the 4He system R-matrix analysis.

Channel lmax ac (fm)

3H-p 3 4.9
3He-n 3 4.9
2H-d 3 7.0

Reaction Energy range
(MeV)

# Observable
types

# Data
points

3H(p, p)3H Ep = 0–11 3 1382
3H(p, n)3He+inv. Ep = 0–11 5 856
3He(n, n)3He En = 0–10 2 397
2H(d, p)3H Ed = 0–10 6 1666
2H(d, n)3He Ed = 0–10 6 921
2H(d, d)2H Ed = 0–10 6 399

Totals: 28 5621

characterizing the strength of an S-matrix pole,

S = ρ
†
0ρ0

�
, (3)

in terms of the magnitude of its residue compared to its
displacement from the real axis, can be quite different from
unity for poles that do not show up as strong resonances in the
data.

IV. PHASE SHIFT COMPARISONS

Since the nuclear many-body forces are not yet well enough
established, we cannot anticipate that a direct comparison
between calculation and data leads to clear conclusions,
especially as the complicated, time-consuming calculations
do not allow easy modifications of the potentials used.

That the matrix elements of one partial wave are not
reproduced well is enough to spoil any agreement between
calculation and data. In this situation, the comprehensive
R-matrix analysis—which takes into account all physical
channels simultaneously, connects elastic scattering data with
reactions, and interpolates in energy—is an absolute must.
This interpolation is necessary to study energy dependencies
and the effect of even broad resonances.

We can write each S-matrix element connecting channels
a and b as 〈a, la, Sa|SJπ |b, lb, Sb〉 = ηe2iδ , where η and δ

depend on the channels a and b, their orbital angular momenta
la and lb, their channel spins Sa and Sb, and the total angular
momentum J and parity π .

In the following, we will compare in most cases only
diagonal scattering phase shifts δ and only sometimes present
results for the coupling strength η, in order not to be swamped
by too many data. In addition, all S-matrix elements to a
given Jπ -value have to obey unitarity; hence, diagonal and
nondiagonal matrix elements are always related.

For most energies, we have to deal with a coupled-channels
problem. Only below the 3He-n threshold at 700 keV are
the triton-proton 0+, 0−, 3+, and 4− channels single channels
indeed. In this energy range, due to the low energy, the
P -wave channels are still dominated by the threshold behavior,
showing only small phase shifts. The D and F waves are even
smaller, below 0.1◦. The 0+ channel, however, is dominated
by the first exited state in 4He. The R-matrix analysis yields
a rapidly increasing phase shift, which crosses the 90◦ line
100 keV below the threshold, reaching about 105◦ at threshold
in a cusplike manner, to slowly decrease afterward, as shown
in Fig. 1. The corresponding pole of the S matrix is found
much below, close to the triton-proton threshold at a complex
energy of 0.114–i0.196 MeV.

The calculations started with the AV18 NN potential alone.
With increasing model space, the 4He binding energy con-
verged at −24.090 MeV. All calculations showed qualitative
agreement with the R-matrix results; the smallest model space
is above the R-matrix results, an increased one well below
(see Fig. 1 in Ref. [25]), and the converged model space yields
quantitative agreement, as shown in Fig. 1. The corresponding
S matrix has in the low-energy region two complex energy
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TABLE III. Pole positions of the 0+ S matrix from the multilevel R-matrix analysis compared with the results of the
various potential models used. All energies are given in MeV.

R matrix AV18 AV18+UIX AV18+UIX+V ∗
3

ER �/2 ER �/2 S ER �/2 S ER �/2 S

0.114 0.196 0.198 0.256 1.40 0.105 0.129 1.54 0.091 0.077 1.52
0.497 2.114 0.06 0.664 2.227 0.17 0.574 2.229 0.14

poles, given in Table III. The lower one is close to the one
found in the R-matrix analysis.

For a well-isolated resonance, the modulus of the residue
of the S matrix at the pole position ER − i�/2 in the single-
channel case is just �, dictated by unitarity. As most of the
resonances in 4He are broad and overlapping, this criterion is
not met in most cases; see the previous section and Ref. [13]
for a more detailed discussion. To indicate the relevance
of a complex energy pole of the S matrix, we present in
Table III the pole positions found, together with the ratio S of
the modulus of the residue and � for an easier comparison.

The real part of the calculated poles closest to the threshold
is by no means related to that energy where the corresponding
phase shift crosses 90◦; see Fig. 1. The second pole found
in all the calculations has a small ratio S, which means it
cannot be a standard Breit-Wigner resonance as discussed in
Ref. [13]. These findings indicate the overlapping of (many)
resonances. Furthermore, reducing the model space slightly
changes the positions of all poles strongly, except for the lowest
one. Usually we find many more poles (with small strength) in
the S-matrix calculation than in the R-matrix analysis, whose
influence on the physical observables is expected to be weak.
The next pole in the R-matrix analysis is above 3 MeV. In this
interval, more poles of the S matrix are found.

Since neglecting the Coulomb force shifts the lowest pole
below the 3H-p threshold, so that it becomes a particle-stable
state (see also Ref. [39] for various NN forces and Ref. [12]
for additional NNN forces), we discuss the situation in more
detail. For AV18 alone, this state is bound relative to the
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FIG. 1. (Color online) Low-energy triton-proton 0+ phase shifts
calculated using AV18 (av), AV18 and UIX (au), and additionally V ∗

3

(auv) compared with R-matrix (Rmat) results.

threshold by 62 keV; for AV18 and UIX, by 112 keV. Therefore
in these cases, the 0+ 3H-p phase shift has to fall with energy
and cannot reproduce the R-matrix results.

To sketch this intriguing situation, we display the two 0+
S-matrix poles closest to the 3H-p threshold in Fig. 2 for the
AV18 alone and the full interaction.

For the AV18 alone, the second 0+ state starts just below
−60 keV on the real axis, becomes unbound slightly above a
strength of the Coulomb potential of C = 0.2, and then moves
gradually into the complex energy plane up to a real part of
the energy of about 200 keV. This pole is characterized by
a residue that is always larger than required by the unitarity
condition on the real axis by up to a factor of 1.9, close to the
3H-p threshold, falling to 1.4 for the full Coulomb interaction.

Employing now also the Urbana IX potential, the situation
is quite similar, as shown in Fig. 2(a). Since the second 0+ state
is more strongly bound without the Coulomb force, it becomes
only unbound for a strength in excess of C = 0.35, then starts
to move into the complex plane at a somewhat slower pace, but
with a similar pattern as for AV18. The residue is up to a factor
of 3 larger than required by unitarity. Note that all the resonant
states are well below the corresponding 3He-n threshold. They
are all on the unphysical Riemann sheet adjacent to the physical
Riemann sheet, with one channel only open.

In Table III we find the next pole in energy still below the
3He-n threshold for the full Coulomb strength. These states,
however, are not analytically connected to those found for the
no Coulomb interaction. Except for a small splitting of 60 keV,
due to the isospin breaking terms in the AV18 potential, the
3He-n and 3H-p thresholds coincide for vanishing Coulomb
interaction. Hence, the unphysical Riemann sheet adjacent to
the physical sheet has two open channels. The corresponding
pole positions are labeled with a “2” in Fig. 2(b). With
increasing Coulomb strength, the real part of the pole position
has to increase because of the 3He-n threshold moving to
higher energies and thus reducing the attraction. We mark
with “2” on the corresponding lines in Fig. 2(b), from which
strength onward the adjacent Riemann sheet has only one open
channel. This means that the influence of these poles onto the
observables on the real axis will be reduced. Accordingly, we
label pole position on the one-open-channel Riemann sheet
with “1” and mark with “1” the lines in Fig. 2(b), from which
strength on this Riemann sheet is adjacent to the physical one.
For the AV18 alone, this transition occurs around a strength
of C = 0.45, yielding two poles with real energy positions
close to the corresponding 3He-n threshold, but far in the
complex plane with small residues. Adding the UIX potential,
the one-channel pole appears on the adjacent Riemann sheet
just above C = 0.80, whereas the two-channel pole disappears
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FIG. 2. (Color online) Complex energy pole positions of the 0+ S matrix for (a) the first pole and (b) the second pole. The ticks indicate
the strength of the Coulomb potential on a 0.1 grid, starting with zero for the most strongly bound; for details, see text.

only for a strength C = 0.97. All the poles have very small
residues when they are on the adjacent sheet to the physical
one.

So altogether we are faced in both calculations with
the situation of two poles, one of which becomes a bound
state increasing its residue when leaving the real axis, and
the other has a much smaller residue than expected from
a standard Breit-Wigner resonance. This is the only case
in which we encountered two S-matrix poles of the same
angular momentum and parity so close together in energy.
The behavior of the residues—one growing, one reduced
when going into the complex plane—makes it very difficult to
predict their respective effects on the real axis, where they
could be compared to experiment. We mention in passing
that the exact position of the poles is very sensitive to the
numerical procedures of inverting the big matrices or to how
the regularized Coulomb functions are expanded in terms of
Gaussians.

Let us now discuss in more detail the behavior of the
phase shifts, displayed in Fig. 1. We find the results for the
AV18 NN interaction alone in almost perfect agreement with
the R-matrix analysis below the 3He-n threshold, despite the
corresponding binding energy of 4He missing 4 MeV. When
the 3He-n channel opens, a bit too early (see Table I), the
calculated triton-proton phase shift decreases slowly with
energy.

Adding the UIX TNF force allows us to reproduce the 3He-n
threshold much better; but below threshold, the calculated
phase shifts overshoot the R-matrix results quite a bit.
Above, the agreement is nice. The calculated binding energy
of −28.294 MeV is almost at the experimental value of
−28.296 MeV. With the additional TNF V ∗

3 the phase shifts are
much too positive, the threshold is nicely reproduced, and the
ground state is overbound by 700 keV. This interaction, tailored
to resolve the Ay problem in nucleon-deuteron scattering,
hence, acting in relative P waves only, is therefore not
acceptable, and we will give no further results for this
interaction. Furthermore, except for the above phase shifts
and close to the 3He-n threshold, the effects of this force are
of minor importance. Directly above the 3He-n threshold, all
potentials yield a linear falloff with energy.

Let us now discuss the higher energies. In Ref. [10] the
phase shifts resulting from a version of the Bonn potential
were discussed. The comparison of the diagonal phases from
the calculation and the R-matrix analysis in Fig. 5 of Ref. [10]
was not too convincing. Only an Argand plot revealed that
the diagonal S-matrix elements become small because of a
very strong coupling between the triton-proton and the 3He-n
channel to form a state of good isospin T = 0. Therefore the
influence of these matrix elements on physical observables is
weak.

In Fig. 3 we display the calculation for the AV18 potential
alone in comparison with the results from the R-matrix
analysis used in 1997 [10] and a recent one from 2003 [14].
The differences in the data input into these two analyses are
discussed above. The obvious change in the data between
the analysis from 1997 and 2003 is in the triton-proton and
3He-n phases. Above 5 MeV, they come close to each other
as already predicted in the old calculation [10] and no longer
differ by 180◦ as before. The 1S0 d-d phases become more
repulsive close to the threshold. The other change is the sign
flip in the 5D0 d-d channel. But these phases are small.
The RRGM calculated results follow much more closely both
R-matrix results up to about 3 MeV, compared to Ref. [10].
At the calculated d-d threshold, there occurs a change in
form. (Note that the calculated d-d phase shifts have been
shifted in energy to the experimental threshold for an easier
comparison. The tiny kink in the triton-proton phase shifts
occurs at the calculated d-d threshold.) The energetic position
of the calculated results are obviously wrong, because of the
calculated d-d threshold being much too low; see Table I. The
qualitative behavior is encouraging. Since the only qualitative
change in the R-matrix results of both analyses is in the 0+
phase shifts and the quantitative changes in all other partial
waves are too small to be clearly identified in the figures, we
present in the following only results from the 2003 R-matrix
analysis.

In Fig. 4 we compare all physical 0+ elastic scattering phase
shifts calculated for AV18 together with UIX TNF with the
recent R-matrix analysis. The agreement between this zero-
parameter calculation and the analysis is remarkably good.
As discussed above, the calculated low-energy triton-proton
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FIG. 3. (Color online) Elastic 0+ phase shifts for all physical two-fragment channels calculated for the AV18 potential alone. The RRGM
1S0 phase shifts are displayed as full lines (red) for the t-p ones, as dashed lines for the 3He-n ones (green), and as dotted lines for the
d-d ones (blue). The corresponding R-matrix results are given by + for t-p, by X for 3He-n, and by ∗ for d-d . We stick to this coding in
this subsection where ever possible. The 5D0 d-d phase shifts are especially marked. The RRGM calculated d-d phase shifts are shifted by
0.9 MeV to the experimental threshold. (a) Data are from the 1997 R-matrix analysis as in Ref. [10]. (b) Data are from the 2003 R-matrix
analysis.

phases are a bit too high; but from the 3He-n threshold up
to the d-d threshold, the RRGM calculation and R-matrix
analysis agree perfectly, then comes the rapid change in energy
in the 3H-p and 3He-n phases, settling at similar values around
7 MeV. The 1S0 d-d phase shifts are very well reproduced over
the analyzed interval. Obviously these results do not leave too
much room for modification of the underlying NN and NNN

potentials acting in the relative S waves. The small values of
the 5D0 phases are not reached by the calculation.

Next we discuss the Jπ = 1+ partial waves. There the
R-matrix analysis finds only one high-lying resonance;
see Ref. [13]. In Fig. 5 we compare the full calculation with
the analysis. All phase shifts from the R matrix are negative.
The D-wave ones are close to zero and do not reach −15◦, and
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FIG. 4. (Color online) Elastic 0+ phase shifts for all physical
two-fragment channels calculated for the AV18 potential together
with the UIX TNF. The coding of the lines and symbols is the same
as in Fig. 3.

the d-d ones are a bit more negative than in the earlier analysis;
see Fig. 7 of Ref. [10]. Both RRGM S-wave phase shifts agree
nicely with the R-matrix results up to 6 MeV, above which
the RRGM ones are a bit more repulsive than those from the
analysis. The calculated D-wave phases are practically zero,
the d-d ones slightly positive, the others negative, but do not
reach the R-matrix values, which are small anyhow. Omitting
these small phase shifts yields changes in the polarizations of
typically 0.01, which is of the order of the experimental error
bars for, e.g., triton-proton scattering, but of the full data for
deuteron-deuteron scattering, see Sec. IV.

The 2+ partial wave contains the most coupled channels. In
the R-matrix analysis, all possible D waves and the 5S2 d-d
channel were taken into account. In the RRGM calculation, the
same physical channels and, additionally, more than a thousand
distortion channels are considered. Since all the D-wave phase
shifts are small already, the 5G2 d-d channel is neglected.
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FIG. 5. (Color online) Same as Fig. 3, but for the elastic 1+ phase
shifts calculated for the AV18 potential together with the UIX TNF.
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FIG. 6. (Color online) Comparison of the 2+ t-p and 3He-n phase
shifts calculated for the AV18 potential together with the UIX TNF.
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FIG. 7. (Color online) Comparison of the 2+ d-d phase shifts
calculated for the AV18 potential together with the UIX TNF. The
5S2 are shown as full line (red) and +, the 1D2 as dashed line (green)
and ×, and the 5D2 as dotted line (blue) and ∗.

In Fig. 6 we compare the R-matrix [3 + 1] phase shifts with
the calculated ones. All R-matrix phases appear to be positive,
the 1D2 just passing 10◦ with the t-p ones always a bit larger
than the 3He-n ones. The 3D2 phases start out with tiny negative
values up to −0.1◦, before turning positive around 3 MeV, and
barely reach 5◦. All phases are slightly more positive than in the
previous analysis [10]. The RRGM-calculated 1D2 phase shifts
agree nicely with the analysis, are a bit below at low energies,
passing the R-matrix results at the end of the analyzed interval,
but they keep growing with energy, whereas the R-matrix ones
show signs of decreasing. The 3D2 calculated phases are also
small and yield very similar values for t-p and 3He-n, but they
disagree in sign with the R-matrix ones at higher energies.
Since an earlier R-matrix analysis gave also a negative sign
for these phase shifts, we were quite concerned and tried to
identify which of the additional data in the analysis might have
introduced this sign flip. We could not find any polarization
observable sensitive to the sign flip and will come back to this
point when discussing the comparison with data later on.

In Fig. 7 we display the corresponding d-d phase shifts.
The 5S2 phases agree almost perfectly and fall off rapidly
with energy, but not as much as in Ref. [10]. The D-wave
phase shifts are small. The values of both channels from the
R-matrix turn negative; those from the RRGM calculation are
essentially unchanged. The 1D2 phase shifts agree very well
between calculation and analysis; the 5D2 do not, indicating a
rather large J -splitting in the R-matrix analysis and essentially
none in the RRGM calculation.

For the 3+ and 4+ partial waves, the R-matrix analysis
finds small negative values for all D-wave phase shifts up to
−5◦ for all physical channels. The RRGM results are even
smaller. In most cases, these small phase shifts have negligible
effects on the observables and are therefore not shown in
a separate figure. Collecting, however, all 3DJ triton-proton
or 3He-neutron or all 5DJ deuteron-deuteron phase shifts
from Figs. 4–7 together with the results just mentioned, we
find considerable J -splitting from the R-matrix analysis and
essentially none in the RRGM calculation. This is shown in
Fig. 8, where we display the triton-proton triplet D-wave phase
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FIG. 8. (Color online) Comparison of the D-wave phase shifts for all possible total angular momentum values J for (a) triton-proton
channels and (b) deuteron-deuteron channels. Because of the smallness of the RRGM d-d phase shifts, we do not label them.
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FIG. 9. (Color online) Same as Fig. 3, but for the 0− phase shifts.
Above 4 MeV, we added 180◦ to the R-matrix 3He-n phase shifts for
an easier comparison with the RRGM results.

shifts—the 3He-n ones are similar—and the deuteron-deuteron
quintet D-wave phase shifts. Note that at the same energy
above the thresholds, the R-matrix analysis yields d-d phase
shifts that are much larger and show a much larger splitting
than the triton-proton ones. It is remarkable that all the d-d
phase shifts are negative, except for J = 0.

Let us summarize the results for the positive parities. Em-
ploying the AV18 and UIX potentials allows us to reproduce
all S-wave phase shifts for all fragmentations almost perfectly.
Except for the 0+ partial wave, these are dominated by Pauli
repulsion and, hence, are negative. The singlet D-wave phase
shifts agree nicely between analysis and calculation. For the
3DJ [3 + 1] phase shifts, the R-matrix yields large J -splitting,
with 3D1 and 3D3 negative, the other one positive. In a
triton-proton optical model, such a splitting could be caused
by a rather strong tensor force, but the actual values cannot be
explained in a perturbative treatment.

The corresponding 5DJ d-d phase shifts cannot be ac-
counted for by deuteron-deuteron spin-orbit and tensor optical
potentials, mainly because of the J = 0+ phase shift being
large and positive, and the J = 3+ and J = 4+ ones being
small and negative. The RRGM calculation yields small
negative values for the [3 + 1] phase shifts (see Fig. 8) and
a splitting of the order of 1◦; for the d-d phase shifts, it
yields even smaller values, but positive, with a similar splitting
at comparable energies. These differences in the values of
the phase shifts and their splittings are the main qualitative
difference between R-matrix analysis and the microscopic
calculation for diagonal S-matrix elements. We will discuss
this situation together with selected data at the end of the
paper.

Let us now consider the negative-parity partial waves. The
compilation [13] shows three 0− resonances. Two of them can
be easily read off from the rapid change with energy of the t-p
and 3He-n phase shifts in Fig. 9. The third one of d-d structure
is not obvious. Except for the regions where the [3 + 1] phases
vary rapidly, the t-p and 3He-n phase shifts differ essentially by
irrelevant multiples of 180◦. In the region of the first resonance,
R-matrix and RRGM results agree nicely, but the position of
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FIG. 10. (Color online) Same as Fig. 5, but for the 1− phase shifts.

the resonance seems to be a bit lower in the calculation. In the
region of the second resonance, which seems to be somewhat
higher in the calculation, the behaviors of the R-matrix and
RRGM phase shifts are completely opposite. Because of a
good isospin T = 1, this resonance leads to a strong coupling
of the two [3 + 1] channels, with the coupling matrix element
close to the unitary limit of unity, leaving only a small value
for the diagonal S-matrix element. The situation we find here
is very close to that discussed previously [10] and is explained
by the Argand plots displayed in Figs. 11 and 12 of Ref. [10],
by showing the two S matrices passing on different sides of the
origin. Compared to the previous analysis and the calculation
using the Bonn potential, the [3 + 1] phase shifts are now
much better reproduced, the d-d ones are a bit underestimated;
compare Fig. 9 with Fig. 10 of Ref. [10]. Since no more recent
Bonn potential is given in r space, it could not be tested whether
these differences are due to deficiencies of the older potential
or to the much increased model spaces.

The 1− phase shifts are displayed in Fig. 10. The extracted
level structure is quite rich [13]. The [3 + 1] triplet phase
shifts are positive, all others negative. The RRGM results agree
favorably with the new R-matrix analysis. The difference in
the [3 + 1] triplet phase shifts is much smaller than for the
Bonn potential, as can be seen in Fig. 13 of Ref. [10]. The
3He-n triplet phase shifts cross over the triton-proton ones at
a higher energy and stay closer together in the calculation.
The 1P1 phases show a small splitting that is not found in the
R-matrix analysis. Close to threshold, the d-d phase shifts are
very well reproduced. The difference at the higher energies in
the d-d phase shifts could be due to end-of-data effects in the
analysis.

Since the 3P2 phase shifts were the main culprits in Ref. [10]
for missing most of the experimental values, we compare in
Fig. 11 the new calculation for the NN interaction alone and
together with the TNF with the new analysis. The R-matrix
values hardly changed; only the d-d phases became a bit
less repulsive. Compared with the Bonn potential used in
Ref. [10], the RRGM results for the AV18 already are much
more attractive, gaining 15◦ to 20◦ at the higher energies.
Also the moduli of the S-matrix elements are much closer
to the R-matrix results than before. Adding the UIX TNF
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FIG. 11. (Color online) Comparison of the 2− P -wave phase shifts. (a) Calculation for the AV18 alone, no coupling to F waves allowed.
(b) Calculation for AV18 and UIX including coupling to F waves.

yields a small amount of further attraction. The R-matrix
analysis allows also for F waves. These can be coupled to
2−, 3−, and 4− partial waves. The resulting phase shifts turned
out to be of the order of a few degrees in the energy range
considered. Therefore, and because of a lack of computing
power, these partial waves were not calculated in Ref. [10].
During the comparison with data, it turned out that all the 2H
(d, nucleon) analyzing powers depend sensitively on these
small contributions, and a description of the experimental
situation is only possible if these partial waves are taken into
account. Therefore every effort was made to calculate them. In
Fig. 11(b) we display the results of the calculations allowing
also for the UIX TNF and the F waves. The combined effect
of coupling to F waves and adding UIX TNF is additional
attraction of the order of a few degrees.

As for the 1− channels, the 3He-n phase shifts cross over
the 3H - p ones at a higher energy, and have less splitting in the
calculation than in the R-matrix analysis. The d-d phase shifts
from the analysis are close to zero, whereas the calculation
yields similar values as for the 1− channel. Altogether, the
calculated [3 + 1] phase shifts are close to R-matrix ones,
whereas the calculated d-d phase shifts do not reach the J -
splitting found in the analysis. To make the situation more
transparent, we compare in Fig. 12 the calculated deuteron-
deuteron P -wave phase shifts with those from the analysis.

As seen in Fig. 12, the 3P1 phase shifts agree nicely between
calculation and analysis, and also the amount of splitting
between the 3P1 and 3P0 phases is similar but opposite in
direction. The order of the different J values is permuted. The
3P2 phases vary widely between calculation and analysis; but
because of the small phase shifts in the analysis, we do not
expect large effects omitting them altogether. Considering the
three J values together, we find a reasonably large splitting in
the analysis, hence, also reasonably large polarization data.
From the small J -splitting of the calculated phase shifts,
we expect small polarization data in d-d scattering. If the
analysis and the direct calculation are to reproduce the same
d-d data, the larger splitting in the R-matrix analysis has to
be compensated for by the results from higher partial waves,
due to interference. We will come back to this point when

discussing elastic deuteron-deuteron observables later in the
paper.

In Fig. 13 we display the F -wave phase shifts for the 3H-p
and d-d channels. Since the results for the 3He-n channels
are almost identical, we do not show them. The triton-proton
R-matrix results are small, the 3F3 phase shift being reasonably
large and positive up to 7◦, whereas the others are negative
by less then 1◦. The opposite sign of the 3F3 phases could
be due to a strong tensor force; however, the size of the
3F2 and 3F4 phases does not support this conjecture. The
RRGM calculation yields essentially no J -splitting with all
phase shifts slightly positive, up to 1◦. We note in passing that
the singlet F -wave phase shifts have the opposite sign to the
3F3 ones and about half the strength in the analysis and the
calculation.

For the deuteron-deuteron channels, the R-matrix analysis
yields a reasonably large J -splitting with again the 3F3

phase shift having the opposite sign of the rest. The RRGM
calculation yields again essentially no splitting; all the phases
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FIG. 12. (Color online) Comparison of the d-d P -wave phase
shifts. The calculations are for AV18 and the UIX potentials. The
3P2 results are shown as full line (red) and +, the 3P1 as dashed line
(green) and X, and the 3P0 as dotted line (blue) and ∗.
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FIG. 13. (Color online) Comparison of the triplet F -wave phase shifts (a) for the triton-proton channels and (b) the deuteron-deuteron
channels. The calculations are for AV18 and the UIX potentials. The 3F2 results are shown as full line (red) and +, the 3F3 as dashed line
(green) and X, and the 3F4 as dotted line (blue) and ∗.

are small and negative. This qualitative difference between the
R-matrix analysis and RRGM calculation seems much less
important than for the D waves because the values are much
smaller; see, however, the discussion of the deuteron-deuteron
analyzing powers below.

V. DIRECT COMPARISON WITH EXPERIMENTS

To directly compare our calculated results with those
obtained previously for the Bonn potential [10], we present
figures for all the elastic scatterings and reactions presented
there. We always use the results of the recent R-matrix analysis
[14] and compare them with the most complete calculations,
i.e., using the AV18 NN potential alone and together with the
UIX TNF potential and taking into account all S-, P -, D-, and
F -wave matrix elements.

So, contrary to Ref. [10], the R-matrix analysis and the
RRGM calculation now consider exactly the same channels.
When the inclusion of F waves yields substantially different
results, we also present those without F waves. The RRGM
calculation is done in 50 keV steps in the center of mass,
starting from the 3H-p threshold. This yields small deviations
in energy from the experimental numbers, but the errors
introduced by this procedure should be well within the size
of the points used. The R-matrix analysis uses relativistic
kinematics, the experimental threshold energies, and the
correct energies of the data for the fit. Here we present
results calculated for a varying energy grid, which uses values
quite close to the experimental numbers, but calculated with
nonrelativistic kinematics. These small differences play no
significant role for the examples given in the following. We
display first the data together with the analysis and calculation
as shown in Ref. [10], sometimes adding new data at the same
energy. Then we discuss a few data sets that we consider critical
to a further new analysis or to conclusions about the effects
of TNFs. We present the various reactions in the order of the
corresponding thresholds, starting with triton-proton elastic
scattering. Around 4 MeV proton energy, differential cross

section and analyzing-power measurements exist. In Fig. 14
we compare the cross section data with the R-matrix analysis
and the direct calculation. We see the data covering an angle
range from about 45◦ to 160◦ in the center-of-mass system,
with the Erlangen data [41] having the smaller errors, but
disagreeing with the OSU data [40] at backward angles. The
RRGM calculation is at an energy of 3.1 MeV in the center
of mass, to be in agreement with the energy of the proton
analyzing power; the R-matrix is at 3.0 MeV. These energy
differences are too small to show any effect in the figures.
The R-matrix reproduces the data quite nicely in general and
falls in between the data at the backward angles. For the
AV18 potential alone, the RRGM yields results much better
than for the Bonn potential [10], now almost agreeing with
the R-matrix results, being slightly below at forward angles
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FIG. 14. (Color online) Differential elastic proton-triton cross
section calculated at 3.1 MeV Ec.m.. The R-matrix results are shown
as full line (red), the results from AV18 alone as thin dotted line (blue),
and those for AV18 together with UIX as thick dotted line (black).
We stick to this coding in the following figures where possible. The
data are from the Ohio State University (OSU) group [40] and from
the Erlangen group [41] at 3.11 MeV.
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FIG. 15. (Color online) Proton analyzing power of the elastic
scattering 3H(p, p)3H calculated at 3.1 MeV Ec.m.. The meaning of
the lines is as in Fig. 14. The data are from Ref. [41].

and slightly above at backward angles. Adding the UIX TNF
destroys the good agreement. Now the calculation is well
below the R-matrix analysis and data at forward angles and
also on the lower side for backward angles, but slightly above
the data and analysis in the minimum region.

The proton analyzing power data of the Erlangen group
[41] cover the same angular range as the differential cross
section; see Fig. 15. The R-matrix analysis reproduces the
data nicely, being slightly above the data for forward angles,
just missing the maximum value, and barely reaching the data
in the backward hemisphere. For the NN interaction alone,
the RRGM calculation is always below the R-matrix analysis,
is closer to the data up to 70◦, falls well below the maximum,
and is also well below all backward data. This situation
appears similar to the notorious Ay problem in the A = 3
systems [3] and also to missing the maximum polarization
value in p-3He scattering [24]. The full calculation, however,
misses the forward data, but it reaches the maximal value of
the R-matrix analysis at a somewhat smaller angle and thus
falls below the backward polarization data. Note that we do
not modify any S-matrix element, contrary to the previous
calculations [10].

For elastic proton-triton scattering, triton analyzing power
data also exist from the Los Alamos group [42] at a close-by
energy in the same angular range as the other data. The R-
matrix just misses the negative values at forward angles; up
to 80◦ it is somewhat above the data, but then agrees nicely
with them, as shown in Fig. 16. Using the AV18 alone yields
triton analyzing powers just on top of the R-matrix results till
its maximum, which is reached at a smaller angle and smaller
value than R-matrix and data. Afterward, all calculated values
are well below the data. Adding the UIX TNF yields much
too high polarization values at forward angles, reaches the
maximal data at a bit smaller angle, and falls below the data
and R-matrix fit at backward angles. The large difference in
the maximal proton and triton polarizations is caused by the
rather large 3P1 to 1P1 transition matrix element.

Summarizing the results for elastic proton-triton scattering,
we see large effects by adding UIX TNF, sometimes favorable,
as for the maximal polarization values, and sometimes adverse,
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FIG. 16. (Color online) Triton analyzing power of the elastic
scattering 3H(p, p)3H calculated at 3.2 MeV Ec.m.. The data at
3.21 MeV are from the Los Alamos group [42].

as for the differential cross section and the forward analyzing
powers. Allowing in the calculation for F waves and the 3+ D

wave always improves the agreement between R-matrix and
RRGM results, but in general the modifications are too small
to display them clearly in figures. Contrary to the previous
calculation [10], we cannot identify a single matrix element
that causes the differences between the R-matrix analysis and
the RRGM calculation. Usually the moduli agree within a
few percent and the phase shifts within a few degrees. The
only exception is the 3P0 matrix element, which is small due
to the strong coupling as discussed above. Adding the TNF
increases it by a factor of 3 to 0.22 and reduces its phase
by 10◦. Furthermore, the results for this partial wave vary
strongly close to the energy considered; see Fig. 9. The general
structure of the differential cross section and the two analyzing
powers is already given by the three triplet P phase shifts
and the 3S1 ones. All the others yield changes in the cross
section that are smaller than the difference between the R-
matrix results and those of the full calculation. The differences
in the analyzing powers at forward angles and around the
maximum come mainly from the slightly differing 3P2-matrix
element and, to a lesser extent, from the size of the 3P0 S-matrix
element (the other two are so close that no differences are
visible). Since the the maximal polarization values are reached
by the full calculation also at higher energies, we do not see
indications here of an “Ay problem,” but we note that the
forward analyzing powers are missed.

The differential cross section for the reaction 3H(p, n)3He
is shown in Fig. 17. The R-matrix analysis is somewhat above
the very forward data and a bit below them at backward angles.
The calculation for the AV18 potential alone reproduces the
data very nicely, being only slightly below at forward angles.
Adding the TNF destroys again the agreement, by loosing
strength at forward and backward angles. All the large matrix
elements agree between analysis and the calculations, with
only the exception of the 3P1 matrix element, which is above
0.2 in the R-matrix and in the full calculation, but only 0.04
for the AV18 alone. The modulus of this matrix element
rises rapidly with energy from threshold to about 2.5 MeV
Ec.m. above the triton-proton threshold in analysis and the full
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FIG. 17. (Color online) Differential cross section for the reaction
3H(p, n)3He calculated at 3.0 MeV Ec.m.. The data at 3.08 MeV are
from Perry et al. [43].

calculation, falling to a minimum near 5 MeV, and a gentle
increase afterward. The AV18 calculation, however, yields the
maximum at 2 MeV, the minimum very close to zero just
above 3 MeV, and a rather rapid increase afterward. These
rapid variations of this matrix element are the main reason for
the rather strong energy dependence of the observables of the
3H(p, n)3He reaction. In addition, the moduli of the D-wave
matrix elements increase rapidly with energy, thus leading
to major changes within 200 keV, especially in polarization
observables not displayed here. The final results are thus
determined by many small matrix elements that change rapidly
with energy, rather than by the large 0− and 0+ ones at
the unitary limit. Unfortunately, all the polarization data are
concentrated below 3.5 MeV, and none exist around 7.5 MeV,
where all D waves belong to the large matrix elements in the
analysis.

The time-reversed reaction 3He(n, p)3H is used at low
energies as a neutron standard reaction. These integrated
cross sections are reasonably well reproduced by the current
calculation (see Ref. [26], where an early version of the present
calculations is reported). The main emphasis of Ref. [26], how-
ever, was the determination of the spin-dependent scattering
lengths as of 3He-neutron elastic scattering. In the meantime a
new measurement of the coherent neutron scattering length
exists [44] in addition to the recent measurement of the
incoherent one [45]. Because of numerical problems, we could
hardly go down to 1 keV in the early RRGM calculations in
order to determine the complex scattering lengths. Special
measures had to be taken to extract them from the calculated
S-matrix elements. Increasing the numerical stability by the
procedure described in the beginning enables us to go down
safely to 0.1 keV and check the extrapolation at even lower
energies. The real part of as can now be calculated via
the standard expression a = tan δ/k, whereas the imaginary
part of a0 still needs the expression given in Ref. [26]. The
calculated results for a1 are within the errors given in Ref. [26].
Since the measured coherent and incoherent scattering lengths
are linear combinations of a0 and a1, and therefore always need
the input of other data, we compare in Table IV the calculated
values with the extracted data.

TABLE IV. Comparison of experimental and calculated real and
imaginary scattering lengths (in fm) for the potential models used.

Potential a0 a1

� � � �
AV18 7.776(1) −5.019(1) 3.447(1) −0.0066(1)
AV18 + UIX 7.622(1) −4.095(1) 3.311(1) −0.0051(1)
R-matrix 7.400(3) −4.449(1) 3.286(6) −0.0012(2)
Exp. 7.370(58)

[45]
−4.448(5)

[46]
3.278(53)

[45]
−0.001(2)

[46]
Exp. 7.456(20)

[44]
3.363(13)

[44]

We note in passing that the calculated coherent scattering
length for the full calculation agrees perfectly with the new
measurement [44]. Since the calculation, however, yields the
spin-zero and spin-one parts separately, this agreement has to
be considered fortuitous. The most recent measurement puts
the spin-dependent scattering lengths well outside the older
error bars.

For elastic 3He-neutron scattering, cross section and analyz-
ing power data do not exist at the energy used for triton-proton
scattering. In Figs. 18 and 19, respectively, we display such
data, measured close to 6 MeV Ec.m.. The R-matrix analysis
reproduces the cross section and analyzing power data very
well. The RRGM calculations do not reach up to the Karlsruhe
cross sections [48] with their tiny errors at backward angles.
Also the negative analyzing powers below 90◦ are not reached,
the maximum is slightly missed, and they fall below the data
at backward angles. Despite the similarity of the results with
and without TNFs, individual matrix elements turn out to be
quite different in phase and/or modulus, but some changes
reduce the polarization, and others increase it, resulting in an
almost zero net change. The differences between R-matrix
analysis and the calculations are mainly due to the larger
triplet P phase shifts, shown in Figs. 11, 10, and 9, which
increase the cross section at forward and backward angles and
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FIG. 18. (Color online) Differential cross section for the elastic
scattering 3He(n, n)3He calculated at 6.0 MeV Ec.m.. The data are
from Drosg [47] at 5.93 MeV and from the Karlsuhe group [48] at
6.0 MeV.
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FIG. 19. (Color online) Neutron analyzing power for the elastic
scattering 3He(n, n)3He calculated at 6.0 MeV Ec.m.. The data are
from Drigo [49] and LANL [50] at 5.85 and 6.0 MeV, respectively.

yield strongly negative analyzing powers near 90◦. Because of
the higher energy, the 3P0 matrix element has increased by a
factor of 2 compared to triton-proton scattering, and therefore
lost some of its sensitivity. The positive 3D2 phase shift from
the R matrix (Fig. 6) compensates for this large P wave by
reducing the maximal analyzing power and the 180◦ cross
section. As in the triton-proton scattering, the three triplet P

phase shifts and the 3S1 one determine the overall structure
of cross section and analyzing power; but here, because of
the higher energy, the effects of the other matrix elements
are larger for the cross section. For the analyzing powers, the
effects of these other matrix elements are visible only in the
falloff from the maximum. The maximal polarization values
are almost reached by the calculations.

Let us now discuss the deuteron-induced reactions. In
Fig. 20 the 2H(d, p)3H differential cross section is displayed
without and with F waves taken into account. Without F

waves, only the pure NN -only calculation comes close to
the data, whereas with F waves the data are rather nicely
reproduced. The R-matrix analysis underestimates the cross

section at the extreme forward and backward angles and
overestimates it around 90◦. For the AV18 potential alone,
the cross section is mostly overpredicted, but including the
TNF yields results on top of the data. Because of the identical
particles in the entrance channel, the cross section has to
be symmetric about 90◦, which is not quite true for the
two different data sets at the extreme angles. The forward
Kentucky data are about 10% above the corresponding Zürich
data at backward angles, which is revealed by comparing
with the full calculation. We postpone the discussion of the
effects of individual transition matrix elements until we have
compared also all the analyzing powers for this reaction to
avoid unnecessary repetition.

The vector analyzing power is displayed in Fig. 21. The
R-matrix analysis does a nice job of reproducing most of the
data. Without F waves, the forward hemisphere data are well
reproduced, the maximum is not reached, and the very small
values above 150◦ are missed. Including F waves, the data are
very well reproduced, except for the zero values at forward
and backward angles, and maybe also in the maximum. The
RRGM calculations yield negative polarizations for forward
angles, contrary to the data; adding the TNF makes the results
always more positive, as do the additional F waves in the
forward hemisphere. So the full calculation comes closest to
the data but cannot be called a good description of them.
The AV18 calculation without F waves yields only qualitative
agreement.

The T20 analyzing power is displayed in Fig. 22. Without
F waves, the double-hump structure of the data is completely
missed, as are the very negative values below 30◦. Including
F waves, the R-matrix analysis reproduces the data very well
except for the forward angles. Both RRGM calculations miss
the forward data totally. The AV18 alone overestimates the
double-hump structure, and including the TNF improves the
reproduction of the data somewhat.

In Fig. 23 we display the tensor analyzing power T21.
Without F waves, only the R-matrix results are similar to the
data. Below 90◦, the RRGM results are close to the R-matrix
ones, being almost antisymmetric. The RRGM calculations
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FIG. 20. (Color online) Differential cross section for the reaction 2H(d, p)3H calculated at 2.0 MeV Ec.m.. The data are from the Zürich
group [51] and from the Kentucky group [52] at 2.0 MeV. For AV18 alone, the energy is chosen in such a way that it agrees in the exit channel
with the experimental one. F waves are not taken into account in (a), but are in (b).
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FIG. 21. (Color online) Same as Fig. 20, but for the analyzing power iT11 of the reaction 2H(d, p)3H calculated at 2.0 MeV Ec.m.. The data
at 2.0 MeV are from the Zürich group [51], as are all the following polarization data.

show almost no effect of the TNF. The R-matrix analysis
including F waves reproduces the data well with the exception
of around 135◦, where it becomes not negative enough. The
RRGM calculation reaches these data but misses the steep
rise from zero to the first maximum. The overall agreement is
satisfactory.

Without F waves, the tensor analyzing power T22 shows
again no qualitative agreement with the data, as shown in
Fig. 24. The R-matrix analysis and RRGM are all similar in
shape; this holds true also when including F waves. Again the
R matrix does a nice job, only underestimating the negative
polarizations around 30◦. In this angular range, the RRGM
results are even less negative. Both calculations miss the height
of the maximum, the NN force, the angle, and hence the
falloff to zero, whereas including the TNF yields reasonable
agreement.

Let us now compare the results of the R-matrix analysis and
the RRGM calculations in detail. All numerical work yields
the 3P1 and 1D2 transition matrix elements as the largest
ones, with the AV18 calculation creating the largest values;
adding the TNF, the typical loss is 10%, and the R-matrix
ones are another 10% smaller. These ratios already take care
of the forward-backward cross section behavior, as shown in

Fig. 20. The next larger matrix elements are much smaller,
typically less than half the largest one. In the R-matrix analysis
come the 5S2 → 3D2 and then the 1S0 transitions, whereas
the RRGM yields the 1S0 matrix element as the next larger.
Adding the 1S0 matrix elements keeps the cross sections as
expected and still yields zero vector analyzing power, since
there is no second channel with which to interfere. Adding
the 5S2 → 3D2 transition sets the scale for the maximum of
the vector analyzing power. The R-matrix analysis gives the
highest value, then the full RRGM calculation, and then NN

forces only, as seen in Fig. 21. Also this transition allows
the tensor analyzing power T20 to approach its ultimate value
around 0◦, with the R matrix giving the most negative value,
which becomes somewhat more negative with increasing
angle, before it reduces to the first maximum. The calculation
including the TNF yields a less negative value at 0◦ and
becomes much more negative with increasing angle, until it
also reduces to smaller values. The two RRGM calculations
are quite similar to each other, with the AV18 calculation
always yielding less negative values. Adding the next largest
matrix element, which is the 5D1 → 3D1 one for the R matrix,
leads to the sawtooth structure for T21 [see Fig. 23(a)], and the
slightly negative values of T22 at small angles, followed by
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FIG. 22. (Color online) Same as Fig. 21, but for the analyzing power T20 of the reaction 2H(d, p)3H.
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FIG. 23. (Color online) Same as Fig. 21, but for the analyzing power T21 of the reaction 2H(d, p)3H.

an increase, similar to Fig. 24(a). In the RRGM, this matrix
element is only a quarter of the R-matrix size; therefore it
plays no essential role. At this stage, however, the 3P2 has to
be taken into account. This matrix element leads to negative
iT11 values similar to Fig. 21(a), a behavior that is not changed
by additional matrix elements. The resulting tensor analyzing
powers T21 and T22 are still far from any qualitative structure
of the data. Also adding the 5S2 → 1D2 transition does not
change the situation. Only when adding the 3F4 and 3F3 matrix
elements does the RRGM reproduce qualitatively the data. The
rest of the agreement of the final Figs. 21–24 is due to the
interplay of many more small matrix elements. One additional
feature of the small matrix elements deserves mentioning:
the 5D3 → 3D3 matrix element in the RRGM calculation has
the same magnitude but opposite phase of the corresponding
matrix elements coupled to total J of 1 or 2. This sign change is
in accordance with a dominating effective tensor force for this
transition; however, the agreement with the polarization data
becomes worse. In the R-matrix analysis, this matrix element
is essentially zero and thus has no effect.

For the charge conjugate reaction 2H(d, n)3He, data exist
from the Kentucky group [52] and the OSU group [53] at
the same energy. Since charge symmetry is rather good, all
data and calculations for the reaction 2H(d, n)3He should be
similar to those of 2H(d, p)3H, except for the small change

in the energy of the exit channel. Therefore, we present
only the results for the calculations including all channels.
The OSU group measured the Cartesian components of the
analyzing powers; hence, for Axx there is no direct counterpart
in the proton channel, and we present also the results without
F waves taken into account. In Fig. 25 we compare the
differential cross section data to the various calculations. As in
the proton channel, the R-matrix analysis underestimates the
backward data, the calculation using AV18 alone overestimates
them, and including TNF brings the results in agreement with
the data. Unfortunately the angular range of the data is rather
limited.

In Fig. 26 we display the vector analyzing power Ay .
The results of all calculations are quite similar to the proton
calculations shown in Fig. 21(b). The data of the OSU group
[53] are slightly negative at forward angles, which the R-matrix
analysis does not follow.

The R-matrix analysis reproduces the tensor analyzing
power Azz in Fig. 27 very well, also at the extreme
forward and backward angles. As in the proton channel,
the RRGM calculations do not reach the minimum at
zero degrees. Also the structure before the second max-
imum is not well reproduced. Some of the disagreement
is due to the 5D3 → 3D3 matrix element, as discussed
above.
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FIG. 24. (Color online) Same as Fig. 21, but for the analyzing power T22 of the reaction 2H(d, p)3H.
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FIG. 25. (Color online) Differential cross section for the reaction
2H(d, n)3He calculated at 2.0 MeV Ec.m. with all matrix elements
taken into account. For AV18 alone, the energy is chosen such that in
the exit channel it agrees with the experimental one. The data from
the Kentucky group [52] are at 2.0 MeV.

Since the tensor analyzing power Axx has no direct
counterpart in the proton channel, we present in Fig. 28
the results with and without F waves. Without F waves,
the structure of the calculation does not reproduce the data,
and only the R-matrix analysis gives qualitative agreement
up to 60◦. Including F waves, the R matrix reproduces the
data well, except close to 30◦. The RRGM calculations agree
qualitatively with the data, with major deficiencies below 30◦
and around 120◦. The full calculation agrees better overall.

As for T21 of the proton channel, the sawtooth structure
of the tensor analyzing power Axz is well reproduced by all
the calculations (Fig. 29). The R matrix has some difficulties
around 150◦, and the RRGM results differ there and also
around 45◦. Note the sign difference between Figs. 29 and
23 due to the definition of Axz and T21.

Considering all results for the 2H(d, n)3He reaction, we
find very close similarity with the charge conjugate proton
channel. Some observables are better reproduced by the
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FIG. 26. (Color online) Same as Fig. 25, but for the vector
analyzing power Ay . The data are from the Ohio State group [53]
at 2.0 MeV, as are all the following polarization data.
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FIG. 27. (Color online) Same as Fig. 26, but for the tensor
analyzing power Azz.

R-matrix analysis in the proton channel, others in the neutron
channel. The parameter-free RRGM calculations do not reach
a similar agreement for the analyzing powers. The transition
matrix elements follow the same pattern as for the proton
channel, although the small matrix elements usually have a
somewhat larger effect.

One of the significant differences noted earlier between the
R-matrix fit and the measurements was for the d-d reaction
differential cross sections at forward and backward angles,
even with the F -wave transitions included. In comparing with
the RRGM calculations, which predict those cross sections
much better, it appears that this difference comes primarily
from the interference of the 1S0 and 1D2 transition matrix
elements. The 1S0 transition obtained from the R-matrix fitting
has an interference effect between levels at low energies that
does not show up in the RRGM calculations. Because of this
interference effect, the phase of the transition element changes
sign and gives the opposite interference behavior with the 1D2

matrix element at most energies, compared with the RRGM
calculations. This results in an important component of the
“P2” behavior of the differential cross section having the
opposite sign with respect to the calculations, giving cross
sections that are too high at 90◦ and too low at forward and
backward angles.

Earlier in the analysis, it was thought that the deficiency
was due to the lack of higher partial waves. However, the
comparison to the RRGM calculations reveals that the problem
is likely this anomalous interference pattern in the 0+ levels of
the fit. We speculate that this behavior arises in order to give a
rapid rise in the S-wave reaction cross sections at low energies
and is symptomatic of the d-d channel radius (7 fm) having
too small a value.

Let us now discuss the last two-body process, the elastic
deuteron-deuteron scattering. Due to the identical bosons in the
entrance and exit channels, the vector analyzing power iT11 and
the tensor analyzing power T21 are antisymmetric about 90◦;
all other observables are symmetric. Most of the existing data
are unfortunately converted into the forward hemisphere, so
obvious violations of the symmetry are no longer visible, and
artificial scatter might lead to the false interpretation of higher
partial waves. Because of the small values of the polarization
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FIG. 28. (Color online) Same as Fig. 26, but for the tensor analyzing power Axx . F waves are taken into account in (b), but not in (a).

observables, the fact that we calculate them to only three
significant places sometimes yields rough lines in the figures
and does not allow the finest details of the calculations to be
seen. Omitting F waves in the full RRGM calculation yields
at most unit changes in the last significant digit, which are too
small to give any noticeable change in the figures. Therefore
we do not generally compare calculations with and without F

waves, but return to this point at the end of the section.
The R-matrix analysis reproduces the rather old differential

cross section data [54] well, considering the large error bars in
Fig. 30. The RRGM calculations do not reach the minimum at
90◦ and overshoot the data below 60◦, with the full calculation
being closer to the data.

In Fig. 31 the rather small vector analyzing power data are
compared with the calculations. All calculations reproduce
the small values with its relatively large errors. The R-matrix
analysis shows a structure that is not supported by the data.
The effects of adding the TNF are negligible. Note the much
smaller scale used here and in the following analyzing powers
compared to that in Ref. [10].

The tensor analyzing power T20 is one of the few variables
with data also in the backward hemisphere. Figure 32 shows
the data of the Zürich group [55], with their scatter and large

-0.25

0

0.25

0 30 60 90 120 150
Θc.m. (deg)

A
xz

2H(d,n)3He
→

OSU

FIG. 29. (Color online) Same as Fig. 26, but for the tensor
analyzing power Axz.

errors, and the data of the TUNL group [56] with much smaller
errors, covering the angular range up to 120◦. The R-matrix
analysis reproduces the data nicely, not quite reaching the
maximum at 90◦. The RRGM calculation with AV18 alone
misses the minimum around 45◦ by about a factor of 2, but
it comes close to the maximal values. Adding the TNF yields
relatively large effects, coming close to the R-matrix results
and data.

The T21 data of the Zürich group [55] show again consid-
erable scatter in both the values and uncertainties as seen in
Fig. 33. All calculations reproduce these small polarizations
reasonably well. The TNF effects are again small.

For the tensor analyzing power T22, data again exist from
the Zürich [55] and TUNL [56] groups. The Zürich data show a
deep minimum at 90◦ with large relative errors, and the TUNL
data are about a factor of 2 smaller in the minimum with
the errors about the same factor smaller, as seen in Fig. 34.
The R-matrix analysis yields small positive and negative
values with no indication of the minimum. The two RRGM
calculations are on top of each other and reproduce the TUNL
data nicely.
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FIG. 30. (Color online) Differential cross section for elastic
deuteron-deuteron scattering calculated at 3.0 MeV Ec.m. including
F waves. The data are from Ref. [54] at 3.0 MeV.
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FIG. 31. (Color online) Vector analyzing power iT11 for elastic
deuteron-deuteron scattering calculated at 3.0 MeV Ec.m.. The data
are from the Zürich group [55] at 3.0 MeV, transferred into the forward
hemisphere. The pluses are the R-matrix results omitting all F -wave
contributions.

Let us now discuss the differences in the various calcu-
lations. As mentioned before, the effects of F waves in the
RRGM calculations are negligible, so we did not compare
those cases. As demonstrated in Figs. 31–34, the effects of
the TNF are small to negligible. For most observables, the full
calculations in the R-matrix or RRGM framework yield similar
results, especially if we take the smallness of the polarization
values into account. If we look at individual partial waves,
however, this apparent agreement breaks down. Omitting the
F waves in the R-matrix analysis yields no effect in the
differential cross section, small changes for the T21 angular
distribution, a shallower minimum and maximum for T20, and
large modifications for the rest. The angular distribution of the
vector analyzing powers iT11 becomes sin(4
) with a minimal
value of −0.022, as shown by the pluses in Fig. 31, whose
remnants are still visible in the final result. For T22, the effects
of omitting the F waves are displayed in Fig. 34. This suggests
that the F waves are necessary for some of the polarizations
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FIG. 32. (Color online) Same as Fig. 31, but for the tensor
analyzing power T20. The data from the Zürich group [55] are
transferred into the forward hemisphere, whereas the data of the
TUNL group [56] are shown as taken.
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FIG. 33. (Color online) Same as Fig. 31, but for the tensor
analyzing power T21.

to compensate for artifacts introduced by the lower partial
waves. As mentioned in the previous section for the D-wave
and P -wave phase shifts and displayed in Figs. 8, 12, and 13 for
D-, P -, and F waves, the R-matrix analysis finds considerable
J -splitting, whereas the RRGM calculations do not support
these findings. It is unclear at this point which data cause this
large J -splitting. The origin of this problem are the very few
data in the backward hemisphere. Transforming the original
backward hemisphere ETH data into the forward hemisphere
might have introduced this artificial behavior.

With the knowledge of the scattering and bound-state wave
functions, various radiative capture reactions can be calculated,
at least in the long-wavelength limit, for the complex RRGM
wave functions used here. For the reaction 2H(d, γ )4He, new
data at very low energies exist from the TUNL group, which
are well reproduced, together with older data of this reaction by
a calculation similar to the one described above [57]. Further
work on the proton and neutron capture reactions is under
way [58]. Unfortunately for these reactions, the data situation
is very controversial; see recent calculation results compared
with data [59].
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FIG. 34. (Color online) Same as Fig. 32, but for the tensor
analyzing power T22. In addition, the results of the R-matrix analysis
omitting F -wave contributions are shown as +.
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VI. DATA NEEDS AND CONCLUSION

The R-matrix analysis uses much more data than discussed
in the previous section to determine the R-matrix parameters.
Using these, it is possible to interpolate or even extrapolate
to energies where no data for the elastic scattering or specific
reaction are available, or to predict polarization observables
that have not been measured so far. We have chosen the
energies presented here by the requirement to have a maximum
number of data sets at this energy.

Compared to the previous calculations using the Bonn po-
tential [10], the agreement between the parameter-free RRGM
calculation using the Argonne v18 two-nucleon potential and
the R-matrix analysis and data is much better. The partial-wave
analysis allows us to point to specific features that need
further study and additional or improved data. Because of the
complexity of the A = 4 system, we cannot specify which part
of the two- or three-nucleon potential causes the differences
seen in the previous sections. Therefore, we can only point out
which effective two-body interaction might be responsible.

Let us assume for the moment that the R-matrix analysis is
equivalent to the data; then we can conclude from Figs. 4,
5, and 7 that all the S waves are very well reproduced
and thus there is almost no room left for modifications of
the central force. The 0+ triton-proton phase shift below
the neutron threshold might be the exception, which was
used in Ref. [26] together with the very-low-energy data
in 3He-neutron scattering and the 3He(n, p)3H reaction, to
advocate a slight reduction of the long-range and slight
increase of the short-range part of the central force. The
good agreement for the singlet P and D waves (see Figs. 10
and 6, 7, respectively), supports this further, whereas the 1F3
triton-proton and 3He-neutron phase shifts disagree widely
between the R-matrix analysis and RRGM calculation.

The deuteron-deuteron triplet P waves indicate a rather
strong spin-orbit force in the R-matrix analysis, which is not
quite met in the RRGM calculation, as seen in Fig. 12. The
[3 + 1] triplet P waves show a smaller J -splitting in the R-
matrix analysis that the RRGM calculation follows nicely,
without quite reaching the values for the 3P1 and 3P2 phase
shifts for the higher energies. This mismatch also leads to
differences in the energy dependence, especially for the 0−
channel.

For the higher partial waves, which are small in the
R-matrix analysis and the RRGM calculation, relatively large
differences occur. Whereas the RRGM calculation reveals the
dominance of the central force component by only a very weak
J -splitting in the elastic phase shifts, the R-matrix analysis
yields an appreciable splitting, the origin of which is still
unclear.

Let us now compare directly against the data. As mentioned
in the previous section, the [3 + 1] elastic scatterings and
reactions are very sensitive to P -wave matrix elements. The
difference between the polarization of the heavy fragment
and the light one depends only on triplet-singlet transition
matrix elements, thus essentially singling out the 3P1 −→
1P1 matrix element. Since we realize that experiments with
triton beams or targets are now problematic, we consider
the reaction 3He(n, p)3H the perfect choice. Around neutron
energies of 8–10 MeV, it would add to the already existing

elastic scattering data and thus via unitarity, lead to a much
more restrictive analysis. Taking only the strongest transitions
into account, R-matrix and RRGM calculations yield widely
different predictions for cross sections and analyzing powers.
Also, the TNFs play a large role as a result of the very large
0− matrix element. The cross section at forward angles differs
by 30%. Therefore, the energy region around the broad second
0− resonance [13] is of great interest.

For d-d elastic scattering, a few recent polarization data are
available [56] that contradict to a large extent the older ones.
To reduce the weight of the existing iT11 and T21 at higher
energies, new data would be highly welcome, preferably in
the backward hemisphere. Especially also cross section data
with smaller errors should improve the analysis and allow
for a better comparison between the various three-nucleon
potentials.

The deuteron-deuteron fusion reactions are a very special
case. Since there the F waves play a large role, they are
essential in determining these partial waves. Unfortunately the
cross section data do not cover the very forward and backward
regions; hence, the R-matrix analysis is not forced to reproduce
these angle ranges. A few cross section measurements for both
outgoing channels would improve the situation tremendously.
Also the dependence on the TNF is very strong at the extreme
angles, as seen in Figs. 20 and 25.

The polarization data of the proton channel are taken at
almost twice as many angles as are the neutron channel data.
Since the relative errors are comparable, the weight of the
proton data is much higher in the analysis. The forward
region (for T21/Axz, the backward hemisphere) poses the main
problem to the R-matrix analysis. Especially for iT11 and T20,
the differences between the charge conjugate channels are
large, which is not to be expected due to charge symmetry. The
differences due to the different thresholds are essentially given
by the variations of the RRGM calculations. Three-nucleon
forces yield large enough effects to make these polarizations a
valuable tool to determine TNFs.

Before closing, we want to add a few remarks about the
Ay problem encountered in deuteron-nucleon and proton-3He
elastic scattering and not seen here in the 4He system. Since
the mismatch between the maximal analyzing power of the
data and the calculations, for example, using AV18 and UIX, is
much larger for the p-3He scattering than for deuteron-nucleon
scattering, one might be tempted to conclude that the origin of
this deficiency is a missing T = 1 force component. But then
it should also show up in the [3 + 1] channels considered here,
which it does not. This contradiction can be resolved by noting
that in the previous cases, the triplet P -wave matrix elements
showed small J -splitting and had (essentially) modulus of
unity. Here, however, we find an appreciable J -splitting and
due to channel coupling, moduli much smaller than unity, thus
leading to a much more complex behavior of the analyzing
powers.

We have shown in this paper how well an R-matrix analysis
of the data can represent them by a relatively small number
of R-matrix parameters. In addition to that, a parameter-free
RRGM calculation allowed us to show the agreement with
results from the Argonne v18 two-nucleon potential only and
the effects of the additional Urbana IX TNF. These effects are
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quite large for some partial waves or specific data. Therefore,
we consider the 4He system a good place to study the effects
of TNF and to use the comparison with data in order to
determine the structure and radial dependence better. To learn
more about the TNF, other forces, like the Tucson-Melbourne
force [60] in its modified form [61], or one from effective
field theories [62] have to be applied also. Unfortunately, the
RRGM calculations are very time consuming, especially when
the TNF is included. Since every spin-isospin operator has to be
programed individually (and the radial dependence expanded
in terms of Gaussians), the recent Illinois force [63] is currently
on the verge of feasibility [64]. The most accessible seems
to be the Tucson-Melbourne force [61], which contains no
new operator compared to the Urbana IX force used here. We
plan a new calculation using this force. The potentials derived
from effective field theories can only be used when a reliable
configuration-space version is available.

Despite the above plea for additional and improved data,
we consider the whole set of data in the 4He system well suited
to studying the three-nucleon forces. On the one hand, there
are clear-cut structures that vary only slowly with energy, but
in the reactions we found energy regions with a rapid change
in the observables, which could be used for a fine-tuning of
the TNF. To be not misled by incorrect data, a procedure
similar to the approach of the Nijmegen group for the nucleon-

nucleon data has to be carried out. With the knowledge of the
differences between the R-matrix analysis and the microscopic
calculation, we have started a new R-matrix analysis, where we
use initially only a few data sets, omitting all the suspicious
ones with high χ2 values, and constraining the fit to give
smaller J -splittings. Then we plan to add more and more data
sets, in order to learn which of them cause the J -splitting found
so far. The results of this tedious procedure will be published
elsewhere.

Note added in proof. After completion of the manuscript,
we became aware of the work of A. C. Fonseca et al. [65,66],
in which they use various NN potentials and come to similar
results as we do for the AV18. However, the many-nucleon
force [66] they include via � excitation behaves differently
from the UIX potential that we have used.
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